
ARTIST-DRIVEN FRACTURING OF POLYHEDRAL SURFACE MESHES

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Tyler Casella

December 2013

c© 2013

Tyler Casella

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Artist-Driven Fracturing of Polyhedral Sur-
face Meshes

AUTHOR: Tyler Casella

DATE SUBMITTED: December 2013

COMMITTEE CHAIR: Zoë Wood, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Chris Lupo, Ph.D.
Associate Professor of Computer Science

COMMITTEE MEMBER: Phillip Nico, Ph.D.
Professor of Computer Science

iii

ABSTRACT

Artist-Driven Fracturing of Polyhedral Surface Meshes

Tyler Casella

This paper presents a robust and artist driven method for fracturing a surface polyhe-

dral mesh via fracture maps. A fracture map is an undirected simple graph with nodes

representing positions in UV-space and fracture lines along the surface of a mesh.

Fracture maps allow artists to concisely and rapidly define, edit, and apply fracture

patterns onto the surface of their mesh.

The method projects a fracture map onto a polyhedral surface and splits its trian-

gles accordingly. The polyhedral mesh is then segmented based on fracture lines to

produce a set of independent surfaces called fracture components, containing the visi-

ble surface of each fractured mesh fragment. Subsequently, we utilize a Voronoi-based

approximation of the input polyhedral mesh’s medial axis to derive a hidden surface

for each fragment. The result is a new watertight polyhedral mesh representing the full

fracture component.

Results are aquired after a delay sufficiently brief for interactive design. As the size

of the input mesh increases, the computation time has shown to grow linearly. A large

mesh of 41,000 triangles requires approximately 3.4 seconds to perform a complete

fracture of a complex pattern. For a wide variety of practices, the resulting fractures

allows users to provide realistic feedback upon the application of extraneous forces.

iv

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 6

2.1 Polyhedral Surface Meshes . 6

2.2 Texture Mapping . 7

2.3 Medial Axis . 8

2.4 Triangulation . 10

3 Related Work 13

3.1 Medial Axis Extraction . 13

3.1.1 Tracing Method . 14

3.1.2 Voxel-Based Method . 14

3.1.3 Voronoi-Based Method . 15

3.2 3-Dimensional Mesh Cutting Algorithms 17

4 Fracture Map Algorithm 19

4.1 Overview . 19

4.2 Terminology . 21

4.3 Fracture Edge Generation . 24

4.4 Fracture Point Matching . 26

4.5 Fracture Edge Resolution . 29

4.6 Triangulation . 30

4.6.1 Fracture Polygon Creation 30

v

4.6.2 Convex Fracture Polygon Triangulation 34

4.6.3 Concave Fracture Polygon Triangulation 34

4.7 Fracture Component Segmentation 35

4.8 Hidden Surface Generation . 36

4.9 Surface Stitching . 40

5 Results 41

5.1 Implementation Details . 41

5.2 Example Fractures . 44

5.2.1 Buddha . 44

5.2.2 Bunny . 44

5.2.3 Cat . 44

5.2.4 Feline . 45

5.3 Experimental Setup . 47

5.4 Mesh Size . 49

5.5 Fracture Map Size . 50

5.6 Fracture Map Complexity . 50

6 Future Work 53

6.1 Multithreading . 53

6.2 Fracture Map Complexity . 54

6.3 Medial Surface . 54

6.3.1 Noise Reduction . 54

6.3.2 Hidden Surface . 55

Bibliography 57

vi

LIST OF TABLES

5.1 The elapsed time to perform a fracture as the number of triangles in
an input mesh increases. 49

5.2 The elapsed time to perform a fracture as the number of points in an
input fracture map increases. 51

5.3 The elapsed time to perform a fracture as the number of resulting
fracture components from an input fracture map increases. 52

vii

LIST OF FIGURES

1.1 A polyhedral surface mesh of the Stanford bunny. The mesh consists
of a set of vertices, edges, and polygonal faces. 2

1.2 An example fracture map for the Standford bunny mesh. The black
lines indicate edges between nodes within the fracture map and has
been superimposed on top of the model’s diffuse map. 3

1.3 An input polyhedral surface mesh segmented based on the resulting
fracture components. 4

2.1 The medial axis of a 2D shape. The red and green lines indicate the
medial axis of the shaped defined by the black lines. The axis can
be classified into two categories: an inner (red) and outer (green) axis. 9

2.2 The ear clipping method: The input polygon is shown in (a), with the
first ear highlighted in (b). After the first ear has been removed from
consideration, the next ear is found, shown in (c), and the process is
repeated until the final triangular mesh is computed. 12

3.1 The Voronoi diagram of a 2D shape. As the number of vertices of
the shape increases, the Voronoi vertices begin to converge onto the
shape’s medial axis. 16

4.1 An input mesh triangle with intersecting fracture lines shown in (a).
(b is the resulting triangular mesh and fracture components after ap-
plying the Fracture Map Algorithm. 21

4.2 The three different types of fracture point. (a) represents a half edge
fracture point, (b) represents a fracture point join, and (c) represents
a fracture point branch. 23

4.3 Nodes in the undirected simple graph represent vertices or fracture
points of the triangle, and edges represent connectivity via fracture
lines. The numbers within each node represent the node’s fracture ID. 26

viii

4.4 The step-by-step process for triangulating a matched triangle into a
set of fracture polygons. 33

4.5 Hidden surface generation of a 2D shape. The red lines represent the
medial axis of the 2D shape. The green line represents the portion
of the surface contained in a fracture segment. 37

4.6 Slight perturbations within a surface mesh can cause dramatic changes
in the structure of the medial axis. 38

4.7 The medial surface produced from the original mesh exhibits a large
number of fins in comparison to the medial axis produced after ap-
plying smoothing to the mesh prior to generation. 39

5.1 Screenshot of the Fracture Map Utility Application in Windows 7. . 42

5.2 The 2D raster image generated by the Fracture Map utility appli-
cation. This allows users to visualize the projection of the fracture
lines onto the model’s 3-dimensional surface 43

