14 research outputs found

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119

    Limits on fine texture discrimination in humans and the role of friction

    Get PDF
    Science, Technology, Engineering and Mathematics (STEM) disciplines are challenging to blind and visually impaired (BVI) individuals. One of the possible reasons is the complexity in representing and understanding scientific content. Introducing tactile elements such as textures into existing Braille characters can potentially increase the information content of Braille and could likely simplify the complex notations. However, such a task requires a thorough understanding of the discrimination of textures through touch. The current dissertation focuses on: 1) Investigating the psychophysical factors involved in texture discrimination and, 2) Developing a testing system to assess friction induced skin damage from repetitive motion over textured surfaces. The tactile discrimination sensitivity for six fine textured non-patterned surfaces (fine-grit abrasive papers) was evaluated using a two-alternative forced choice technique. The surface roughness parameters and the coefficient of friction of the abrasive papers interacting with human skin were measured. Scanning electron microscopy images were used to observe the surface microstructure. The results suggest that differences in the mean spacing and the friction coefficients could be indicative of differentiability of fine textured samples. Three clearly differentiable textures identified from this study were used to investigate the effect of texture area on tactile discrimination sensitivity. A perception measurement experiment in combination with a friction measurement experiment was performed to understand the possible role of friction in touch-based texture discrimination. There was decrease in the discrimination ability with the decrease in the texture area. An elastomeric skin simulant with layered structure similar to that of human skin was constructed to replicate skin friction blisters. The relationship between applied normal load and number of cycles of reciprocating motion required for blistering was studied. Additionally, a crack-growth model was developed treating the skin simulant as an adhesive-bonded laminar composite. This study made it evident that complete profile of the tribological system is required to develop a skin simulant that can accurately predict skin friction damage. Based on the current literature, the role of surface topography and elastic properties of the human skin on friction was uncertain. Coefficient of friction of four probing surfaces, human index finger pad, silicone replicas of the finger with and without fingerprints, and a smooth silicone sphere, when sliding against fine grit abrasive papers were compared to identify these roles

    Development of a traceability route for areal surface texture measurements

    Get PDF
    Modern manufacturing industry is beginning to benefit from the ability to control the three dimensional, or areal, structure of a surface. To underpin areal surface manufacturing, a traceable measurement infrastructure is necessary. In this thesis a practical realisation of areal surface traceability is presented, which includes the development of: a primary in-strument, methodologies for using the primary instrument to calibrate material measure-ment standards used as standard transfer artefacts, and the process of transferring this traceability to industrial users of stylus and optical instruments. The design of the primary instrument and its complex measurement uncertainty model are described, including detailed analysis of the input parameters of the uncertainty model and their effect on the co-ordinate measurements of the instrument. The development of the process of transferring the areal traceability to industrial users lead to a set of metrological characteristics applicable to all areal surface topography measuring instruments. The set of metrological characteristics, now included into international stand-ards, comprise of: measurement noise, flatness deviation, amplification, linearity and squareness, and resolution. Despite the differences in operation of the various types of in-strument, the idea behind this set of metrological characteristics is based on the fact that these instruments produce three dimensional data sets of points, which is a new approach in the field. Metrological characteristics are quantities that can be measured directly, gener-ally using calibrated material measures. The development of standard methodologies for calibrating the metrological characteristics, and the explicit relationship between the metro-logical characteristics and the measurement uncertainty associated with the co-ordinate measurements provided by the instrument is presented. Many of the techniques described in this thesis are now being discussed for inclusion into international standards

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Engineering Data Compendium. Human Perception and Performance, Volume 1

    Get PDF
    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses

    A right hemisphere advantage for processing blurred faces

    Get PDF
    No description supplie
    corecore