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Abstract

For many queueing systems the server is not continuously available. Service interruptions may result from
repair times after server failures, from planned maintenance periods or from periods during which customers
from other queues are being served. These service interruptions cause an overall performance degradation
which is most striking when interruptions can start while a customer is being served and his service has to
start all over after the interruption. This is the so-called preemptive repeat service discipline. This paper
investigates stability conditions for discrete-time queueing systems with preemptive server interruptions.
Under renewal assumptions for arrival, service and interruption processes, sufficient conditions for the pos-
itive recurrence of the single-server and multiserver queueing processes are established for the preemptive
repeat different and the preemptive resume service disciplines.
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1. Introduction

For queueing systems with service interruptions [1], service to customers is regularly suspended. Service
interruptions may result from resource sharing or server breakdowns and failures. In particular, when several
queues share a common server, service interruptions are a natural abstraction to model the access of the other
queues to the server. From the viewpoint of the customers of a particular queue, the server is unavailable
whenever it serves customers from other queues.

Clearly, the service interruptions paradigm is most useful when the interruption process is independent
of the arrival and service processes. If this is the case, the original queueing problem breaks down into
two easier problems: the determination of the characteristics of the interruption process and the analysis of
the queueing system with interruptions. In particular, such an approach greatly simplifies the analysis of
queueing systems with a preemptive priority discipline. For the low priority customers of queueing systems
with such a priority discipline, service interruptions occur when a high priority customer arrives during a
low priority customer’s service time. In accordance with the preemptive priority discipline, the low priority
customer immediately leaves the server such that the high priority customer can enter the server upon
arrival. After all high priority customers are served, the interrupted customer reenters the server and either
continues its service (preemptive resume), restarts its service (preemptive repeat) or restarts its service with
a new service time (preemptive repeat different). If the arrival and service processes of the high and low
priority customers are independent, it is easily verified that the arrival, service and interruption processes
of the low priority queue are independent as well.

Note that for some applications, independence of the interruption process cannot be assumed. For
example, in a preemptive-repeat first-come-last-served queueing system, zero-length interruptions can be
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introduced to model the service interruptions upon arrival of new customers. However, in this case synchro-
nisation of arrival and interruption process is required and the interruption process and queueing process
cannot be studied separately.

White and Christie [2] were the first to study queueing systems with interruptions in connection with
priority queueing systems. These authors investigated the M/M/1 queueing system with a preemptive
resume priority discipline. Their results were later extended by Avi-Itzhak and Naor [3] and Thiruvengadam
[4] who study preemptive resume priority queues with general service times. Gaver Jr. investigated the
preemptive repeat and the preemptive repeat different priority disciplines [5]. Queues with batch Poisson
arrivals and generally distributed service times were studied. Nain [6] has used the interruption paradigm
to retrieve diffusion approximations for preemptive resume priority queues. More recently, Fiems, Steyaert
and Bruneel [7] consider the discrete-time MX/G/1 queueing system with a preemptive resume, preemptive
repeat and a preemptive partial repeat priority discipline. These authors also provide expressions for the
generating functions of the idle and busy periods of the queueing system with interruptions which enables
them to study multi-class preemptive priority systems.

Apart from a priority scheduling discipline, a single server can be shared by multiple queues by polling
or a cyclic service discipline. The server cyclically visits the different queues and remains with a particular
queue until this queue is completely empty (exhaustive service) or until all customers are served that were
present upon arrival of the server at the queue (gated service). Additionally, a limit can be placed upon
the number of customers that are served during a visit (number-limited) or upon the duration of the visit
(time-limited). For the exhaustive and the gated polling disciplines, the queueing process relates to a
branching process and therefore exact expressions are available for the various performance measures of
interest [8, 9]. For (exhaustive) number- and time-limited polling systems no exact results are available
and various approximation methods have been proposed. In particular, the decomposition method focuses
on a single queue of the polling system and models the access of the other queues as server interruptions.
However, the arrivals, service and interruption processes are no longer independent for these systems, even
if the arrival and service processes of the different queues are independent. An iterative procedure is then
devised to find the stochastic characteristics of the interruption process.

The literature on limited polling systems is mostly concerned with number-limited [10, 11] and non-
preemptive time-limited polling systems [12, 13, 14]. Only few authors consider preemptive time-limited
polling systems which are the most interesting from the vantage point of the present contribution since
service interruptions are allowed. De Souza e Silvia et al. [15] investigate such a polling system with Poisson
arrivals, exponential service times, finite capacity buffers and a preemptive resume polling discipline. In
this particular traffic setting, the polling discipline coincides with the preemptive repeat different discipline
due to the lack of memory of the exponential service time distribution. Frigui and Alfa [16] focus on a
time-limited polling system with a preemptive repeat different polling discipline as an approximation for the
preemptive resume polling discipline. These authors assume a Markovian arrival process, phase-type service
times and finite capacity buffers.

As already mentioned, interruptions also result from server failures or breakdowns. Some of the au-
thors of the interruption models for priority queues discussed above [2, 3, 4, 5, 6, 7] also consider the case
where the interruptions are triggered by server breakdowns. In addition, various authors also consider
server breakdowns outside the priority queueing context. Federgruen and Green [17] provide bounds and
approximations for the M/G/1 queue with generally distributed on- and off-times and a preemptive re-
sume discipline. Notice that we adopt the priority queueing terminology to indicate how service is taken
up after the interruption. Generally distributed on- and off-periods are also considered by Bruneel [18] for
discrete-time queueing systems. Here, single-slot service times are considered such that there is no service
preemption. Also Lee [19] considers a discrete-time queueing system with single slot service times but inves-
tigates a Markovian interruption process. Discrete-time queueing systems with generally distributed service
times are investigated by Fiems et al. [20, 21]. In these papers, some generalisations of preemptive-repeat
service disciplines are investigated. Tang [22] considers Poisson breakdowns when the server is working and
renewal type breakdowns when it is idle whereas Li, Shi and Chau [23] investigate the transient behaviour of
the M/G/1 queue subject to Poisson breakdowns. In both contributions a preemptive resume discipline is
adopted. This is also the case in [24] where Nuñez Queija considers a processor sharing queue with Poisson
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breakdowns. More recently, Balciog̃lu et al. [25] approximate a GI/D/1 queue with correlated server break-
downs and preemptive resume by the corresponding system with an interruption process with (independent)
hyper-exponentially distributed on-times and general off-times. Fiems et al. [26] study the M/G/1 queue
where the server is simultaneously subjected to preemptive resume breakdowns and either preemptive repeat
different or preemptive repeat identical breakdowns. Multiple server queues with breakdowns are studied
by Mitrany and Avi-Itzhak [27] and Neuts and Lucantoni [28]. Both contributions consider a Poisson ar-
rival and breakdown process and exponential service times. In the former contribution, server repair starts
immediately and the repair times are exponentially distributed. In the latter contribution, the servers are
repaired only when a number of servers have broken down.