5.3 The resulting fracture, shown in (b) and (d) after using the fracture
map shown in (a). The medial surface generated for the hidden sur-
face during the fracture process is shown in (c). 45

5.4 The resulting fracture, shown in (b) and (d) after using the fracture
map shown in (a). The medial surface generated for the hidden sur-
face during the fracture process is shown in (c). 46

5.5 The resulting fracture, shown in (b) and (d) after using the fracture
map shown in (a). The medial surface generated for the hidden sur-
face during the fracture process is shown in (c). 47

5.6 The resulting fracture, shown in (b) and (d) after using the fracture
map shown in (a). The medial surface generated for the hidden sur-
face during the fracture process is shown in (c). 48

6.1 An artifact resulting from smoothing methods for noise reduction in
a medial surface. The medial surface protrudes from the mesh surface. 55

ix

Chapter 1

Introduction

Computer graphics pertains to the process of deriving a visual representation of data

via specialized data structures and algorithms. One of most common data structure

utilized to represent 3-dimensional objects is a polygonal mesh. A polygonal mesh

comprises of a list of vertices, edges, and faces defining a collection of triangles rep-

resenting a polyhedral object [25], shown in Figure 1.1.

Through various rendering techniques, these polygonal meshes are transformed

from raw data representing a 3D scene, into a 2D image depicting the scene as per-

ceived through a camera. The ultimate goal of these techniques is to produce an image,

or series of images, that accurately mimic the natural world. In order to do so, both the

appearance and behavior must exhibit authenticity. As the techniques and capabilities

of computer graphics have evolved, so too has a viewer’s expectations for a fully im-

mersive experience. This thesis aims to satisfy these expectations by helping to yield

the immersive element of destruction.

The fracturing of objects within our environment upon an application of overbear-

ing forces is a key characteristic of reality. Yet due to the complex and time-consuming

nature of specifying and fabricating fracture behavior for polygonal meshes, it is an of-

ten omitted feature. As a solution to this handicap, this thesis proposes a method of

1

Figure 1.1: A polyhedral surface mesh of the Stanford bunny. The mesh consists of a
set of vertices, edges, and polygonal faces.

defining hierarchical fracture behavior via generation and utilization of specialized 2D

textures called fracture maps. An example of a fracture map is shown in Figure 1.2.

The technique presented in this paper is an algorithm that works in practice given

a number of limitations are met. The algorithm is refered to as the Fracture Map

Algorithm.

Traditionally, fracture techniques require a complex volumetric representation of

an object and generate models via physically based modeling. This produces realistic

results, but leaves very little flexibility for customization. Alternatively, the method

introduced in this paper provides full artist control, while maintaining the ability to

generate realistic fractures. Furthermore, by diverting a majority of computation work

as a preprocessing step, the method is a suitable solution for both realtime and non-

realtime applications.

2

Figure 1.2: An example fracture map for the Standford bunny mesh. The black lines
indicate edges between nodes within the fracture map and has been superimposed on
top of the model’s diffuse map.

The approach used for defining fractures within a polygonal mesh is designed to

place the power and free creative expression in the hands of artists. This is achieved via

the use of fracture maps. Fracture maps are simple 2D textures defining the lines of

fracturing via black lines. When mapped onto the mesh, triangles intersecting fracture

lines are split accordingly. This process results in a set of fracture components,

shown in Figure 1.3, consisting of adjoining triangles within a fracture line loop.

A significant challenge faced by the algorithm is to derive the hidden surface

of each fracture component. Unlike other mesh representations, polyhedral surface

meshes contain explicitly only information regarding the surface of an object. To ac-

count for the hidden surface introduced when fracturing the mesh, the Fracture Map

Algorithm derives an approximate medial axis of the mesh to be used as the hidden

surface. The result is a set of new watertight meshes representing each individual piece

of an input fracture.

3

Figure 1.3: An input polyhedral surface mesh segmented based on the resulting frac-
ture components.

4

Moreover, this process can be recursively applied to resulting components, achiev-

ing a hierarchical structure of increasingly smaller divisions, each with their own frac-

turing properties. This setup provides flexibility for a wide range of variability in both

appearance and behavior of fractures among each level of division.

In addition, an accompanying tool called the Fracture Map Utility Application was

developed to design, process, and export fractures using the algorithm presented in

this paper. Fracture results on large meshes are obtained within three to four seconds,

allowing for efficient iterative design practices.

5

Chapter 2

Background

2.1 Polyhedral Surface Meshes

The basic structure operated on within the Fracture Map Algorithm is a polyhedral

surface mesh. A polyhedral surface mesh is a collection of polygons joined at their

edges and encloses a 3-dimensional region. A mesh comprises of three elements:

Vertices :

Points in space representing corners of polygons within the polyhedral mesh.

Edges :

Joins two vertices together. Each edge consists of two half edges representing

both directions along the edge.

Faces :

Polygons bounded by edges. Corners within the faces are represented by ver-

tices.

A polyhedral mesh only contains explicit information about the surface of the

object it represents. The implementation of the Fracture Map Algorithm found in

the Fracture Map Utility Application handles only polyhedral meshes with triangular

faces, however, can easily be adapted to handle more complex polygonal faces.

6

2.2 Texture Mapping

The given tessellation of a polyhedral surface mesh implies sufficient resolution for

providing a description of the surface of an object in 3-dimensional space. However,

the same resolution may be impractical for representing fine-grained detail along the

surface. Common examples include diffuse color, opacity, specularity, and minute

changes in topology. Generally, this additional information can be provided via an

additional data structure called a texture [26]. Textures represent their data within

a separate coordinate system, called texture space, of arbitrary dimensions. In 2-

dimensional space, the X-axis is called the U-axis and the Y-axis is called the V-axis,

forming UV-coordinates. Two primary types of texture exist, deriving distinction

from its data representation.

One form of textures are procedural textures. Procedural textures represent data

in mathematical form. This allows accurate samples to be retrieved at precise granu-

larities. The Fracture Map Algorithm represents fracture maps as procedural textures,

because accurate intersection tests are required.

