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Abstract. We analyze a discrete-time queueing system with server in-
terruptions and a hybrid preemptive repeat interruption discipline. Such
a discipline encapsulates both the preemptive repeat identical and the
preemptive repeat different disciplines. By the introduction and ana-
lysis of so-called service completion times, we significantly reduce the
complexity of the analysis. Our results include a.o. the probability gen-
erating functions and moments of queue content and delay. Finally, by
means of some numerical examples, we assess how performance measures
are affected by the specifics of the interruption discipline.

1 Introduction

In many queueing systems, the server is not continuously available (for all types
of customers). Service interruptions may result from repair times after server fail-
ures, from planned maintenance periods or from multiple queues sharing a server
(priority queues, polling systems). In the latter case, the server is unavailable for
a particular queue whenever it serves customers from other queues. Obviously,
these service interruptions, often also entitled server vacations or server break-
downs, have a major impact on the operation of a queueing system and cannot
be neglected when analyzing this system.

Evidently, the effect of server vacations is most striking when ongoing ser-
vice of a customer can be interrupted. Different fashions of reengaging service
after a service interruption have given rise to several types of vacation models.
One speaks of preemptive resume (PR) if the interrupted customer can continue
his service, of preemptive repeat identical (PRI) if his service is restarted or of
preemptive repeat different (PRD) if his service is restarted with a new service
time. The used terminology stems from the priority queueing context. In the
literature on machine breakdowns, PRI is simply called preemptive repeat and
PRD is called preemptive repeat with resampling. Naturally, repeated service
has more impact on system performance than continued service. The current
contribution studies a hybrid of PRI and PRD which we have baptized pre-
emptive repeat hybrid (PRH). Here, after each service preemption, service is
repeated with a new service time with probability γ or with the same service
time with probability 1−γ. Evidently, PRH encapsulates the known preemptive
repeat vacation models as setting γ to 0 or 1 yields PRI or PRD respectively.
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The proposed model is studied in discrete-time under the assumption that the
interruption process is independent of the arrival and service processes allowing
separate analysis of the interruption and queueing processes.

Vacation models have been studied for over 50 years both in continuous and
discrete time. To the best of our knowledge, they were first studied in connection
with priority queueing systems by White and Christie [1]. These authors investi-
gated the M/M/1 queueing system with a preemptive resume priority discipline.
Their results were later extended to general service times by Avi-Itzhak and Naor
[2] and by Thiruvengadam [3]. Gaver Jr. [4] investigated the preemptive repeat
identical and preemptive repeat different disciplines in a priority queuing sys-
tem with batch Poisson arrivals and generally distributed service times. More
recently, Fiems, Steyaert and Bruneel [5] considered the discrete-time MX/G/1
queueing system with a preemptive resume, preemptive repeat and a preemp-
tive partial repeat priority discipline. These authors also provide expressions for
the generating functions of idle and busy periods enabling study of preemptive
priority systems with more than two classes. Some authors consider a mixing
of different disciplines. For instance, Kim and Chae [6] study a priority queue
where service can only be preempted if the elapsed part of the service does not
exceed a certain duration threshold.

