125 research outputs found

    Analysis of discrete-time queueing systems with vacations

    Get PDF

    The preemptive repeat hybrid server interruption model

    Get PDF
    We analyze a discrete-time queueing system with server interruptions and a hybrid preemptive repeat interruption discipline. Such a discipline encapsulates both the preemptive repeat identical and the preemptive repeat different disciplines. By the introduction and analysis of so-called service completion times, we significantly reduce the complexity of the analysis. Our results include a.o. the probability generating functions and moments of queue content and delay. Finally, by means of some numerical examples, we assess how performance measures are affected by the specifics of the interruption discipline

    Preemptive Resume Priority Call Center Model with Two Classes of MAP Arrivals

    Get PDF
    Generally in call centers, voice calls (say Type 1 calls) are given higher priority over e-mails (say Type 2 calls). An arriving Type 1 call has a preemptive priority over a Type 2 call in service, if any, and the preempted Type 2 call enters into a retrial buffer (of finite capacity). Any arriving call not able to get into service immediately will enter into the pool of repeated calls provided the buffer is not full; otherwise, the call is considered lost. The calls in the retrial pool are treated alike (like Type 1) and compete for service after a random amount of time, and can preempt a Type 2 call in service. We assume that the two types of calls arrive according to a Markovian arrival process (MAP) and the services are offered with preemptive priority rule. Under the assumption that the service times are exponentially distributed with possibly different rates, we analyze the model using matrix-analytic methods. Illustrative numerical examples to bring out the qualitative aspects of the model under study are presented

    Simple bounds for queueing systems with breakdowns

    Get PDF
    Computationally attractive and intuitively obvious simple bounds are proposed for finite service systems which are subject to random breakdowns. The services are assumed to be exponential. The up and down periods are allowed to be generally distributed. The bounds are based on product-form modifications and depend only on means. A formal proof is presented. This proof is of interest in itself. Numerical support indicates a potential usefulness for quick engineering and performance evaluation purposes

    Analysis of limited-priority scheduling rules in discrete-time queues

    Get PDF
    • 

    corecore