A more common form of texture are bitmapped textures, the most prevalent type,

stores a finite set of data elements, called texels. Texels are closely related to pixels,

however, a texel may span multiple pixels in a final image. Unlike procedural textures,

bitmapped textures are resolution dependent, trading speed for accuracy. The number

of texels present determines the resolution of the bitmapped texture. Due to the fast

nature of bitmapped textures during rendering, the Fracture Map Utility Application

converts a fracture maps procedural representation to a bitmapped representation for

display.

Textures can be applied to a mesh via a process called texture mapping, in which

values are mapped to a mesh surface via texture coordinates provided at each vertex.

7

Sample positions within a texture are derived during rasterization by interpolating the

texture coordinates of each triangle vertex. Each texture coordinate is a vector value

representing the displacement from the bottom-left corner of a texture, within a range

of [0-1] [26]. It is up to a user to determine assign texture coordinate values to a mesh.

This can be done either procedurally, such as spherical mapping, or hard-coded within

a mesh’s file-format during.

During triangle rasterization, bitmapped texture data can be easily retrieved by

fetching texel data nearest to the sample point’s texture coordinate. More complex cri-

teria exist to help against aliasing artifacts, but the concept remains the same. However,

sampling procedural textures is comparably unintuitive and slow operation. For this

reason, their use in rasterization is uncommon, although several attempts have been

made introduce performant techniques [43, 47, 59, 38].

The Fracture Map Algorithm takes advantage of prevalent usage of textures within

computer graphics. By allowing users to coordinate their fracture designs with supple-

mentary textures, the user is given full control to align fractures with any details within

the textures. This provides a principally artist-driven experience. A common example

is designing fractures that align with features of a model’s diffuse map.

2.3 Medial Axis

The medial axis of an object plays an important role in this work, as it contains impor-

tant information about the geometric structure of an object. Figure 2.1 demonstrates

the medial axis of a 2D shape. Intuitively, the medial axis of a shape is the skele-

tal structure implicitly representing the surface of the object. Although polyhedral

surfaces only explicitly contain information regarding the surface of an object, the

Fracture Map Algorithm uses the mesh’s medial axis to derive information regarding

8

Figure 2.1: The medial axis of a 2D shape. The red and green lines indicate the medial
axis of the shaped defined by the black lines. The axis can be classified into two
categories: an inner (red) and outer (green) axis.

the inside of the mesh for hidden surface extraction.

The medial axis was first proposed by Blum [10, 11] as a tool for measuring bi-

ological shapes by representing a 2-dimensional shape via a 1-dimensional structure.

Subsequently, the medial axis has been found to be useful in numerous applications in-

cluding mesh deformations [60, 8], feature detection [27], shape manipulation [54, 9],

and surface reconstruction [2, 3]. Thus, medial axis extraction has become a significant

area of research [60, 8, 27, 54, 9].

The medial axis, commonly referred to as the skeleton, is formally defined in [61]

as:

Definition 1. Let S be a manifold surface embedded in Rd . Let M be the closure of the

locus of maximal inscribed (d−1)-spheres laying tangential to at least two points of

S. These n-spheres are called medial balls. The medial axis is defined as the set of

centers of M.

A maximal ball is defined as an n-sphere that is not fully contained in any other

n-sphere [46]. Thus, the medial axis in 2D consists of a set of lines and curves, while

9

the medial axis in 3D is formed of a stitching of quadric surfaces by curve segments

of quadratic degree four [61]. When the surface S is convex, the medial axis in 2D

comprises of only line segments and in 3D only planar surface segments. Notice in

Figure 2.1 each point on the surface is associated with two medial balls. One originates

from the inside of the surface while another from the outside. This makes a distinction

between an inner and outer medial axis.

The medial axis has four major elements: sheets, seams, and junction points.

A sheet is a subset manifold quadratic surface of an axis that is equidistant to two

points on its boundary surface. A seam is a curve along the axis that is equidistant to

three or more points on its boundary surface and stitches together two or more sheets.

A junction is a point equidistant to three or more points on its boundary surface and is

found at the intersection of three or more seams [17, 55].

2.4 Triangulation

Triangulation is the process of dividing a simple polygon into a set of triangles. Trian-

gulation is used within the Fracture Map Algorithm to convert a triangle that has been

divided into a set of fractured polygons back into a triangular mesh. The difficulty

of a triangulation varies depending to its geometry properties. If a simple polygon is

convex, triangulation is a trivial operation. Adding a diagonal from one vertex to all

other vertices completes the triangulation in linear time. If a fracture polygon is found

to be a concave polygon, triangulation becomes a non-trivial operation.

One of the first methods introduced for performing concave simple polygon trian-

gulation in the late 1970’s is the ear clipping method [29]. Figure 2.2 illustrates basic

process of the algorithm. Although its implementation is simple, the solution is sub-

optimal and has a time complexity of O(n2). Solutions have since strived to achieve

10

linear complexity alongside convex triangulation. Tarjan and Van Wyk [57] introduced

a method with a time complexity of O(n log logn) . In 1991, Chazelle [15] presented

a method that matched convex simple polygon’s complexity of O(n), however the im-

plementation is widely regarded to be exceedingly complex [29].

The ear clipping method is a straightforward algorithm taking advantage of the

fact that simple polygons without holes always have at least two non-overlapping ears

[34]. Given three adjacent vertices V1, V2, and V3, of a polygon P = V1,V2,V3, . . .Vn

where n > 3, the triangle formed by V1, V2, and V3 is considered an ear if the diagonal

between V1 and V3 lies entirely inside P [34]. Two ears are non-overlapping if their

regions are disjoint.

Non-overlapping ears are recursively removed the polygon by creating an edge

between V1 and V3 and removing V2 from the polygon.

11

(a) (b)

(c) (d)

Figure 2.2: The ear clipping method: The input polygon is shown in (a), with the first
ear highlighted in (b). After the first ear has been removed from consideration, the next
ear is found, shown in (c), and the process is repeated until the final triangular mesh is
computed.

12

Chapter 3

Related Work

There are a number of important areas of related work for the Fracture Map Algorithm.

Section 3.1 will explore some of the work that exists for extracting a medial axis from

various object types. Section 3.2 discusses some of the existing techniques around

3-dimensional mesh surface cutting.