Although queueing systems with service interruptions have been investigated since the late 1950s, to the
best of our knowledge, stability conditions for these systems have not yet been formally proved. Such condi-
tions are not straightforward though; typically the queueing systems are not work-conserving and therefore
not always stable when the server capacity exceeds the arrival load. For preemptive repeat disciplines one
intuitively sees that some service capacity is lost whenever service is interrupted. This contribution is the
first to tackle the problem of the stability of queues with service interruptions with a regenerative stochastic
process approach [33, 34], enabling us to prove the obtained conditions rigorously. The main contribution of
the current work is its generality. The stability conditions we present below are valid for multiserver queues
with generally distributed inter-arrival and service times and generally distributed server on- and off-times.
Further, both preemptive repeat different and preemptive resume service disciplines are investigated. The
conditions we obtain are simple and general, and therefore easily applicable. An important advantage of the
presented approach is that it applies to non-Markovian processes as can be seen from the analysis below.

Before proceeding, we mention some applications of the queueing model at hand. In line with the
literature described above, the server interruptions can be used to model high-priority traffic. In particular,
stability of the low priority queue in a multiserver queueing system can be investigated, where each server
has its dedicated stream of high-priority traffic. In addition, the server interruptions can model production
interruptions in a production system with parallel possibly non-identical servers, each server being prone to
errors. Interruptions then correspond to the server repair times and production may (preemptive repeat) or
may not (preemptive resume) be lost if an error occurs. The stability results established in this paper then
correspond to the maximum load that the respective buffer systems can sustain.

Key elements of our analysis are the synchronisation (coupling) of renewal processes based on the discrete
structure of the distributions and a characterisation of the limit forward renewal process of the regenerations.
Moreover, we use a new approach to extend the stability analysis to general initial states of the basic
regenerative process. An important motivation for the paper was also to present different techniques in the
framework of regenerative method for a wide class of models. For this reason, a refinement of the stability
condition is included as well.

For completeness, we mention the fluid approximation approach as an alternative to the regenerative
approach followed here. The fluid approximation approach replaces the stochastic model by a deterministic
analogue termed the fluid model and stability of the original system is deduced from the stability of this
fluid model. Such an approach has lead to significant progress in stability analysis of multiclass queueing
networks [29, 30, 31]. See also Foss and Konstantopoulos [32] for a survey of various approaches to stability
of queueing systems with a focus on the fluid approach. Nevertheless, the present paper does not rely on a
fluid approach since the regenerative method turns out to be suitable to obtain complete and transparent
proofs as well as natural stability conditions for the model at hand.

The remainder of this contribution is organised as follows. In the next section the queueing system is
introduced and notation is established. Section 3 then concerns the regenerative structure of the multiserver
queueing process. Stability conditions are established in section 4 and further extended in Section 5. In
particular, the latter section concerns the inclusion of arbitrary initial states. Section 6 is devoted to some
refinements of the main stability conditions for the single-server queueing system. Finally, conclusions are
drawn in section 7.
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2. Queueing system and notation

We consider a discrete time queueing system. Time is divided into fixed length intervals or slots and
all arrivals and departures are synchronised with respect to slot boundaries. Therefore, service times and
interarrival times are expressed in terms of numbers of slots. We here assume that the service times of the
consecutive customers constitute a sequence of independent and identically distributed (iid) non-negative
random variables; let Sn denote the service time of the nth customer. Similarly, the interarrival times
between the consecutive customers also constitute a sequence of iid non-negative random variables; let τn
denote the interarrival time between the nth and the (n+ 1)st customer. For further use, the arrival instant
of customer n+ 1 is denoted by An = τ1 + · · ·+ τn, n ≥ 1, A0 = 0, whereas the residual renewal time of the
arrival process A = {An, n ≥ 0} is given by,

A(t) = min
k
{Ak − t : Ak − t ≥ 0}, t ∈ N = {0, 1, 2, . . .} .

There are m servers which are unavailable from time to time. Let X(i)
n and Y (i)

n denote the length of the nth
blocked and nth available period of the ith server, respectively (i = 1, . . . ,m), whereby it is assumed that
the first blocked period starts at slot boundary 0 for each server. In other words, all servers are down at time
0. The consecutive (X(i)

n , Y
(i)
n ) constitute sequences of iid random variables for all i = 1, . . . ,m. However,

for each n and i, X(i)
n and Y (i)

n are not assumed to be independent. Let Z(i)
n = X

(i)
n +Y

(i)
n denote the length

of the nth cycle of server i; a cycle consists of a blocked period followed by an available period, i = 1, . . . ,m.
Since, for each i, {Z(i)

n , n ≥ 1} is a sequence of iid random variables, we introduce the (zero-delayed) renewal
processes T (i) = {T (i)

n , n ≥ 1},

T (i)
n = Z

(i)
1 + · · ·+ Z(i)

n , n ≥ 1 , T
(i)
0 = 0 ,

as well as the corresponding forward renewal time processes,

Ti(t) = min
k
{T (i)

k − t : T (i)
k − t ≥ 0}, i = 1, . . . ,m; t ∈ N .

In addition to the random variables introduced above and throughout the paper, indices of sequences of
iid random variables are suppressed to denote generic elements of these sequences; for example, X(i) denotes
a generic blocked period of server i, τ denotes a generic inter-arrival time, etc.

A server is free if it is neither serving customers nor interrupted. If a server becomes free and there are
customers in the queue, a new customer enters the server. It is possible that more than one server becomes
free simultaneously. Customers in the queue then choose a free server according to some algorithm, possibly
random, for which no further restrictions are imposed.

The combination of multiple-slot service times and (independent) service interruptions, implies that an
unavailability period can start while a customer is receiving service; service is then immediately interrupted.
We here adopt either the preemptive resume service discipline or the preemptive repeat different service
discipline. In the former case, service continues after the interruption whereas service is repeated from the
start in the latter case. The service time after the interruption is independent of the original service time.
In both cases, customers remain with the same server until service completion. Note that there are some
technical complications if customers are allowed to change server. Intuitively, changing servers seems the
right thing to do if another server is available when an interruption starts. However, in this case, one should
avoid that customers constantly join servers that do not remain available for a sufficiently long time (such
that their service is interrupted over and over again). Moreover, there may be technical reasons which forces
customers to stay at a particular server.

Remark 1. The dependence between Xn and Yn is natural in the context of GI/G/1 preemptive priority
queues. Let Ŝn and τ̂n denote the service time of the nth high-priority customer and the interarrival time
between the nth and the (n + 1)st high-priority customer, respectively. From the vantage point of a low-
priority customer, service is available whenever there are no high-priority customers in the system. The
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low-priority queue can thus be modelled as a queueing system with interruptions whereby interruption and
available periods correspond to busy and idle periods of the high priority queue, respectively. Hence, the
lengths of the consecutive interruption and available periods can be expressed as follows,

X(1)
n =

Qn+1−1∑
i=Qn

Ŝi , Y (1)
n =

Qn+1−1∑
i=Qn

(τ̂i − Ŝi),

with customer Qn initiating the nth busy period of the high-priority class,

Q0 = 0, Qn = inf{k > Qn−1 :
k∑

i=Qn−1

(Ŝi − τ̂i) < 0}, n ≥ 1 .