As already mentioned, interruptions can also result from server failures or
breakdowns. Some of the authors of the interruption models for priority queues
discussed above exemplify that their models can also be applied when interrup-
tions are triggered by server breakdowns instead of by high-priority customers.
Evidently, server breakdowns have also been studied outside of the priority
queueing context. Notice that, for the sake of uniformity, we hold on to the
priority queueing terminology to indicate how service is reengaged after inter-
ruptions. Federgruen and Green [7] provide bounds and approximations for the
M/G/1 queue with generally distributed on- and off-times and a preemptive
resume discipline. Generally distributed on- and off-periods were also considered
by Bruneel [8] for discrete-time queueing systems but with single slot service
times such that there is no service preemption. Lee [9] investigates a similar
system but with a Markovian interruption process. Núñez Queija [10] consid-
ers a processor sharing queue with Poisson breakdowns and preemptive resume.
More recently, Balciog̃lu et al. [11] approximate a GI/D/1 queue with correlated
server breakdowns and preemptive resume by studying a similar system with an
interruption process with (independent) hyper-exponential on-times and general
off-times. Fiems et al. [12] study the M/G/1 queue where the server is both sub-
jected to preemptive resume breakdowns and either preemptive repeat different
or preemptive repeat identical breakdowns. Multiple server queues with Pois-
son arrival and breakdown process and exponential service times are studied by
Mitrany and Avi-Itzhak [13] and Neuts and Lucantoni [14]. In the former con-
tribution, server repair starts immediately and repair times are exponentially
distributed, while in the latter contribution servers are repaired only when a
number of servers have broken down.
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The remainder of this contribution is organized as follows. The queueing
model is described in detail in the next section. In section 3, we exploit the in-
dependence of arrival and interruption processes to simplify the analysis. When
the interruption process is independent of the arrival and service processes, a
queueing problem with server interruptions can be broken down into two sep-
arate problems: determination of the impact of the interruptions on customer
service times and the analysis of the queueing system without interruptions.
Next, some numerical examples are discussed illustrating the operation of the
queueing system. Conclusions are drawn in the final section.

2 Model

We consider a discrete-time queueing system with a single server subject to
interruptions. The queue is assumed to have infinite capacity. Time is divided
into fixed-length intervals or slots. Arriving customers are stored in the queue.
Service of customers is synchronized at slot boundaries. Consequently, customers
can only start service at a slot boundary and leave the system, at a slot boundary,
one or more slots later. When we observe the system at a slot, this is after the
possible departure at the previous slot boundary but before any arrivals.

The number of arrivals at the system at consecutive slots are modelled by an
independent and identically-distributed (i.i.d.) sequence of non-negative random
variables Ak. The probability mass function (pmf) an denotes the probability
that Ak takes the value n and the corresponding probability generating function
(pgf) is given by

A(z) =

∞∑
n=0

Pr[Ak = n]zn =

∞∑
n=0

anz
n . (1)

Similarly, the number of slots required by consecutive service times are charac-
terized by the sequence of i.i.d. positive random variables Sk with pmf sn and
pgf S(z).

The server is not permanently available for customers. After a slot where the
server was available, it remains available with probability α, or, with probabil-
ity 1 − α, it starts a vacation period of n slots according to the pmf bn with
corresponding pgf B(z). The consecutive vacation periods are independent. For
ease of notation, we also introduce the following pgf of a “server unavailability
period”,

N(z) = α+ (1− α)B(z) . (2)

In the remainder, the server is said to be “free” when it is neither serving a
customer nor unavailable. Notice that in the context of priority queues, this
corresponds with the natural meaning of a free server: the server is neither
serving customers of the class under consideration, nor serving customers with
a higher priority.

If the server becomes unavailable (and thus leaves for a vacation) during an
ongoing service, the elapsed part of this service time is lost and the service needs
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to be repeated. The same service time is to be repeated with probability 1−γ or,
with probability γ, a new service sample is drawn. Let Sk,i denote the ith service

attempt of the kth customer and let Ŝk,i denote a doubly indexed sequence of
i.i.d. random variables distributed as Sk. For each k, the sequence of consecutive
service attempts is a DAR(1) process, characterized by the equation

Sk,i = (1− βk,i)Sk,i−1 + βk,iŜk,i , (3)

where βk,i is a doubly indexed sequence of Bernoulli random variables with
Pr[βk,i = 1] = γ and Pr[βk,i = 0] = 1 − γ and evidently Sk,1 = Sk. Informally,
this can be written as

Sk,i =

{
Sk,i−1 with probability 1− γ ,

Ŝk,i with probability γ .
(4)

Note that this process is completely defined by the pgf S(z) (and thus the pmf
sn) of the service times and the probability γ that the next service time is a new
sample.

Invoking the moment-generating property of pgfs produces information about
the distribution. Let the mean and variance of a generic random variable X, with
pgf X(z), be denoted by µX and σ2

X respectively. For instance, the mean and
variance of the number of arriving customers per slot are respectively given by

µA =

∞∑
n=0

nan = A′(1) , (5)

σ2
A =

∞∑
n=0

an(n− µA)2 = A′′(1) +A′(1)−A′(1)2 . (6)

Here X ′(1) denotes the derivative of X(z) with respect to z, evaluated in z = 1.