3.1 Medial Axis Extraction

Although the medial axis is a notably powerful primitive for many operations, its ex-

act extraction has proved to be a difficult task. This has led to the development of

faster methods for deriving an approximation. Fortunately, for most applications the

accuracy of a medial axis approximation suffices. This holds true for the Fracture Map

Algorithm as well.

There are a number of methods for approximating the medial axis of a surface.

Section 3.1.1 introduces methods that use a tracing approach. Another set of methods,

described in Section 3.1.2, utilize voxels for extraction. A third method, examined in

Section 3.1.3 and used in this paper, utilizes the Voronoi diagram geometric construct.

13

3.1.1 Tracing Method

Common and often more accurate algorithms use a tracing technique for extracting a

medial axis. These techniques work by tracing seams of a medial axis until a junction

point is reached. The process is repeated, tracing each seam emerging from the junc-

tion until another is found. The process is initiated along a seam that is easy to locate,

such as a convex trivalent vertex. The quality of the medial axis generated depends on

the size of the tracing step used.

Sherbrooke, et al. [50] presents one of these algorithms for deriving the medial

axis of a polyhedron. Culver, et al. [17] extended this work to tetrahedrons and in-

troduced a number of performance optimizations. Ramanathan and Gurumoorthy [45]

introduces a variation that functions on free form objects by treating them as a finite

set of Non-Uniform Rational B-Spline (NURBS) surface patches, whose medial axis

are more easily and accurately derived than discretization techniques. Sud, et al. [55]

improves upon medial axis generation for polyhedrons by removing unstable features

while preserving homotopy.

3.1.2 Voxel-Based Method

Voxel-based techniques utilize a division an object’s space into a set of volumetric

units called voxels. Lam, et al. [33] presents a survey of early voxel-based techniques

called thinning algorithms. These methods iteratively remove layers of voxels until a

sufficiently minute set skeleton is obtained. However, the skeleton is not guaranteed

to be medial. Saito and Toriwaki [48] and Pudney [42] extended thinning methods by

also considering voxels in order of distance, producing a medial result.

Many voxel-based methods use a distance field. Danielsson [19] introduced an

efficient method for deriving the distance to the surface for each pixel, establishing

14

a distance field. Ragnemalm [44] extended this work to 3-dimensions. Siddiqi, et

al. [51] uses a distance field to derive the Hamiltonian flow and outward flux of each

voxel to deduce their proximity to the medial axis. Foskey, et al. [23] iteratively finds

lines intersecting sheets of the medial axis by matching voxels that meet a separation

criteria. That is, their respective vectors diverge, typically representing voxels on the

opposite sides of an axis sheet. Dryden, et al. [41] and Prohaska and Hege [18]

introduces the use of geodesic distance to take the shape of an object’s surface into

account.

3.1.3 Voronoi-Based Method

Voronoi-based techniques utilize Voronoi diagrams to derive the medial axis. Given a

set of vertices, Voronoi diagrams divide space into regions based on the smallest prox-

imity to a single vertex. Under suitable circumstances, the edges of each regions will

converge towards the center of regions surrounded by the set of vertices. A variation

of this technique is utilized by the Fracture Map Algorithm, due to its relatively fast

computation and robust results.

Definition 2. The Voronoi diagram V D(P) of a discrete set P ∈ Rd is the subdivision

of space into Voronoi cells Vp for each point p ∈ P such that:

VP = {x ∈ Rd|‖x− p‖ ≤ ‖x−q‖ ,∀q ∈ P}

where ‖x− p‖ is the Euclidiean distance between points x, p ∈ Rd

The Voronoi diagram can be interpretted as a collection of Voronoi faces of varying

dimensions. A k-dimensional Voronoi face in Rd represents the set of points equidis-

tant from d + 1− k points in P and the intersection of d + 1− k Voronoi cells. A

0-dimensional Voronoi face is a Voronoi vertex, a 1-dimensional Voronoi face is a

15

(a) (b)

Figure 3.1: The Voronoi diagram of a 2D shape. As the number of vertices of the
shape increases, the Voronoi vertices begin to converge onto the shape’s medial axis.

Voronoi edge, a 2-dimensional Voronoi face is a Voronoi polygon, and a 3-dimensional

Voronoi face is a Voronoi cell.

Each Voronoi cell Vp of a point p is a closed and possibly unbounded polytope

and contains Voronoi vertices vp equidistant from p and d + 1 other points of P.

The Voronoi ball centered at vp contains these points on its boundary and no other

points in its interior. This is analogous to the maximal balls which define the medial

axis, making the Voronoi diagram an important tool for medial axis derivation, as

shown in Figure 3.1.

When P is a dense sampling of a surface S, the Voronoi vertices can be expected

to approximate the medial axis. This holds true in 2D, as Brandt [12] proved that as

the density of surface sampling approaches infinity, the Voronoi vertices converge on

the medial axis. The same property has not been found to be true in 3D, as Voronoi

vertices can often be found close to the surface S and consequently far from the medial

axis.

This occurs when four sample points lay close together on S, placing the corre-

sponding Voronoi vertex very close to S as well. When densely sampled, Voronoi cells

16

are long, skinny, and perpendicular to the tangent of S at p. This is due to Vp be-

ing bounded quickly after extending along the tangent by the bisecting planes of each

neighbor on S. Furthermore, Vp is bound by the medial axis in the direction perpen-

dicular to the surface tangent at p, as other points on S become closer than p beyond

this point. Amenta [2] noted this fact and found that convergence could be guaranteed

in 3D if only a subset of Voronoi vertices, called poles, are considered. Poles are the

two Voronoi vertices in Vp that are the furthest distance from p and therefore lay near

the medial axis.

3.2 3-Dimensional Mesh Cutting Algorithms

Cutting of 3-dimensinal meshes is a widely researched field of computer graphics,

with significant applications in medical simulations, computer aided design, feature

films, and video games [53]. The concepts found in 3-dimensional cutting techniques

are very similar in nature to the Fracture Map Algorithm. A large portion of research

has been placed on supplying a realistic re-creation of surgical cutting in simulations,

whereas the technique presented in this paper deals exclusively with a pre-determined

cutting path.