Clearly, if both sequences Ŝn and τ̂n are iid, the sequence (X(1)
n , Y

(1)
n ) is iid too, although X(1)

n and Y (1)
n are

dependent.
For queues with more than 2 classes, consecutive idle and busy periods are no longer independent

for generally distributed inter-arrival times since the arrival processes of higher-priority customers do not
regenerate at the same epoch. Therefore we have limited the discussion to two classes.

3. Regenerative structure of the queueing process

We have m + 1 independent renewal processes A and T (i), i = 1, 2, . . . ,m. For the construction of
regenerations, these processes have to be synchronised in such a way that common renewal points are
obtained. It is well-known that in continuous time a synchronisation of two processes can be achieved by
splitting and coupling under a regularity property of the densities of the involved renewal processes. Namely,
at least one of these renewal-time distributions must be spread-out, that is a convolution of this distribution
with itself has a density with respect to the Lebesgue measure. It is also possible to synchronise any number
of independent renewal inputs under suitable assumptions; for the definition and more details see [35, 36].

However, it is not enough to construct a common renewal point for the superposed process to obtain
regeneration of the queueing process (the queue size or workload process). The main difficulty in the
continuous-time setting lies in the construction of a common renewal point such that the queue process
simultaneously achieves zero state (or any other regeneration state, see below). The difficulty comes from
the construction of a common renewal point, which is based on splitting and coupling. In typical situations
a change of the original distributions makes it difficult to synchronise a common renewal point with a fixed
state of the queueing process.

Fortunately, the situation is more tractable in the discrete-time setting. In particular, construction of
common renewal points can be achieved without extra assumptions which contrasts with the spread-outness
required in continuous time. Indeed, denote P(Z(i) = k) = p

(i)
k and P(τ = k) = qk. Since (by the natural

assumption) cycle lengths and interarrival times are proper random variables,

P(Z(i) <∞) =
∑
k≥1

p
(i)
k = P(τ <∞) =

∑
k≥1

qk = 1 .

Therefore, for each i, there exist constants ki and n0 such that pki
> 0 and qn0 > 0, i = 1, . . . ,m. Hence

the processes have the same renewal interval κ = n0

∏m
i=1 ki with positive probability qκ/n0

n0

∏m
i=1 p

κ/ki

ki
> 0.

For further use, we introduce the renewal process,

γ0 = 0, γn+1 = inf(t > γn : Ti(t) = A(t) = 0, i = 1, . . . ,m), n ≥ 0, (1)

describing the common renewal points of the superposed process A∪
⋃
i T

(i), and let γ(t) denote the residual
renewal time of this process at instant t,

γ(t) = inf
k>0

(γk − t : γk − t ≥ 0), t ≥ 0 . (2)
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Note that γ(0) = γ1.
In contrast to synchronisation of arrival and interruption processes, synchronisation with a fixed state

of the queueing process however requires additional assumptions as shown further. We now construct a
family of classical regenerations of the queue-size process under the assumption (for the moment) that the
synchronisation mentioned above exists. Let ν(t) denote the number of customers in the system (in the
queue and in the servers) at instant t; ν(t) excludes the departures at instant t but includes arrivals at that
instant; we thus observe after possible departures and arrivals.

Define β0 = 0 and

βn+1 = inf
t≥1

(t > βn : T1(t) = · · · = Tm(t) = A(t) = 0, ν(t) = 1), n ∈ N. (3)

As usual, it is assumed that inf ∅ =∞. It is easy to see that the instants βn constitute a renewal process of
classical regenerations of the process U := {(ν(t), T1(t), · · · , Tm(t), A(t)), t ≥ 0}.

Our goal is to find assumptions which guarantee the existence of the renewal process β = {βn} with
finite mean regeneration period. The latter property is called positive recurrence. More exactly, we call the
renewal process (3) positive recurrent if

β1 <∞ with probability 1 and E{β2 − β1} := α0 <∞. (4)

We characterise the recurrence property of the renewal process β by the limiting behaviour of the forward
regeneration time at instant t, which is defined as follows:

β(t) = inf
k

(βk − t : βk − t ≥ 0), t ∈ N. (5)

Hence, for any instant t, the first joint renewal epoch of the arrival process and all interruption processes
from time t onwards, occurs at time t+ β(t). It is known [37, pp. 366] that

α0 =∞ implies β(t)⇒∞ (in probability), (6)

regardless of the initial value β(0). The key step of the stability analysis presented below is to establish that
β(t) 6⇒ ∞ (in probability) which implies α0 < ∞. Such an approach has been successfully applied before,
see amongst others [34, 38].

In the remainder, we consider the zero-delayed process β first. In this case, we have T1(0) = · · · =
Tm(0) = A(0) = 0 and ν(0) = 1 such that the following stochastic equivalence holds,

β1 =st β2 − β1.

and such that Eβ1 = α0. Then α0 <∞ implies β1 <∞ with probability 1 (w.p.1), and positive recurrence
(4) follows.

For the zero-delayed process, we call the process U positive recurrent if the renewal process β is positive
recurrent. Probabilities and expectations are indicated by P and E, respectively. For a more general initial
state U(0) = z, probabilities and expectations are indicated by Pz and Ez as usual. However, for a general
initial state z, β is delayed. This means that, in general, the first regeneration period β1 has a different
distribution, and stability analysis requires some extra effort to establish finiteness of this first regeneration
period, Pz(β1 <∞) = 1. In Section 5, we present a new approach to address this issue.

Remark 2. The process U also regenerates when T1(t) = · · · = Tm(t) = A(t) = 0 and ν(t) = i for
all i ∈ N+ = {1, 2, . . .}. By the interruption strategy adopted, the service times of customers that are
interrupted at time t are resampled which implies that U regenerates. Nevertheless, in the remainder we
solely focus on the regeneration instants {βn} defined above.
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Arrival process
τn interarrival time between the nth and (n+ 1)st customer
An arrival instant of customer n+ 1
A(t) residual renewal time of the arrival process

Interruption process
X

(i)
n length of the nth blocked period of server i

Y
(i)
n length of the nth available period of server i
Z

(i)
n length of the nth cycle of server i

T
(i)
n completion time of the nth cycle of server i
Ti(t) residual renewal time of the cycle process of server i

Other processes
ν(t) queue content at time t
βn nth renewal instant of the complete process
β(t) residual renewal time of the complete process
γn nth renewal instant of the superimposed process of the arrivals and interruptions
γ(t) residual renewal time of the superimposed process of the arrivals and interruptions

Table 1: Summary of notation used throughout the paper.

