1,158 research outputs found

    Playing with Puffball: Simple Scale-Invariant Inflation for Use in Vision and Graphics

    Get PDF
    We describe how inflation, the act of mapping a 2D silhouette to a 3D region, can be applied in two disparate problems to offer insight and improvement: silhouette part segmentation and image-based material transfer. To demonstrate this, we introduce Puffball, a novel inflation technique, which achieves similar results to existing inflation approaches -- including smoothness, robustness, and scale and shift-invariance -- through an exceedingly simple and accessible formulation. The part segmentation algorithm avoids many of the pitfalls of previous approaches by finding part boundaries on a canonical 3-D shape rather than in the contour of the 2-D shape; the algorithm gives reliable and intuitive boundaries, even in cases where traditional approaches based on the 2D Minima Rule are misled. To demonstrate its effectiveness, we present data in which subjects prefer Puffball's segmentations to more traditional Minima Rule-based segmentations across several categories of silhouettes. The texture transfer algorithm utilizes Puffball's estimated shape information to produce visually pleasing and realistically synthesized surface textures with no explicit knowledge of either underlying shape.National Eye Institute (Special Training Grant

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    THE IMAGE TORQUE OPERATOR FOR MID-LEVEL VISION: THEORY AND EXPERIMENT

    Get PDF
    A problem central to visual scene understanding and computer vision is to extract semantically meaningful parts of images. A visual scene consists of objects, and the objects and parts of objects are delineated from their surrounding by closed contours. In this thesis a new bottom-up visual operator, called the Torque operator, which captures the concept of closed contours is introduced. Its computation is inspired by the mechanical definition of torque or moment of force, and applied to image edges. It takes as input edges and computes over regions of different size a measure of how well the edges are aligned to form a closed, convex contour. The torque operator is by definition scale independent, and can be seen as an operator of mid-level vision that captures the organizational concept of 'closure' and grouping mechanism of edges. In this thesis, fundamental properties of the torque measure are studied, and experiments are performed to demonstrate and verify that it can be made a useful tool for a variety of applications, including visual attention, segmentation, and boundary edge detection

    ARTIST-DRIVEN FRACTURING OF POLYHEDRAL SURFACE MESHES

    Get PDF
    This paper presents a robust and artist driven method for fracturing a surface polyhedral mesh via fracture maps. A fracture map is an undirected simple graph with nodes representing positions in UV-space and fracture lines along the surface of a mesh. Fracture maps allow artists to concisely and rapidly define, edit, and apply fracture patterns onto the surface of their mesh. The method projects a fracture map onto a polyhedral surface and splits its triangles accordingly. The polyhedral mesh is then segmented based on fracture lines to produce a set of independent surfaces called fracture components, containing the visible surface of each fractured mesh fragment. Subsequently, we utilize a Voronoi-based approximation of the input polyhedral mesh’s medial axis to derive a hidden surface for each fragment. The result is a new watertight polyhedral mesh representing the full fracture component. Results are aquired after a delay sufficiently brief for interactive design. As the size of the input mesh increases, the computation time has shown to grow linearly. A large mesh of 41,000 triangles requires approximately 3.4 seconds to perform a complete fracture of a complex pattern. For a wide variety of practices, the resulting fractures allows users to provide realistic feedback upon the application of extraneous forces
    • …
    corecore