Many of the ideas were first introduced by Mortensen and Barrett [36], with a

method for intelligently segmenting 2-dimensional images around a regions of interest.

Chun-Ho, et al. [58] extends this method into 3-dimensions, representing a mesh

via surface voxels and their gradient values. Dijkstra’s algorithm is then used to find

vertices on the mesh that most closely resemble a target cutting contour.

Many 3-dimensional techniques focus minimal effort to accurately split along the

cutting edge, such as Delingette, et al. [20] and Frisken-Gibson [24], and instead

simply remove intersecting elements from the mesh. Alternatively, Viet, et al. [28]

17

duplicate vertices closest to the cutting instrument and generate separated connectivity.

Cuts are refined further in Bruyns and Senger [13] by using a state-machine to

determine when vertices need to be inserted along intersection edges. Bielser, et al.

[7] continues along this concept and uses a state machine based on the transitions of

a cutting tool across a tetrahedral’s topology to perform the necessary subdivision to

represent arbitrary intersections. This is extended in Seokyeol, et al. [30] by using a

turning point determination algorithm based on local curvature of surface meshes.

Although all of these provide methods for performing cuts on a mesh, they do not

adequately handle the exposure of a new hidden surface within a surface mesh. Sela,

et al. [49] handles the hidden surface in a manner geared towards surgical simulation

by duplicating the start and end cut vertices and extending them in the opposite direc-

tion of a cutting instruments orientation. This produces an incision into the mesh but

restricts the cut from producing a disjoint segmentation.

Techniques such as Delingette, et al. [20], Bielser, et al. [7], O’Brien and Hodgins

[40], Smith, et al. [52], Steinemann, et al. [53] instead operate on tetrahedrals and

Frisken-Gibson [24] on voxel arrays, both with explicitly defined interiors.

18

Chapter 4

Fracture Map Algorithm

4.1 Overview

The goal of the Fracture Map Algorithm is to allow users to take a polyhedral sur-

face mesh and derive a new set of meshes based on fracture lines defined within a

2-dimensional texture. Although no mathematical guarantees are made by the algo-

rithm, it works in practice given proper limitations are met. The algorithm takes two

inputs: a mesh, and a data structure defining the lines of fracture. The input mesh

is a polyhedral surface mesh bounding 3-dimensional space with a texture coordinate

mapping. The input fracture data, defined by the user and called a fracture map,

is mapped onto the surface of the polyhedral mesh according to its UV coordinates.

From these inputs, the algorithm produces a set of meshes that would result had the

input mesh been fractured along the lines of fracture defined by the fracture map.

The algorithm is performed in seven distinct steps:

1. Fracture edge generation – Identify locations along the edges of each triangle

that intersect a fracture line.

2. Fracture point matching – Identify the interconnectivity of fracture lines within

each triangle.

19

3. Fracture edge resolution – Resolve the exact location of a fracture along a

triangle’s edge.

4. Triangulation – Translate the connectivity information into a set of new trian-

gles whose edges align with the fracture lines.

5. Fracture component segmentation – Segment the new set of triangles into

groups based on those surrounded by the same fracture lines.

6. Hidden surface generation – Generate a hidden surface of the input mesh that

is exposed by the fractures.

7. Surface stitching – Stitch together the hidden and visible surfaces to create a

final set of watertight meshes.

The algorithm has been observed to derive correct results given a number of limi-

tations:

1. There are no intersections across edges of the fracture map.

2. The mesh is sufficiently tessellated that there is no greater than one fracture

component enclosed completely within a triangle.

3. The number of edges a fracture node contains is no larger than thirty-two.

4. The input mesh does not contain exceedingly narrow curved regions that may

result in the artifacts discussed in Section 6.3.1.

Section 4.3 will discuss the process of extracting points of fracture within each

triangle. Section 4.4 will describe the fracture matching process, in which spans are

established between points of fracture. Additionally, fracture forks within the interior

20

(a) (b)

Figure 4.1: An input mesh triangle with intersecting fracture lines shown in (a). (b is
the resulting triangular mesh and fracture components after applying the Fracture Map
Algorithm.

of the triangle are identified. In Section 4.5, the process of resolving fractures between

adjacent triangles is discussed. Section 4.6 examines the re-triangulation of the mesh

after additional fracture vertices have been added. The result up to this step is shown in

Figure 4.1. Section 4.7 shows how the fracture mesh is segmented based on the lines

of fracture. The process is concluded with Section 4.8 and 4.9, presenting the process

of extracting a hidden surface from the original mesh and stitching it together to create

a finished watertight mesh.

4.2 Terminology

There are a number of important terms used repeatedly throughout the following sec-

tions.

Fracture map :

A fracture map is an undirected simple graph with nodes that represent a position

in UV-space and edges that represent a fracture line between the two points. For

efficient retrieval, edges are stored within a quadtree, based on the bounding

21

box formed by its two nodes. Representing fractures in UV-space provides the

advantage of being resolution-independent. If fracture maps were represented

directly as raster images, the quality of fractures would be dependent highly on

a fracture map’s resolution.

(The last two sentences may not fit here.)

Fracture point :

Represents a point within a mesh that must be resolved to a new vertex within a

fractured mesh. There are three types of fracture points:

Half edge fracture point :

Represents a point along a mesh’s half edge that intersects a fracture line.

For a triangle, its half edge fracture points represent all positions along its

boundary that cross a fracture line. A half edge fracture point’s position is

stored relative to the parameterization of its half edge.

Fracture point branch :

Represents a convergence of multiple fracture lines into a single point

within a triangle. If a fracture map contains nodes of only degree 2, there

will be no fracture point branches.

Fracture point join :

Represents a point inside a triangle that corresponds to a node of degree 2

within a fracture map.

Each fracture point type is illustrated in Figure 4.2.

Fracture edge vertex :

Represents a vertex created from a half edge fracture point.