4. Main stability results

We now present the basic stability result. To facilitate the exposition, table 1 summarises the notation
introduced in Sections 2 and 3. We first consider the multiserver queue with a preemptive repeat interruption
discipline. Afterwards, the preemptive resume discipline is investigated. In either case, the zero-delayed
process is considered: the arrival process and the cycle processes regenerate at t = 0. At instant t = 0 there
is a single customer in the queue which arrived at that instant.

4.1. Preemptive repeat
We consider a queueing system with m servers and recall that superscripts are used to distinguish between

the random processes related to the different servers. Let N(t) = min(k ≥ 1 : Ak ≥ t) be the number of
arrivals in interval [0, t], t ≥ 0. Moreover, we assume that,

0 < λ :=
1
Eτ

<∞, 0 < λ
(i)
0 :=

1
EZ(i)

<∞, λ0 =
∑

1≤i≤m

λ
(i)
0 . (7)

Here, λ denotes the arrival rate and λ
(i)
0 denotes the cycle rate of server i. The cycle rate is the inverse of

the mean cycle time. Also some assumptions are introduced which ensure that synchronisation is achieved.
In particular, assume the existence of integer θ1, . . . , θm such that

m∏
i=1

P(τ = θiZ
(i), Y (i) > S) > 0. (8)

Note that a wide class of discrete distributions satisfy assumption (8). This assumption is for example
automatically satisfied if Y (i) has infinite support (for i = 1, . . . ,m) and τ ’s support equals the non-negative
integers. In this particular case, there is no need to impose further restrictions on the service time distribu-
tion. To illustrate this assumption by a concrete example, let m = 2, interarrival time τ follow a Poisson
distribution and Y (i) be unbounded (and independent of X(i)), i = 1, 2. Then, because ES <∞, it is easy
to check that (8) holds with θ1 = θ2 = 1.

We now have the following theorem.
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Theorem 1. Assume that conditions (7) and (8) hold and that the interarrival times τ and cycles Z(i), i =
1, . . . ,m, are aperiodic. If the following negative drift condition is satisfied,

(λ+ λ0)ES +
m∑
i=1

λ
(i)
0 EX(i) < m , (9)

then the queue size process {ν(t), t ≥ 0} is positive recurrent with respect to the zero delayed renewal process
β as defined in (3).

Proof. Let

µ(t) =
t∑

n=1

I(ν(n) < m)

be the total time when the queue content is less than the number of servers, within interval [0, t]. Further,
let µ(i)

0 (t) and Xi(t) denote the idle time and the blocked time of server i in the interval [0, t] respectively,
and let µ0(t) and X(t) denote the total idle time and the total blocked time of all servers during this interval:

µ0(t) =
m∑
i=1

µ
(i)
0 (t) , X(t) =

m∑
i=1

Xi(t) .

Since µ(t) counts the slots where at least one server is idle and µ(i)
0 (t) counts the slots where server i is idle,

we obviously have,
µ(t) ≥ µ(i)

0 (t) for all i, t ≥ 0. (10)

Let W (t) denote the workload — the sum of the (remaining) service time of all customers in the queue —
at time t. In view of the interruption discipline, it is assumed that whenever the service of a customer is
interrupted, the remaining service time of this customer is served immediately and a new customer service
time is added to the workload.

Since ν(0) = 1, we have W (0) < ∞ w.p.1. Now we have the following lower bound for the arrived
workload V (t) within interval [0, t]:

V (t) ≥W (t) +
m∑
i=1

(t− µ(i)
0 (t)−Xi(t))

≥ mt− µ0(t)−X(t)
≥ mt−mµ(t)−X(t) .

V (t) includes repeated service as well as the initial workload V (0) = W (0). For the first inequality, the
remaining service time of interrupted service is neglected. The second inequality neglects the workload at
instant t whereas the third inequality follows from (10). Summarising, we find,

mµ(t) ≥ mt− V (t)−X(t). (11)

Let Fi(t) denote the number of interrupted service times of server i in interval [0, t] and Gi(t) denote
the number of breakdowns of server i starting within the interval [0, t]. To simplify notation, we further
assume that the service times which are assigned after interruptions are selected from a doubly indexed
sequence of the iid random variables S(i)

j , distributed as S, where S(i)
j is the service time assigned after

the jth interruption at server i = 1, . . . ,m, j ≥ 1. Since there is at most one service interruption for every
blocked period, we find,

V (t) = W (0) +
N(t)∑
j=1

Sj +
m∑
i=1

Fi(t)∑
j=1

S
(i)
j ≤

N(t)∑
j=1

Sj +
m∑
i=1

Gi(t)∑
j=1

S
(i)
j . (12)
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By the strong law of large numbers (SLLN) for renewal processes, we have w.p.1 as t→∞,

Gi(t)
t
→ λ

(i)
0 ,

Xi(t)
t
→ λ

(i)
0 EX(i), for i = 1, . . . ,m,

1
t

(N(t)∑
j=1

Sj +
m∑
i=1

Gi(t)∑
j=1

S
(i)
j

)
→ λES +

m∑
i=1

λ
(i)
0 ES = (λ+ λ0)ES . (13)

Now (11), (12) and (13) imply

lim inf
t→∞

m
µ(t)
t
≥ m− (λ+ λ0)ES −

m∑
i=1

λ
(i)
0 EX(i), (14)

or,

lim inf
t→∞

µ(t)
t
≥ 1− (λ+ λ0)ES

m
−
∑m
i=1 λ

(i)
0 EX(i)

m
:= ε0 > 0 . (15)

The right-hand side of the last inequality is positive by the negative drift condition (9). Since µ(t)/t ≥ 0,
Fatou’s lemma and equation (15) imply,

lim inf
t→∞

Eµ(t)
t

> 0 .

Moreover, Eµ(t) =
∑

1≤n≤t P(ν(n) < m), t ≥ 1 such that the former inequality implies,

P(ν(t) < m) 6→ 0, as t→∞.

This means that there exists a non-random (sub)sequence of time instants nk → ∞ (as k → ∞) and some
ε > 0 such that

inf
k

P(ν(nk) < m) ≥ ε . (16)

All renewal periods have a finite mean value and the renewal intervals are aperiodic. Therefore, the
following weak limits exist,

lim
t→∞

P(Ti(t) = k) =
1

EZ(i)
P(Z(i) ≥ k + 1), for k ≥ 0; i = 1, . . . ,m,

lim
t→∞

P(A(t) = k) =
1
Eτ

P(τ ≥ k + 1), for k ≥ 0. (17)

These limits hold for arbitrary initial states Ti(0), A(0), and in particular for Ti(0) = A(0) = 0. Hence, we
have,

lim
t→∞

P(Ti(t) = 0) = λ
(i)
0 , i = 1, . . . ,m; lim

t→∞
P(A(t) = 0) = λ.