Analogously, all moments of the random variables in this paper can be cal-
culated from their pgf. In this manner, µS , σ2

S , µB , σ2
B , µN and σ2

N represent
the mean and variance of the length of the customer service times, of the server
vacation period and of the server unavailability period respectively. For further
use, we introduce the symbol ν for the relative amount of available slots,

ν =
1

1 + (1− α)µB
=

1

1 + µN
. (7)

3 Analysis

First, the interruption process is studied and the service completion time of a
random customer is obtained. Next, the queueing analysis is performed and the
system content and delay are subsequently determined.
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3.1 Service completion time

Consider the kth customer and let his service completion time be defined as
the number of slots between the start of the slot where he receives service for
the first time and the end of the slot where he leaves the queue. This evidently
encapsulates all consecutive service attempts of this customer and any possible
server vacations between these attempts. Let Tk,i (i ≥ 0) denote the remaining
service completion time of the kth customer after the ith interruption period.
The entire service completion time of the kth customer is evidently equal to
Tk,0. Furthermore, let Gk,i (i ≥ 1) denote the length of the ith available period
during this service completion time. Moreover, let Bk,i (i ≥ 1) denote the length
of the ith interruption period during this service completion time. Note that a
(remaining) service completion time always starts with an available period as a
service attempt starts when the server is free (and thus available). We establish,

Tk,i =

{
Sk,i+1 Gk,i+1 ≥ Sk,i+1

Gk,i+1 +Bk,i+1 + Tk,i+1 Gk,i+1 < Sk,i+1

, (8)

as service is interrupted if its length exceeds the available period.
Let T (z|n) denote the pgf of Tk,i given that Sk,i+1 = n and let T (z) denote

the unconditional pgf of Tk,0. Notice that the distribution (and therefore also
the pgf) of Tk,i given Sk,i does not depend on k and i. We have,

T (z|n) = αn−1zn +

n−1∑
j=1

αj−1(1− α)zjB(z)(γ T (z) + (1− γ)T (z|n)) . (9)

The server is available at the start of this period so the service of n slots is
completed if the server remains available for another n−1 slots. If this service is
interrupted after j (j ≤ n) slots, the service completion time is augmented with
a server vacation period and a next attempt at serving the customer is taken.
For this next attempt, the required service time for this customer remains the
same with probability 1− γ or a new service sample is drawn (with probability
γ). When service is resampled, Tk,i has the same pgf as Tk,0, namely T (z).

From (9), some simple math produces

T (z|n) =
αn−1zn(1− αz) + (1− α)(1− (αz)n−1)zB(z)γ T (z)

1− αz − (1− γ)(1− α)(1− (αz)n−1)B(z)z
. (10)

By summing over the service times with respect to the service time distribution,
we find,

T (z) =

∞∑
n=1

sn
αn−1zn(1− αz) + (1− α)(1− (αz)n−1)zB(z)γ T (z)

1− αz − (1− γ)(1− α)(1− (αz)n−1)B(z)z
. (11)

Finally, solving for T (z) yields,

T (z) =
Tn(z)

1− Td(z)
, (12)
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with,

Tn(z) =

∞∑
n=1

sn
αn−1zn(1− αz)

1− αz − (1− γ)(1− α)(1− (αz)n−1)B(z)z
,

Td(z) =

∞∑
n=1

sn
(1− α)(1− (αz)n−1)zB(z)γ

1− αz − (1− γ)(1− α)(1− (αz)n−1)B(z)z
. (13)

Unfortunately, this expression is not explicit due to the presence of the infinite
sums.