22

(a)

(b)

(c)

Figure 4.2: The three different types of fracture point. (a) represents a half edge
fracture point, (b) represents a fracture point join, and (c) represents a fracture point
branch.

Fracture interior vertex :

Represents a vertex created from a fracture point branch or fracture point join.

Fracture half edge :

Represents a half edge and all of its fracture points. Half edge fracture points are

stored in ascending order of their distance away from its half edge’s first vertex

in UV-space.

Fracture edge :

Represents an edge and all of its fracture points that have been realized into

fracture edge vertices. A fracture edge is created by resolving two adjacent

fracture half edges. The resolving process establishes a final position for each

fracture point and creates a corresponding fracture edge vertices.

Matched triangle :

Represents a triangle with fracture half edges, fracture point branches, and con-

nectivity information between fracture points. A matched triangle is used during

triangulation to establish a set of polygons defining separate segments of a frac-

ture.

23

4.3 Fracture Edge Generation

The first stage of the Fracture Map Algorithm is to generate a fracture half edge

for each half edge within the polyhedral mesh. Generating a fracture half edge is a

simple process, shown below:

Algorithm 1: Fracture half edge generation

input : A 3-dimensional polyhedral mesh and a fracture map

output: A fracture half edge for every half edge within input mesh

foreach triangle in mesh do

bounds← bounding box of triangle

candidates← fracture lines intersecting bounds

foreach half edge in triangle do

fracedge← empty fracture half edge

foreach line in candidates do

if line intersects half edge then

edgedist← distance along half edge

add new half edge fracture point to fracedge

end

end

sort half edge fracture points by edgedist

end

end

Fracture half edges are generated by first iterating over each half edge within the

input mesh. For each half edge, a bounding box of the edge in UV-space is used to

24

retrieve candidate fracture lines from the fracture map’s quadtree. This minimizes the

number of line-intersection tests required for generation. The intersections are found

via the following line-line intersection test:

Definition 3. Let L1 and L2 represent two lines in 2-dimensional space defined by the

points (U1,V1) and (U2,V2) for L1 and (U3,V3) and (U4,V4) for L2. The point of inter-

section of line L1 and L2 is defined as:

Px =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
U1 V1

U2 V2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U1 1

U2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U3 V3

U4 V4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U3 1

U4 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
U1 1

U2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V1 1

V2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U3 1

U4 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V3 1

V4 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Py =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
U1 V1

U2 V2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V1 1

V2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U3 V3

U4 V4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V3 1

V4 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
U1 1

U2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V1 1

V2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
U3 1

U4 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V3 1

V4 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Given the lines L1 and L2 and not parallel.

If a point of intersection resides within the line segment (x1,y1) and (x2,y2), a half

edge fracture point is created for the point and is given a fracture ID unique to the

triangle. The half edge fracture point is then added to the fracture half edge. Once all

candidate fracture lines have been considered, the fracture points are sorted by their

distance along the half edge.

25

1

0

3

4
5

6

7

8

9

(a)

21

0
3

4 5

6

7

8

9

(b)

Figure 4.3: Nodes in the undirected simple graph represent vertices or fracture points
of the triangle, and edges represent connectivity via fracture lines. The numbers within
each node represent the node’s fracture ID.

4.4 Fracture Point Matching

After all three fracture half edges of a triangle have been generated, the triangle moves

on to a matching phase of the algorithm. This process resolves inter-connectivity

between fracture points of each fracture half edge. As a result, fracture point

branches and fracture point joins necessary for connectivity are identified and

added to the triangle. Connectivity within a triangle is represented as an undirected

simple graph of vertices, fracture points, and their connectivity via fracture lines,

as shown in Figure 4.3. When all connectivity has been established, the result is a

matched triangle, ready to be triangulated.

Matched triangles are created by iterating over each half edge fracture point within

the given triangle, and performing the following steps:

1. The half edge fracture point is checked to see if it has already been matched with

another fracture point. If so, no further processing is needed.

2. If unmatched, the fracture line that intersects the fracture point’s position is re-

26

trieved and set as the current line.

3. All other half edge fracture points within the triangle are checked to see if they

derive from the current fracture line.

4. If there is a match, a span between the two fracture points is added and no further

processing is needed for the current fracture point.

5. If no matches were found, then an endpoint of the current fracture line resides

within the interior of the triangle. This leaves two possible scenarios:

(a) The interior endpoint has multiple adjacent fracture lines, corresponding

to a fracture branch. If a fracture point branch does not already exist at

this position, one is created and a span is added between the current half

edge fracture point and the newly created fracture point branch. No further

processing of the current fracture point is needed, but the fracture point

branch is added to a queue for additional matching later.

(b) The interior endpoint has only one additional adjacent fracture line. A new

fracture point join is created at the endpoint and a span is added to the

current fracture point. The algorithm now sets the fracture point join as the

current fracture point and advances to the adjacent fracture line and sets it

as the current line. Repeat from Step 3.

This process fully establishes all spans that do not traverse more than a single frac-

ture point branch. For most cases, this will suffice. However, when multiple fracture

point branches are connected within a triangle, further processing is required to estab-

lish its span.

The algorithm processes a queue of fracture point branches, which are enqueued

after creation. For each fracture point branch in the queue, the following is performed:

27

1. Each fracture line associated with the fracture point branch is first added to a

processing queue.

2. A fracture line is popped from the queue and treated as the current line.

3. The current fracture line is checked to see if its next endpoint matches that of

another fracture point branch. If so, a span is added.

4. Otherwise, three scenarios are possible:

(a) The fracture lines intersects one of the triangle’s half edge. This means

a span has already been created between the fracture point branch and its

connected half edge fracture point.

(b) There is no intersection with a half edge, and the next endpoint branches

into multiple fracture lines. This means a previously unknown fracture

point branch has been found. A new fracture point branch is created and

added to the processing queue, and a span between the two fracture points

is added.

(c) There is no intersection with a half edge, and the next point has only one

additional adjacent fracture line, meaning it is a fracture point join. A frac-

ture point join is created, a span is added between the two fracture points,

and the next line segment is added to the processing queue, repeating the

process.