Therefore, denote ε = min0≤i≤m{λ, λ(i)
0 } > 0. By (17), there exists a constant t0 such that for all t ≥ t0, we

have,
P(Ti(t) = 0) ≥ ε

2
, i = 1, . . . ,m; P(A(t) = 0) ≥ ε

2
. (18)

Recall that γ(t) denotes the residual renewal time at instant t of the superimposed process A ∪
⋃
i T

(i); see
equation (2). By (18) and by the independence of the renewal processes, we obtain that residual regeneration
time γ(t) satisfies,

P(γ(t) = 0) = P(Ti(t) = A(t) = 0, i = 1, . . . ,m) ≥
( ε

2

)m+1

> 0 , t ≥ t0 .

In other words, γ(t) 6⇒ ∞ and positive recurrence of the (zero-delayed) process follows, Eγ1 < ∞. In
particular, the forward regeneration time process γ(t), t ≥ 0, is tight. We then conclude that there exists a
constant D such that (see (16))

inf
k

P(ν(nk) < m, γ(nk) ≤ D) ≥ ε

2
. (19)
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In the remainder of this proof, we focus on an arbitrary (fixed) nk satisfying (16). Hence, by (19), a common
renewal point φk (for all renewal processes) appears in the interval [nk, nk +D] with positive probability ≥
ε/2 and ν(φk) ≤ m+D since there are at most m+D customers in the queue at this instant.

We rewrite assumption (8) as follows. There exist numbers j0, bi, ui, i = 1, . . . ,m and r0 such that

P(τ = j0) > 0,

P(Z(i) = bi, Y
(i) = ui) > 0, i = 1, . . . ,m,

P(S = r0) = vr0 > 0, (20)

and which are connected by j0 = biθi, r0 < ui, i = 1, . . . ,m. The conditions above allow us to unload the
system with positive probability in a finite time while retaining synchronisation. Indeed, we realise (i) θi
cycles of bi slots of server i with ui slots for the active periods, i = 1, . . . ,m; (ii) service times S = r0 for
all customers (being in the system at the instant φk and the new ones); (iii) interarrival times of j0 slots. It
then follows that (starting at the instant γφk

) the number of customers being in the system at the beginning
of a cycle is reduced at least by one as long as at least two servers are busy. Indeed even in that worst case
the number of available periods included in the cycles is ≥ mini 6=j(θi+θj) ≥ 2 and thus the number of served
customers within a cycle is not less than 2. Hence, we can unload the queue till there is a single customer
in the queue and a regeneration occurs. Note that we realise the events {τ = j0}, at most for (m+D − 1)
arrivals, until a customer arrives in an empty queue (assuming that the event {ν(nk) < m, γ(nk) ≤ D}
holds). Such a scenario occurs in interval [φk, φk+j0(D+m−1)] with a positive probability bounded below
by,

[P(τ = j0)]m+D−1
m∏
i=1

[P(Z(i) = bi, Y
(i) = ui)]m+D−1v2(m+D−1)

r0 := δ0 > 0 . (21)

We conclude that on the event {ν(nk) < m, γ(nk) ≤ D} a regeneration occurs in interval [nk, nk +H] with
a probability ≥ εδ0/2 whereby the length H := D+ j0(D+m− 1) does not depend on nk. In other words,
the forward regeneration time at instant nk satisfies

P(β(nk) ≤ H) ≥ ε

2
δ0 > 0. (22)

Since the lower bound is uniform in nk, positive recurrence in the zero-delayed case follows.

4.2. Preemptive resume
We now touch upon the stability of the model with preemptive resume service interruptions. As opposed

to queues with preemptive repeat different interruptions, interrupted service continues when the server
returns from a blocked period for queues with preemptive resume interruptions. It is intuitively clear that
the negative drift condition must be changed to take into account both the arriving workload (as in the
system without interruptions) and the blocked periods. However, for preemptive resume, the interruptions
bring no additional workload.

Theorem 2. The statement of Theorem 1 holds for the system with preemptive resume service interruptions
if the negative drift assumption (9) is replaced by∑

i

λ
(i)
0 EX(i) + λES < m. (23)

Proof. Indeed, in this case, µ(t)m ≥ mt−X(t)−
∑N(t)
i=1 Si and thus

lim sup
t→∞

m
µ(t)
t
≥ m−

∑
i

λ
(i)
0 EX(i) − λES > 0. (24)

This gives (38). The proof of the 2nd part of Theorem — appearance of a regeneration point in a finite
interval — holds unchanged.
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Remark 3. The negative drift condition (9) has a nice qualitative explanation. The standard term λES

relates to incoming workload as usual, the term
∑m
i=1 λ

(i)
0 EX(i) describes the loss of capacity caused by

the interruptions, and finally, the term λ0ES expresses the loss caused by service repetitions of interrupted
customers. To guarantee stability, it is enough to consider the behaviour of the process when the queue is
heavily loaded. In this case the rate of the actual interruptions approaches the rate of the blocked periods
because the queue is almost always busy. This effect has been observed in many other models, see for
instance [34]. Nevertheless, the estimate of the capacity loss by the service repetitions can be further refined
as shown in Section 6.2.

Although we do not include instability analysis in this paper, the proofs of the stability theorems suggest
that the negative-drift condition (9) of Theorem 1 is tight in the sense that, for any given λ, λ0, EX and
ES that do not satisfy the negative-drift condition, distributions of the interarrival times, service times,
available and unavailable periods can be found such that the system is not stable. However, this does not
mean that the system is always unstable if (9) is not satisfied. Section 6.2 is concerned with tightening the
negative-drift condition. However, the negative-drift condition found there is not an expression of a finite
number of moments of the arrival, service and interruption processes.

5. Extension of the initial conditions

We now extend our stability result to the case of non-zero initial conditions. For this, we introduce
the process Û = {Û(t), t ≥ 0} with Û(t) = {ν(t), γ(t)} and where γ(t) is defined in (2). Note that the
process Û is not Markovian; we may extend the process Û to a Markovian process if we include the residual
service times S(i)(t) in the different servers, the remaining blocked times X(i)(t) and the remaining available
times Y (i)(t) of the different servers and the remaining interarrival time A(t) (i = 1, . . . ,m). We may
however restrict ourselves to the process Û since the component γ(t) dominates these processes, that is,
γ(t) ≥ max{A(t), γ(t), S(i)(t), X(i)(t), Y (i)(t), i = 1, . . . ,m} w.p.1 for all t. Note that, as mentioned in the
introduction, this shows an advantage of our approach: we do not need the Markov property.

Theorem 3. Under the conditions of Theorem 1 and for any initial state Û(0) = z := (z1, z2), the queue
size process is positive recurrent with respect to the (delayed) renewal process β.

Proof. We split the proof into two parts. First, we show that the time within the interval [0, t] during which
the basic process Û is in a compact set increases to infinity as t → ∞. In the second step, we show that
the number of visits to the compact set by the process {Û(t), t ≥ 0} within the first regeneration period
[0, β1) is finite w.p.1 for any initial state. From these facts, it immediately follows that the total number of
regeneration cycles cannot be less than two, and thus, β1 <∞ w.p.1.

