126 research outputs found

    Kinematic Singularities of Robot Manipulators

    Get PDF

    Structural and kinematic synthesis of overconstrained mechanisms

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 133-140)Text in English; Abstract: Turkish and Englishxiii, 140 leavesInvestigation on overconstrained mechanisms needs attention especially in the structural synthesis. Knowing overconstrained conditions and including them in the design process will help creating manipulators with less degree of freedom (DoF) and more rigidity. Also this knowledge of overconstrained conditions will clarify concept of mobility of the parallel manipulators. Another subject, kinematic synthesis of overconstrained mechanisms, is important because it will allow describing a function, path, or motion with less DoF less number of joints. The aim of this thesis is to describe a generalized approach for structural synthesis and creation of new overconstrained manipulators and to describe a potentially generalizable approach for function and motion generation synthesis of overconstrained mechanism. Moreover, screw theory is investigated as a mathematical base for defining kinematics of overconstrained mechanisms. Also, overconstrained mechanisms are investigated and generation of new mechanisms is introduced with examples. Some mathematical models for the subspace geometries are given. A method for defining overconstrained simple structural groups is introduced and extended to design of manipulators with examples and solid drawings. Linear approximation and least squares approximation methods are used for the function generation and motion generation of overconstrained 6R mechanisms. A gap of describing overconstrained manipulators is filled in the area of structural synthesis. A general methodology is described for structural synthesis, mobility and motion calculations of overconstrained manipulators using simple structural groups. A potentially generalizable method for the kinematic synthesis of overconstrained manipulators is described both for function and motion generation

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Design and implementation of 3-RRR spherical parallel robot with three coaxial actuator

    Get PDF
    This work, entitled “Design and Implementation of 3-RRR Spherical Parallel Robot with Three Coaxial Actuators” has had the scope to analytically study the kinematics (both inverse and forward one) of a coaxial configuration of a spherical manipulator. The complete 3D design of the robot has been realised, building it thanks to a 3D printing process called FDM Technology (fused deposition modelling). Moreover, it has been modelled a Feed-Forward Position Control in order to move the three electrical motors, in Matlab environment. As for the state of the art, this thesis has distanced itself from the literature before [5, 4, 6, 3], not using a Denavith-Hartenberg’s approach or a loop equation process, in order to describe the kinematics, but investigating on new method, that could be more efficient in a computational terms, and exploiting its peculiar characteristics and functioning. For these reasons, it has been chosen a geometric method [20] to realise the analytical model of the manipulator. This approach has involved only constant and variable distances, relative to a set of fundamental points, after defining the parameters of the robot’s architecture. In the end, these choices, mentioned before, lead to obtain, as a results, a clear simulation of the robot, in order to better manage it and to focus on the core of both the kinematics and implementations, instead of the traditional process to obtain them, already investigated in literatureIncomin

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    Dynamically Feasible Trajectories of Fully-Constrained Cable-Suspended Parallel Robots

    Get PDF
    Cable-Driven Parallel Robots employ multiple cables, whose lengths are controlled by winches, to move an end-effector (EE). In addition to the advantages of other parallel robots, such as low moving inertias and the potential for high dynamics, they also provide specific advantages, such as large workspaces and lower costs. Thus, over the last 30 years, they have been the object of academic research; also, they are being employed in industrial applications. The main issue with cable actuation is its unilaterality, as cables must remain in tension: if they become slack, there is a risk of losing control of the EE's pose. This complicates the control of cable-driven robots and is among the most studied topics in this field. Most previous works resort to extra cables or rigid elements pushing on the EE to guarantee that cables remain taut, but this complicates robot design. An alternative is to use the gravitational and inertial forces acting on the EE to keep cables in tension. This thesis shows that the robot's workspace can be greatly increased, by considering two model architectures. Moreover, practical limits to the feasibility of a motion, such as singularities of the kinematic chain and interference between cables, are considered. Even if a motion is feasible, there is no guarantee that it can be performed with an acceptable precision in the end-effector's pose, due to the inevitable errors in the positioning of the actuators and the elastic deflections of the structure. Therefore, a set of indexes are evaluated to measure the sensitivity of the end-effector's pose to actuation errors. Finally, the stiffness of one of the two architectures is modeled and indexes to measure the global compliance of the robot due to the elasticity of the cables are presented.I robot paralleli a cavi impiegano cavi, la cui lunghezza è controllata da argani, per muovere un elemento terminale o end-effector (EE). Oltre ai vantaggi degli altri robot paralleli, come basse inerzie in movimento e la possibilità di raggiungere velocità e accelerazioni elevate, possono anche fornire vantaggi specifici, come ampi spazi di lavoro e costi inferiori. Pertanto, negli ultimi 30 anni, questi robot sono stati oggetto di ricerche accademiche e stanno trovando applicazione anche in campo industriale. Il problema principale dell'azionamento mediante cavi è che è unilaterale, poichÊ i cavi possono essere tesi ma non compressi: quando diventano laschi, si rischia di perdere il controllo della posa dell'EE. Questo complica il controllo dei robot ed è uno dei temi piÚ studiati nel settore. Gli studi compiuti sinora ricorrono prevalentemente a cavi addizionali o a elementi rigidi che spingono sull'EE per garantire che i cavi rimangano tesi, ma questo complica la progettazione dei robot. Un'alternativa è sfruttare le forze gravitazionali e inerziali che agiscono sull'EE per mantenere i cavi in tensione. Questa tesi dimostra che, in questo caso, lo spazio di lavoro del robot può essere notevolmente aumentato, applicando questo concetto a due architetture modello. Inoltre, vengono considerati i limiti imposti all'effettiva realizzabilità di un movimento, come le singolarità della catena cinematica e l'interferenza tra i cavi. Anche se un movimento è fattibile, non è garantito che si possa eseguire con precisione accettabile, a causa degli inevitabili errori di posizionamento degli attuatori e delle deformazioni elastiche della struttura. Si valutano quindi alcuni indici per misurare la sensibilità della posizione dell'elemento terminale agli errori di azionamento. Infine, è modellata la rigidezza di una delle due architetture proposte e sono presentati indici per misurare la cedevolezza globale del robot dovuta all'elasticità dei cavi

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    • …
    corecore