5. Repeat Step 2 until the queue is empty.

The result is a fully populated matched triangle, which contains all topology in-

formation of the fractures within a given triangle. However, due to the potential dis-

connect between texture coordinates across triangle edges, the positions of half edge

fracture points in model-space may vary slightly across edges.

28

4.5 Fracture Edge Resolution

Fracture edge resolution negotiates the fracture information of two adjacent fracture

half edges into a single unified fracture edge. Fracture edge resolution is also respon-

sible for creating fracture edge vertices along the edge for use in triangulation. An

assumption made for the sake of fracture edge resolution is that both fracture half

edges have the same number of half edge fracture points and differ only in their po-

sition along the half edge. If the number of half edge fracture points differs, then the

fracture map is ill-formed.

The process of resolving fracture edges changes based on the configuration of the

two fracture half edges:

The two half edges share the same texture coordinates :

Both fracture half edges have fracture points positioned at identical positions,

but in opposite order. Each fracture point’s position in model-space and tex-

ture coordinate is derived via linear interpolation of edge vertices and texture

coordinates, respectively. The order within the fracture edge is inconsequential.

Only one half edge exists :

This can arise when holes exist within a mesh. The fracture edge vertices are

created from the single fracture half edge in the same manner as above.

The two half edges have different texture coordinates :

Both fracture half edges represent the same fracture points, but each fracture

point may lay at different positions along the half edge. When resolving the

edge, positions along the half edges are averaged and used to linearly interpolate

as above.

29

With the conclusion of fracture edge resolution, all vertices and texture coordinates

along an original mesh’s edges have been realized into fracture edge vertices. As a

final step, each fracture point branch and fracture point join is realized into a fracture

interior vertex based on its barycentric coordinate.

4.6 Triangulation

4.6.1 Fracture Polygon Creation

Up to this point, all vertices and texture coordinates sufficient for modeling the frac-

tures along the original mesh’s surface have been created, and fracture topology in-

formation derived. The topology information is now translated from the matched

triangles into a triangulation of a polyhedral surface mesh. Triangulation occurs on

a per-triangle basis, dividing each triangle into a set of fracture polygons. Each

fracture polygon is then triangulated, creating the final polyhedral representation of a

fractured triangle.

Although all necessary vertices exist at this point, triangulation is performed using

fracture IDs of each triangle’s fracture points. This is because all connectivity infor-

mation is captured for fracture points. After each fracture polygon has been created, it

is realized by translating all fracture IDs into their respective fracture vertex IDs.

The process for creating the set of fracture polygons, also shown in Figure 4.4,

works by first establishing a single edge of the fracture polygon that lays against the

triangle’s boundary. The algorithm then walks along the triangle’s edge or spans be-

tween two fracture points and vertices until it returns to the original fracture point. At

the end of this process, all fracture polygons with an edge along the triangle’s boundary

will be created.

30

For most fractures, this will suffice, however, it may be possible that a fracture

polygon is surrounded entirely by other fracture polygons. To address this, each half

edge is treated as having individual segments, separated by half edge fracture points, or

lack thereof. A bitflag is used to store a visitation state of each segment. The segments’

order follows the triangle’s winding order and decides which bit corresponds to which

segment. For interior spans, the same idea is used. All fracture point branches and

fracture point joins maintain a bitflag to store which of its spans have been visited. A

fracture point only marks a span as visited if the algorithm traverses away from the

fracture point along its span.

For the purpose of this section, both half edge fracture points and vertices of the

triangle are referred to as edge triangulation points. Fracture point branches

and fracture point joins are referred to as interior triangulation points. For

each edge triangulation point, its adjacent segment extending in the direction of the

triangle’s winding order is called its forward segment.

To begin the process, each vertex and half edge fracture point is added to a pro-

cessing queue following the winding order. The process next performs the following

steps:

1. The processing queue is popped to retrieve the next edge triangulation point to

be processed.

2. If its forward segment has already been visited, the triangulation point is skipped

and Step 1 is repeated.

3. Otherwise, an empty fracture polygon is created and the first triangulation point

is added to it.

4. The edge triangulation point adjacent to the forward segment is set as the current

31

triangulation point, and the forward segment is set as visited.

5. While the algorithm hasn’t looped back to the fracture polygon’s first triangula-

tion point, the following is repeated:

(a) The current triangulation point is added to the fracture polygon. This estab-

lishes the fracture polygon’s first edge along the triangle’s boundary during

the first iteration of the loop.

(b) Based on the number of spans the current triangulation point has (excluding

spans to the previous triangulation point), the following is performed:

The triangulation point has a single span :

The algorithm advances along the span, marking it as visited, and sets

the adjacent triangulation point as current.

The triangulation point has multiple spans :

The algorithm traverses along the span that minimizes θ in the equa-

tion θ =
(Tc−Tp)

‖(Tc−Tp)‖ ·
(Ts−Tc)
‖(Ts−Tc)‖ where Tc is the texture coordinate of the

current triangulation point, Tp is the texture coordinate of the previous

triangulation point, and Ts is the texture coordinate of the triangulation

point adjacent to the span. The traversed span is marked as visited and

the adjacent triangulation point is set as current.

Otherwise :

The algorithm advances along the forward segment, marks it visited,

and retrieves the next edge triangulation point. It is set as the current

triangulation point.

(c) Repeat Step 5.

6. The fracture polygon now contains a list of all triangulation points, representing

the traversal along each edge of the polygon. Add the fracture polygon to the

32

0

0

0

0

0

0

0

0

6

4

(a)

1

0

0

0

0

0

0

0

6

4

(b)

1

0

0

0

0

0

0

0

5

4

(c)

1

0

0

0

0

0

0

0

4

4

(d)

1

0

0

0

0

0

0

1

4

4

(e)

1

1

1

1

1

1

1

1

0

0

(f)

Figure 4.4: The step-by-step process for triangulating a matched triangle into a set of
fracture polygons.

triangle’s list of polygons and repeat Step 1.

At the end of this process, each interior triangulation point is checked to ensure

each span has been visited. If not, the same process is repeated using the unvisited

span as the initial edge of a fracture polygon.