Part 1. Using the positive recurrence (and thus the tightness) of the process γ(t), t ≥ 0 , one can find a
constant D0 such that

lim
t→∞

1
t

t−1∑
u=0

I(γ(u) ≤ D0) ≥ 1− ε0
2

w.p.1, (25)

whereby ε0 is defined in equation (15). The inequality above follows from the observation that the process∑t−1
u=0 I(γ(u) ≤ D0) is a cumulative process in terms of the positive recurrent process {γ(t)}; see [39]. By a

slight adaptation of the argument leading to equation (15), we find,

lim sup
t→∞

1
t

t−1∑
u=0

I(ν(u) ≥ m) = 1− lim inf
t→∞

1
t

t−1∑
u=0

I(ν(u) < m) ≤ 1− ε0. (26)

Introducing the compact set B0 = [0, m)× [0, D0] and associated counting function Γ0(t) =
∑t−1
u=0 I(Û(u) ∈

B0), it then easily follows from (25) and (26) that

lim inf
t→∞

Γ0(t)
t
≥ lim
t→∞

1
t

t−1∑
u=0

I(γ(u) ≤ D0)− lim sup
t→∞

1
t

t−1∑
u=0

I(ν(u) ≥ m) ≥ ε0/2 > 0 . (27)
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We conclude that the time within the interval [0, t] during which the basic process Û is in the compact set
B0 increases to infinity as t→∞.

Part 2. Fix an arbitrary Û(0) = z = (z1, z2) and take a bounded set B̃0 = [0, B1]× [0, B2] such that z ∈ B̃0

and B0 ⊆ B̃0. That is, choose B1 ≥ max(z1, m− 1) and B2 ≥ max(z2, D0). By a similar argument as the
one leading to equation (22), it is easy to show that for Ĥ = B2 + j0(B1 + B2) and j0 in accordance with
equation (21), there exists a constant δ̂0 > 0 such that,

Pz(β(t) ≤ Ĥ|Û(t) = u, β1 > t) := P(β(t) ≤ Ĥ|Û(0) = z, Û(t) = u, β1 > t) ≥ δ̂0 , (28)

for any u ∈ B̃0 and all t ≥ 0. We then obtain

1 ≥
∑
t≥0

Pz(Û(tĤ) ∈ B̃0, tĤ < β1 ≤ (t+ 1)Ĥ)

=
∑
t≥0

Pz(β1 ≤ (t+ 1)Ĥ|Û(tĤ) ∈ B̃0, β1 > tĤ)Pz(Û(tĤ) ∈ B̃0, β1 > tĤ)

≥ δ̂0
∑
t≥0

Pz(Û(tĤ) ∈ B̃0 , β1 > tĤ) .

By analogy, we have for n = 0, . . . , Ĥ − 1,

1 ≥ δ̂0
∑
t≥0

Pz(Û(tĤ + n) ∈ B̃0, β1 > tĤ + n).

Summing up all inequalities, we obtain the following upper bound

∑
t≥0

Pz(Û(t) ∈ B̃0, β1 > t) = Ez

(
β1−1∑
t=0

I(Û(t) ∈ B̃0)

)
≤ Ĥ

δ̂0
. (29)

Let G̃0 =
∑β1−1
t=0 I(Û(t) ∈ B̃0) denote the number of visits to the set B̃0 by the process Û in the first

regeneration period [0, β1). The former equation then shows that EzG̃0 <∞ which in turn implies,

Pz(G̃0 <∞) = 1. (30)

In other words, the renewal process is in the compact set B̃0 during a finite number of slots during the first
regeneration period. Since B0 ⊂ B̃0, the number of slots that the renewal process is in the compact set B̃0

grows unbounded and the statement of theorem follows.

6. Stability of the single-server system: some refinements

In this section, we present some extensions of the stability result. In Section 6.1, we relax the aperiodicity
assumption of the interarrival times which was imposed in the preceding section, thereby limiting ourselves
to the single server case. As in the preceding sections, we first consider stability of the preemptive repeat
discipline and then simplify our argument for the preemptive resume discipline.

The stability conditions of the interruption system are further refined as well. The conditions of the pre-
ceding section may fail to hold while the queueing process is positive recurrent. Tighter stability conditions
are obtained in Section 6.2. For ease of notation and since there is only one server, we drop the superscripts
which refer to the different servers.
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6.1. Relaxing the aperiodicity assumption
Recall that τ and Z = X + Y denote a generic interarrival time and a generic cycle length, respectively.

Now we do not require aperiodicity of Z(i) and τ . To assure regeneration, we make the following assumptions,

P(|τ − Z| = 1) > 0 , (31)

and there exists some k0 ≥ 1 such that

P
(
Z = k0τ, Y > S1 + · · ·+ Sk0+1

)
> 0 . (32)

Assumption (31) is equivalent to the existence of numbers i0 and l0 such that

max
(
qi0pi0+1, ql0+1pl0

)
> 0 . (33)

Recall that pk (qk) denotes the probability that the cycle length (interarrival time) equals k slots. Moreover,
assumption (32) can be reformulated in terms of the given distributions as follows. There exist numbers
j0 > 0 and 0 < u0 < k0j0 such that

P
(
τ = j0

)
P
(
Z = k0j0, Y = u0

)
P
(
u0 > S1 + · · ·+ Sk0+1

)
> 0 . (34)

Here vn = P(S = n) denotes the probability that the service time equals n slots. Notice that P(u0 >
S1 + · · ·+ Sk0+1) > 0 if and only if there exists a number r0 > 0 such that

vr0 > 0 and u0 > (k0 + 1)r0. (35)

Assumption (34) means that the number of customers served within the active period Y exceeds the number
of new arrivals k0 during period Z = k0τ with a positive probability. Note that a wide class of discrete
distributions satisfy assumptions (31) and (32).

Theorem 4. Assume that conditions (31) and (32) hold and that,

λ :=
1
Eτ
∈ (0,∞), λ0 :=

1
EZ
∈ (0,∞) . (36)

Moreover, assume that the following negative drift condition is satisfied,

λ0EX + (λ+ λ0)ES < 1 . (37)

Then the zero-delayed queue-size process ν = {ν(t), t ≥ 0} is positive recurrent with respect to the zero-
delayed process β.

Proof. As in Theorem 1, we use negative drift assumption (9) to establish that there exists a non-random
(sub)sequence of time instants nk →∞ (as k →∞) and some ε > 0 such that,

inf
i

P(ν(nk) = 0) ≥ ε . (38)

We now use the tightness of the residual renewal time processes {T (t), t ≥ 0} and {A(t), t ≥ 0}. This
well-known property (under finite mean interrenewal times) can be obtained from the weak convergence of
the residual renewal time to a proper limit in the aperiodic case and also holds when the renewal interval
is periodic, for more detail see [35, 33]. By the tightness, one can find a constant D < ∞ such that (38)
implies,

inf
i

P
(
ν(nk) = 0, T (nk) ≤ D, A(nk) ≤ D

)
≥ ε

2
. (39)

Let ζA(n) := n+A(n) and ζT (n) ≡ n+T (n) denote the first renewal after (or at) boundary n of the arrival
and interruption process, respectively. Further, denote ζ(n) = |ζT (n)− ζA(n)|. In the event

E(nk, D) =
{
ν(nk) = 0, T (nk) ≤ D, A(nk) ≤ D

}
,

we have ζ(nk) ≤ D. Recall that assumption (31) implies the existence of numbers i0 and l0 such that
pi0qi0 > 0 and/or pl0+1ql0 > 0. We now consider the two cases separately, assuming the event E(nk, D)
holds.
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synchronisation

nk

time

ζ(nk) cycles of i0 slotsζ(nk)

ζ(nk) interarrival times of i0 + 1 slots

... ...

