8,240 research outputs found

    Discretization methods for homogeneous fragmentations

    Get PDF
    Homogeneous fragmentations describe the evolution of a unit mass that breaks down randomly into pieces as time passes. They can be thought of as continuous time analogs of a certain type of branching random walks, which suggests the use of time-discretization to shift known results from the theory of branching random walks to the fragmentation setting. In particular, this yields interesting information about the asymptotic behaviour of fragmentations. On the other hand, homogeneous fragmentations can also be investigated using a powerful technique of discretization of space due to Kingman, namely, the theory of exchangeable partitions of N\N. Spatial discretization is especially well-suited to develop directly for continuous times the conceptual method of probability tilting of Lyons, Pemantle and Peres.Comment: 21 page

    Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

    Full text link
    We consider time discretization methods for abstract parabolic problems with inhomogeneous linear constraints. Prototype examples that fit into the general framework are the heat equation with inhomogeneous (time dependent) Dirichlet boundary conditions and the time dependent Stokes equation with an inhomogeneous divergence constraint. Two common ways of treating such linear constraints, namely explicit or implicit (via Lagrange multipliers) are studied. These different treatments lead to different variational formulations of the parabolic problem. For these formulations we introduce a modification of the standard discontinuous Galerkin (DG) time discretization method in which an appropriate projection is used in the discretization of the constraint. For these discretizations (optimal) error bounds, including superconvergence results, are derived. Discretization error bounds for the Lagrange multiplier are presented. Results of experiments confirm the theoretically predicted optimal convergence rates and show that without the modification the (standard) DG method has sub-optimal convergence behavior.Comment: 35 page

    Discretization methods for extremely anisotropic diffusion

    Get PDF
    In fusion plasmas there is extreme anisotropy due to the high temperature and large magnetic field strength. This causes diffusive processes, heat diffusion and energy/momentum loss due to viscous friction, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 101210^{12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. % Currently the common approach is to apply magnetic field aligned grids, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems in the case of crossing field lines, e.g., x-points and points where there is magnetic reconnection. This makes local non-alignment unavoidable. It is therefore useful to consider numerical schemes that are more tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this several discretization schemes are applied to the anisotropic heat diffusion equation on a cartesian grid

    On the Convergence of Adaptive Iterative Linearized Galerkin Methods

    Get PDF
    A wide variety of different (fixed-point) iterative methods for the solution of nonlinear equations exists. In this work we will revisit a unified iteration scheme in Hilbert spaces from our previous work that covers some prominent procedures (including the Zarantonello, Ka\v{c}anov and Newton iteration methods). In combination with appropriate discretization methods so-called (adaptive) iterative linearized Galerkin (ILG) schemes are obtained. The main purpose of this paper is the derivation of an abstract convergence theory for the unified ILG approach (based on general adaptive Galerkin discretization methods) proposed in our previous work. The theoretical results will be tested and compared for the aforementioned three iterative linearization schemes in the context of adaptive finite element discretizations of strongly monotone stationary conservation laws
    • …
    corecore