The expression corresponds to the service completion time in the PRI oper-
ation mode for γ = 0 and to the PRD operation mode for γ = 1. This yields

T (z)PRI =

∞∑
n=1

sn
αn−1zn(1− αz)

1− αz − 1− α)(1− (αz)n−1)B(z)z
, (14)

T (z)PRD =
S(αz)(1− αz)

α(1− αz)− (1− α)B(z)
(
αz − S(αz)

) . (15)

In [15, Eq. 2.184, Eq. 2.188] and [5, Eq. 10], the effective service time, the sum
of the service completion time and a server unavailability period, is computed
for PRI and PRD. The expressions above can thus be verified, as multiplying
them by N(z) yields the effective service time. Also, note that the expression for
PRD is explicit.

Recall that the moment-generating property of pgfs produces

µT = T ′(1) =
T ′n(1) + T ′d(1)

Tn(1)
, (16)

where we used that, as T (z) is a pgf, T (1) = 1 implies Tn(1) + Td(1) = 1. By
truncating the infinite sums appearing in Tn(1), T ′n(1) and T ′d(1) at i, the smallest
positive integer where (µT �i)− (µT �i−1) < 10j , µT can be approximated with
arbitrary precision (in function of j). Here, (µT �i) represents that for computing
µT all infinite sums were truncated at i. Analogously, higher moments of the
service completion time can be approximated.

3.2 Queue Content

First, the queue content at departure instants is calculated. Let Ud,k and Un,k
respectively denote the queue content at the kth departure instant and at the
first slot the server is available following the kth departure and let Ud,k(z) and
Un,k(z) denote the corresponding pgfs. This yields,

Un,k(z) = Ud,k(z)N(A(z)) . (17)

Note that Ud,k and Un,k coincide with probability α.
Consider the first slot the server is available following the departure of cus-

tomer k. Customer k + 1 starts service at this slot, if the queue is not empty.
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However, if the queue is empty, this (available) slot is followed by a possible
server vacation and then an available slot. Service of the k+ 1th customer starts
in this slot if the queue is not-empty, this is if packets have arrived during a slot
followed by a server unavailability period. If the queue is still empty, this process
is repeated until packets arrive in the period between two consecutive available
slots.

These observations yield

Ud,k+1(z) =
(
Un,k(z)− Un,k(0)

)T (A(z))

z

+ Un,k(0)
A(z)N(A(z))−A(0)N(A(0))

1−A(0)N(A(0))

T (A(z))

z
. (18)

In view of equations (17) and (18), one sees that Ud,k satisfies a Lindley-type
stochastic recursion. By means of a Loynes-type argument, it is then easy to
establish that there exist an almost surely finite steady-state solution if the time
required to process a customer exceeds the customer inter-arrival time. This is,
if the load ρ = µA(µT + µN ) < 1.

Let Ud(z) denote the pgf of the queue content at departure epochs in steady
state. Substituting (17) in (18) provides

Ud(z) =
Ud(0)N(A(0))

(
1−A(z)N(A(z))

)
T (A(z))(

1−A(0)N(A(0))
)(
T (A(z))N(A(z))− z

) . (19)

Normalization (Ud(1) = 1) produces

Ud(0) =
ν(1− ρ)

(
1−A(0)N(A(0))

)
µAN(0)

. (20)

Substituting (20) in (19) yields

Ud(z) =
ν(1− ρ)

(
A(z)N(A(z))− 1

)
T (A(z))

µA
(
z − T (A(z))N(A(z))

) . (21)

We now determine the pgf of the queue content at random slots. Let Ur(z)
and Ua(z) denote the pgfs of the queue content at random slots and arrival
instants respectively. In [16], it is established that the queue content at the
arrival of a certain customer is the sum of the queue content at the beginning
of his arrival slot (which is equivalent to a random slot due to the independence
of the arrivals from slot to slot) and the customers arriving in the same slot
as but before the considered customer. Let Â(z) denote the pgf of the number
of customers arriving in the same slot as but before a certain customer. The
observation above yields

Ur(z) =
Ua(z)

Â(z)
= Ua(z)

µA(z − 1)

A(z)− 1
. (22)
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Furthermore, Burke’s Theorem [17] states that the queue content at arrival and
departure instants are statistically indistinguishable. This is

Ud(z) = Ua(z) . (23)

Combining these two well-known results with (21) enables the determination of
the queue content at random slots as