ζT (nk)ζA(nk)

(a) Assume ζT (nk) > ζA(nk).

ζ(ζA(nk)) interarrival times of i0 + 1 slotsζ(nk)
synchronisation

nk time

dζ(nk)/i0e + ζ(ζA(nk)) cycles of i0 slots

......
ζT (nk) ζA(nk)

(b) Assume ζA(nk) > ζT (nk).

Figure 1: Synchronisation of arrival and interruption processes.

Case 1: pi0qi0+1 > 0. First assume ζA(nk) ≤ ζT (nk). In this case, we realise ζ(nk) interarrival times of
length i0 + 1 and ζ(nk) cycles of length i0 such that a common renewal point is reached at instant

ζA(nk) + (i0 + 1)ζ(nk) ≤ nk + (i0 + 1)D

with probability ≥ (qi0+1pi0)D > 0; see figure 1(a). By construction, it is further observed that there are
ζ(nk) ≤ D customers in the queue at this common renewal instant.

Now assume ζA(nk) > ζT (nk). We realise cycles of the interruption process of length i0 until the renewal
instant exceeds or equals ζA(nk) as shown in figure 1(b). Clearly, dζ(nk)/i0e such cycles are required
which are realised with probability ≥ p

dD/i0e
i0

> 0. By realising ζ(ζA(nk)) cycles of length i0 and ζ(ζA(nk))
interarrival times of length i0 + 1, a common renewal point is reached at instant

ζA(nk) + ζ(ζA(nk))(i0 + 1) ≤ nk +D + i0(i0 + 1)

with probability ≥ p
dD/i0e+i0
i0

qi0i0+1 > 0. Here, we used the fact that the overshoot ζ(ζA(nk)) of the inter-
ruption process at instant ζA(nk) is bounded by i0. By construction, there are at most ζ(ζA(nk)) ≤ i0
customers in the queue at the common renewal instant.

Hence, we find that for each nk a common renewal point of A and T can be realised within a finite
interval [nk, nk + max(D(i0 + 1), D + i0(i0 + 1))] with probability ≥

min
(

(qi0+1pi0)D, pdD/i0e+i0i0
qi0i0+1

)
> 0

such that there are at most max(i0, D) customers in the queue at this instant. By (34) we can then realise
a cycle of length k0j0 during which at least k0 + 1 customers are served and k0 interarrival times of length
j0 are realised with positive probability. We can thus reduce the queue size while retaining synchronisation
between T and A. At most max(i0, D)− 1 such realisations are required.

Summarising, we find a regeneration point with positive probability in the interval[
nk, nk + max(D(i0 + 1), D + i0(i0 + 1)) + (max(i0, D)− 1)k0j0

]
.

Neither the length of the interval nor the probability depend on nk. Because the sequence {nk} is non-
random, positive recurrence (4) follows by the characterisation (6).

14



Case 2: pl0+1ql0 > 0. With a minor modification of the previous considerations, one can again construct a
common renewal point of T and A within a finite interval[

nk, nk + max(D(l0 + 1), D + l0(l0 + 1))
]

with probability ≥
min

(
(pl0+1ql0)D, pl0l0+1q

dD/l0e+l0
l0

)
> 0.

The queue size at this common renewal point is bounded by max(dD/l0e + l0, D) and can be reduced by
realising cycles, service times and interarrival times as in case 1. Finally, the positive recurrence (4) follows
by the characterisation (6).

Remark 4. We believe that the most restrictive assumptions (8) and (34) can be replaced by some other
assumptions. But we do not think any such assumptions may be (much) less restrictive because, to some
extent, it is the price that needs to be payed for the complicated and delicate coupling procedure used in
the proofs of Theorem 1 and 4.

6.2. Tighter stability conditions
As noted in Remark 3, the negative-drift condition (9) of Theorem 1 is tight in the sense that, for any

given λ, λ0, EX and ES that do not satisfy the negative-drift condition, distributions of the interarrival
times, service times, available and unavailable periods can be found such that the system is not stable.
However, this does not mean that the system is always unstable if (9) is not satisfied. Hence, this section
is concerned with tightening the bounds. This comes at a cost; the negative-drift condition in the following
theorem is not in terms of the moments of the various driving random variables, but in terms of the counting
function of the service process NS(t),

NS(t) = min(k ≥ 1 : Rk+1 > t) t ≥ 0 ,

with Rk = S1 + · · ·+ Sk, k ≥ 1. In view of the former expression, NS(t) denotes the number of completed
service times in an interval of length t.

Theorem 5. Assume that assumptions (31), (32) and (36) hold and that the following negative drift con-
dition is satisfied,

E[NS(Y )] >
λ

λ0
. (40)

Then the queue-size process ν = {ν(t), t ≥ 0} is positive recurrent with respect to the zero-delayed renewal
process β.

Proof. By the discrete time scale of the queueing model, the number of departures during an interval is
bounded by the length of that interval. In particular, NS(Y ) ≤ Y w.p.1 which implies ENS(Y ) ≤ EY <∞.
Applying the dominated convergence theorem on the sequence min(l, NS(Y )), l = 1, 2 . . ., shows that this
sequence converges to E[NS(Y )]. Hence, in view of the negative drift condition (40), there exist a finite
integer K such that,

E[min(K,NS(Y ))]− λ

λ0
:= δ0 > 0 .

We first consider the queue content at the end of cycles. Let ν̃n = ν(Tn) denote the queue content at the
end of the nth cycle and let ∆A(n) = NA(Tn)−NA(Tn−1) denote the number of arrivals during this cycle.
We have the following recursion,

ν̃0 = 1 , ν̃n = ν̃n−1 + ∆A(n)−Nn , n ≥ 1, (41)
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where Nn is the actual number of departures in the interval (Tn−1, Tn]. For ease of notation, let Sn,l denote
the lth customer service time of a customer which is served during the nth available period and let

Bn = max{0 ≤ k ≤ K :
k∑
l=1

Sn,l ≤ Yn} .

One then easily shows that for given An, Xn, Yn and Sn,l, we have ν̃n ≤ un, the latter being defined by the
recursion

un+1 = (un −Bn+1)+ + ∆A(n+ 1) ,

for n ≥ 0 and with u0 = 1. Notice that the numbering of the service times is key to obtain the dominance
of un. In addition, the sequence {un} can be interpreted as the queue content at the end of cycles for a
queueing system with interruptions, whereby arrivals cannot be served during the cycle in which they arrive
and whereby at most K customers are served during a cycle.

By the identity (x)+ = x+ (−x)+, we further find,

un+1 = NA(Tn+1)−
n∑
k=0

Bk+1 +
n∑
k=0

(Bk+1 − uk)+ ,

such that,

n∑
k=1

(Bk+1 − uk)+ = un+1 +
n∑
k=0

Bk+1 −NA(Tn+1)− (B1 − 1)+ ≥
n∑
k=1

Bk+1 −NA(Tn+1) . (42)

Let µ(n) denote the time that the queue size is less than K in the interval (0, n]. We obtain the following
inequality,

µ(n) =
n∑
i=1

1(ν(i) < K) ≥
n∑
i=1

1(ν(i) < K,T (i) = 0)

=
NZ(n)∑
k=1

1(ν(T (k)) < K) ≥
NZ(n)∑
k=1

1(uk < K)

≥
NZ(n)∑
k=1

1(uk < Bk+1) ≥ 1
K

NZ(n)∑
k=1

(Bk+1 − uk)+.

In view of inequality (42), we find the following upper bound for µ(n),

µ(n) ≥ 1
K

NZ(n)∑
k=1

Bk+1 −NA(TNZ(n)+1)

 . (43)

By the SLLN we have w. p. 1,

lim
n→∞

NA(Tn)
Tn

= λ , lim
n→∞

Tn
n

=
1
λ0

,

lim
n→∞

NZ(n)
n

= λ0 , lim
n→∞

∑n
m=1Bm
n

= E[min(NS(Y ),K)] . (44)

Equation (43) and (44) then yields,

lim inf
n→∞

µ(n)
n
≥ λ0

K
E[min(NS(Y ),K)]− λ

K
=
δ0
K

> 0.
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The argument leading to equation (16) of Theorem 1 again applies. Hence, there exist a non-random
(sub)sequence of time instants nk →∞ (as k →∞) and some ε > 0 such that

inf
i

P(ν(nk) < K) ≥ ε .

Finally, the arguments of Theorem 4 show the positive recurrence of the queue-size process with respect to
β.

Remark 5. The negative drift condition in the preceding theorem has a simple intuitive interpretation.
ENS(Y ) denotes the mean number of customers that can receive service during an available period. Moreover
λ/λ0 denotes the mean number of customers that arrive during a cycle. Since there is only service during
the available periods, ENS(Y ) also denotes the number of customers that can receive service during a cycle.
The negative drift condition thus states that the mean number of possible services during a cycle should
exceed the mean number of arrivals during a cycle.

Now we show the relation between the negative drift condition found above and the corresponding
condition of Theorem 4. In particular, the following theorem shows that Theorem 5 refines Theorem 4.

Theorem 6. Assume that (36) and (37) hold. Then (40) is satisfied.

Proof. In view of the definition of λ0, the negative drift condition (37) can be rewritten as follows,

E[Y ]− E[S]
E[S]

>
λ

λ0
. (45)

Wald’s equality for renewal processes and the independence of the service and interruption processes further
yields,

E[RN(Y )+1] = E[S]E[NS(Y )] + E[S] .

Recall that Ri is the ith renewal epoch of the renewal process NS(t). Further, by definition we have
Y ≤ RN(Y )+1 w.p.1 and therefore also E[Y ] ≤ E[RN(Y )+1]. We thus find,

E[NS(Y )] ≥ E[Y ]− E[S]
E[S]

. (46)

Combining (45) and (46) yields the stated result.

Remark 6. Denote the generating function of the service times by G(z) = EzS and let EY = 1/ϕ. More-
over, assume that available periods are geometrically distributed. Then the drift condition (40) simplifies
to,

G(1− ϕ)
(1− ϕ) (1−G(1− ϕ))

>
λ

λ0
.

This condition was already established in [7] as necessary stability condition.

7. Concluding comments

In this paper, we considered stability of queues with preemptive service interruptions. Stability conditions
are not trivial since such queueing systems are in general not work-conserving. We first obtained a stability
condition based on the workload process. This condition is expressed in terms of the first moments of the
arrival, service and interruption processes and therefore easy to evaluate. Also we presented a new approach
to extend stability analysis to non-zero initial states. Further, the condition is tight in the sense that,
for any given λ

(i)
0 , λ, EX(i) and ES that do not satisfy the negative-drift condition, distributions of the

interarrival times, service times, available and unavailable periods can be found such that the system is not
stable. However, this does not mean that the system is always unstable if the condition is not satisfied.
We therefore refined the stability condition by focusing on the queue-size process. However, this refinement
came at the cost that the stability condition is no longer expressed in terms of the first moments of given
variables.
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[24] R. Núñez Queija, Sojourn times in a processor sharing queue with service interruptions, Queueing Systems 34 (1–4) (2000)

351–386.
[25] B. Balciog̃lu, D. L. Jagerman, T. Altiok, Approximate mean waiting time in a GI/D/1 queue with autocorrelated times

to failures, IIE Transactions 39 (10) (2007) 985–996.
[26] D. Fiems, T. Maertens, H. Bruneel, Queueing systems with different types of interruptions, European Journal of Operations

Research 188 (2008) 838–845.
[27] I. Mitrany, B. Avi-Itzhak, A many-server queue with service interruptions, Operations Research 16 (1968) 628–638.
[28] M. Neuts, D. Lucantoni, Markovian queue with N-servers subject to breakdowns and repairs, Management Science 25 (9)

(1979) 849–861.
[29] H. Chen, Fluid approximation and stability of multiclass queueing networks: work-conserving disciplines, Annals of

Applied Probabability, 5 (1995) 637-665.
[30] H. Chen and D. Yao, Fundamentals of queueing networks, Springer, 2001.
[31] J. Dai, On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models, Annals

of Applied Probabability, 5 (1995) 49-77.
[32] S. Foss and T. Konstantopoulos, An overview on some stochastic stability methods, Journal of the Operations Research

Society of Japan, v. 47, No 4, (2004) 275-303.
[33] E. Morozov, The tightness in the ergodic analysis of regenerative queueing processes, Queueing Systems 27 (1997) 179–203.

18



[34] E. Morozov, A multiserver retrial queue: regenerative stability analysis, Queueing Systems 56 (2007) 157–168.
[35] S. Asmussen, Applied Probability and Queues, Springer, 2002.
[36] K. Sigman, One-dependent regenerative processes and queues in continuous time, Mathematics of Operations Research

15 (1990) 175–189.
[37] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, 1971.
[38] W. Rogiest, E. Morozov, D. Fiems, H. Bruneel, Stability of single-wavelength optical buffers, European Transactions on

Telecommunications, 21 (2010) 202-212.
[39] H. Kaspi, A. Mandelbaum, Regenerative closed queueing networks, Stochastics and Stochastics Reports 39 (1992) 239–258.

19