Ur(z) =
ν(1− ρ)(z − 1)

(
A(z)N(A(z))− 1

)
T (A(z))(

A(z)− 1
)(
z − T (A(z))N(A(z))

) . (24)

Note that the stability condition ρ < 1 corresponds to Ur(0) > 0. Finally, the
mean queue content at random slots is given by

µUr =
ρ

2
+
ν

2
µA(1− α)

(
µ2
B(2α− 1) + σ2

B − µB
)

+
µ2
A

(
σ2
T + (1− α)σ2

B + α(1− α)µ2
B

)
+ σ2

A(µT + (1− α)µB)

2(1− ρ)
. (25)

3.3 Delay

Customer delay is defined as the number of slots between the end of the arrival
slot of a customer and the end of the slot where that customer leaves the queue.
Rather than directly calculating the delay of a single customer, we apply a
method from [18], where the batch delay is calculated first. The batch delay is
defined for all slots where there is at least one arrival, say an arrival slot. The
batch delay starts at the end of an arrival slot and ends when the last customer
of the batch arriving during that arrival slot leaves the system. Hence, the batch
delay is the delay of a “batch customer” in a queueing system where all customer
arrivals in a single slot are grouped to form a batch customer.

The pgf of the number of batch-customer arrivals per slot A∗(z) is then given
by

A∗(z) = A(0) +
(
1−A(0)

)
z . (26)

Moreover, let the service completion time of a batch-customer T ∗(z) be given
by

T ∗(z) =
A(T (z)N(z))−A(0)

N(z)
(
1−A(0)

) . (27)

This pgf corresponds to the sum of the successive service completion times of
all customers arriving in a slot with at least one arriving customer in the orig-
inal system, supplemented by the (possible) server unavailability between these
service completion times. Notice that the construction of the batch service com-
pletion times obeys the interruption process of the original queueing system. We
now substitute A(z) = A∗(z) and T (z) = T ∗(z) into equation (21) and let U∗d (z)
denote the resulting pgf,

U∗d (z) =
ν(1− ρ)

(
A∗(z)N(A∗(z))− 1

)
T ∗(A∗(z))

µA∗
(
z − T ∗(A∗(z))N(A∗(z))

) . (28)
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By construction, U∗d (z) is the pgf of the number of batch-customers in the queue
upon departure of such a batch customer.

Now, consider a certain (batch-)customer. All customers in the queue at his
arrival instant leave the system before the customer himself (as customers are
served in order of arrival). Hence, all customers in the queue at the departure of
the considered customer have arrived during the delay of the considered customer
Therefore, the batch-customer delay, with a pgf denoted by D∗(z), is related to
the queue content at departure instants by

U∗d (z) = D∗(A∗(z)) , or D∗(z) = U∗d (
z −A(0)

1−A(0)
) , (29)

by using the definition of A∗(z).

Finally, we can relate the delay of a random customer to the delay of the
batch to which it belongs by taking into account the position of the customer
within its batch. Observe the delay of a customer in the original system and the
delay of the corresponding batch-customer (of which the customer is a part) in
the alternative system. Instead of the service completion time of the entire batch-
customer, only the part of the batch before the considered customer contributes
to the delay of this customer. Therefore, the pgf of the customer delay in the
original system is given by

D(z) =
D∗(z)

T ∗(z)
Â(T (z)N(z))T (z)

=
U∗d ( z−A(0)

1−A(0) )

T ∗(z)
Â(T (z)N(z))T (z)

=
ν

µA
(1− ρ)(1− zN(z))

T (z)

T (z)N(z)− 1

A(T (z)N(z))− 1

A(T (z)N(z))− z
.

(30)

By the moment-generating property of probability generating functions, mo-
ments of the customer delay can be calculated. In particular, the mean customer
delay is given by

µD =
ρ

2µA
+
ν

2
(1− α)

(
µ2
B(2α− 1) + σ2

B − µB
)

+
µ2
A

(
σ2
T + (1− α)σ2

B + α(1− α)µ2
B

)
+ σ2

A(µT + (1− α)µB)

2µA(1− ρ)
. (31)

Note that Little’s theorem [19] holds as µUr
= µAµD.

4 Numerical Examples

This section performs a quantitative analysis of some interesting system parame-
ters. Let the number of arriving customers in a slot occur according to a Poisson
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process and assume that the duration of a server vacation is geometrically dis-
tributed with parameter β. Consequently,

A(z) = eµA(z−1) , (32)

B(z) =
(1− β)z

1− βz
. (33)
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Fig. 1. Average service completion time versus resampling probability for various ser-
vice time distributions

First, the effect of the resampling probability γ and the pmf of the service
times sn on the average service completion time is investigated. We consider three
different distributions for the service times, all with average service time 4 slots
but with different amounts of variance. We have the deterministic distribution,
the geometric distribution and a distribution with all mass in two points. The
pmf of the service time is then respectively given by

deterministic: sn =

{
1 n = 4

0 n 6= 4
, (34)

geometric: sn =1/4(1− 1/4)n−1 , n ≥ 1 , (35)

mass-point: sn =


2/3 n = 1

1/3 n = 10

0 otherwise

. (36)
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Consider the following system parameters: µA = 0.1, α = 0.85, β = 0.2. In fig-
ure 1, the average service completion time is plotted in function of the resampling
probability γ for the three different service times. Evidently, resampling has no
effect when the service times are deterministic. Resampling has a considerable
impact, even for smaller values of γ. Therefore, queueing systems with even a
small probability of service resampling cannot be approximated accurately by
preemptive repeat identical. Also note that the higher the variance of the ser-
vice times, the greater the effect of resampling. This is due to the fact that very
long service times are almost always resampled into shorter service times. Con-
sequently, the customer will leave the system earlier and this effect evidently
increases with the resampling probability γ.

In the remainder, we will use geometrically distributed service times with
parameter δ. Thus,

sn = δ(1− δ)n−1 , n ≥ 1 . (37)
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Fig. 2. Load ρ versus vacation burstiness κ

Finally, the effect of the vacation process on system performance is investi-
gated. When characterizing this process, it is often more convenient to use ν,
the fraction of available slots, and κ, the vacation burstiness, instead of α and
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β. They are related by

ν =
1− β

2− α− β
, (38)

κ =
1

2− α− β
. (39)

Note that by definition max(ν, 1 − ν) ≤ κ ≤ ∞ and that fixing ν and κ fixes α
and β and vice versa.
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Fig. 3. Average customer delay µD versus vacation burstiness κ

Consider the following system parameters: µA = 0.1, δ = 0.25, γ = 0.5. The
average customer delay µD (figure 3) and the (corresponding) load ρ (figure 2) are
plotted versus the vacation burstiness κ for three different values of ν. For a fixed
value of ν, smaller values of κ correspond to more yet shorter vacations while
larger values of κ induce less but longer vacations. This explains the decreasing
load ρ because service is interrupted less frequently as κ increases and hence
the number of vacations decreases. For small values of κ, the average delay
µD exhibits similar behavior. However, another effect takes over as κ increases:
the delay increases as the vacations become more bursty and lengthy vacations
elongate the delays of all packets in the queue. In contrast to the average delay,
the load does not exhibit this behavior because it is only dependent on the
mean values of the interruption process (µT and thus µB ) and the mean service
completion times decrease with κ. The average delay on the other hand is also
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affected by the corresponding variances. Furthermore, these figures exemplify
that a larger fraction of available slots ν (evidently) yields a smaller load ρ and
shorter average delay µD.

5 Conclusions

We have proposed a hybrid preemptive repeat interruption discipline that encap-
sulates both the preemptive repeat identical and the preemptive repeat different
disciplines. Subsequently, a discrete-time queueing system with such server in-
terruptions was studied. By the introduction and analysis of so-called service
completion times, the complexity of the analysis was reduced. Our results in-
clude a.o. the probability generating functions and moments of queue content
and delay. Finally, by means of some numerical examples, the influence of the
interruption discipline on system performance measures was investigated and
we can conclude that in most situations even a small amount of resampling has
considerable impact on system performance.
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