Once finished, each fracture polygon has to be realized, translating its represen-

tation from fracture points to fracture vertices. This results in a final set of fracture

polygons. The last step of the process is to triangulate each polygon to create the final

polyhedral representation of the fractured triangle.

33

4.6.2 Convex Fracture Polygon Triangulation

During fracture polygon creation, as each triangulation point is added, a convex test is

performed:

Definition 4. Given three triangulation points, Tc, Tp, Tn, representing the texture co-

ordinates current, previous, and next triangulation points respectively, and the vectors

V c =
(Tc−Tp)

‖(Tc−Tp)‖ and V n = (Tn−Tc)
‖(Tn−Tc)‖ , the fracture polygon is flagged as concave if it fails

the point-plane test:

V c⊥ ·V n ≥ 0 where V c⊥ = (−V c
y ,V

c
x).

If a fracture polygon passes all tests, triangulation of a convex simple polygon is

trivial. Adding a diagonal from one vertex to all other vertices completes the triangu-

lation in linear time.

4.6.3 Concave Fracture Polygon Triangulation

If a fracture polygon is found to be a concave polygon, triangulation is non-trivial.

Due to the limited occurrence of large concave polygons, the Fracture Map Algorithm

uses the ear clipping method. However, if increased performance is desired, alterna-

tive methods described above are fully capable of achieving identical results. Upon

completing the triangulation process on all triangles, a new polyhedral representation

of the input mesh is produced, such that sufficient edges have been added to separate

individual fracture component.

34

4.7 Fracture Component Segmentation

Fracture component segmentation is the process of separating a fracture surface mesh

into subsets of triangles called fracture components. A fracture component is a

polyhedral formed from a connected subset of triangles within a fractured mesh that

are bounded completely by fracture line edges. Fracture line edges are edges

created from a span to a fracture point, and therefore a line of fracture. The algorithm

for segmenting a fracture mesh is a trivial recursive expansion:

Algorithm 2: GenerateFractureComponents(. . .)

input : A fracture mesh

output: A set of polyhedrals

begin

componentID← 0

foreach triangle in fracture mesh do

if triangle has not been visited then

ExpandComponent (rootTriangle, componentID)

componentID← componentID + 1

end

end

end

35

Algorithm 3: ExpandComponent(. . .)

input : The current triangle

output: The current fracture component id

begin

triangle.visited← true

triangle.componentID← componentID

foreach edge in triangle do

if edge is not a fracture line edge then

// OtherTri returns the other triangle shared by the edge

ExpandComponent(OtherTri(edge, triangle), componentID)

end

end

end

4.8 Hidden Surface Generation

The fracturing process above results in a segmentation of the fracture mesh surface,

but no information regarding the hidden surface of each fracture segment is explicitly

known. However, implicit information can be derived from the mesh’s medial axis.

For this paper’s objective, the inner medial axis can equate to the hidden surface of

individual fracture segments, as illustrated in Figure 4.5.

Following the fracturing of the surface mesh from a fracture map, the medial axis

is extracted via a Voronoi-based method extended from the method described by [27].

Rather than directly attempting to calculate the Voronoi diagram, the first step taken is

36

(a) (b) (c)

Figure 4.5: Hidden surface generation of a 2D shape. The red lines represent the
medial axis of the 2D shape. The green line represents the portion of the surface
contained in a fracture segment.

to generate the Delaunay triangulation of the original surface mesh via the Quickhull

algorithm [6]. A Delaunay triangulation is an important geometric construct compli-

mentary to the Voronoi diagram, and allows for its construction. u

Definition 5. The Delaunay triangulation DP for a set of points P ⊂ Rd is a triangu-

lation such that the circumscribing ball of all d-simplices does not contain any other

points inside.

The Delaunay triangulation has the fortunate property of being the dual graph of

the Voronoi diagram. This allows the Voronoi diagram to be derived directly from the

Delaunay triangulation obtained from the Quickhull algorithm. Each k-simplex in DP

is dual to the d− k dimensional face of V D(P). Thus, in 2D the circumcenter of a

Delaunay triangle is dual to a Voronoi vertex, a Delaunay edge is dual to a Voronoi

edge bisecting the edge of Dp, and a Delaunay vertex is dual to a Voronoi cell. In

3D, a Delaunay tetrahedron is dual to a Voronoi vertex positioned at the center of the

tetrahedron’s circumsphere, a Delaunay triangle is dual to a Voronoi edge, a Delaunay

edge is dual to a Voronoi facet, and a Delaunay vertex is dual to a Voronoi cell. This

property allows the Voronoi diagram to be quickly and effectively generated for the

37

Figure 4.6: Slight perturbations within a surface mesh can cause dramatic changes in
the structure of the medial axis.

surface mesh.

The poles of each Voronoi cell are found after discarding Voronoi vertices that lay

outside the plane defined by the surface point p’s position and averaged normal. The

resulting poles converge on only the desired inner medial axis.

A major disadvantage of the medial axis is its sensitivity to perturbations of the

original surface mesh. As shown in Figure 4.6, small variations in the surface mesh

can cause dramatic structure changes of the medial axis. This produces undesired

results for meshes containing many perturbations, generating a hidden surface that is

jagged and unnatural.

Unlike other methods which extract the medial axis as a non-manifold cell complex

[2, 22], this method produces a two-sided manifold surface. We call this approxima-

tion the medial surface. This provides the advantage of allowing standard mesh

operations to be performed on it. Thanks to this, noise can be combated by applying

Laplacian smoothing to the original surface prior to being processed by Quickhull.

After applying ten smoothing operations to the input mesh and ten operations to the

output medial surface, the results are much cleaner as seen in Figure 4.7.

38

(a) (b)

Figure 4.7: The medial surface produced from the original mesh exhibits a large num-
ber of fins in comparison to the medial axis produced after applying smoothing to the
mesh prior to generation.

Definition 6. The Laplacian smoothing operation is defined as the per-vertex applica-

tion of:

x̄i =
1
m ∑

j∈N1(i)
x j− xi

Where x j are the 1-ring neighbors of the vertex xi, m = #N1(i) is the number of these

neighbors, and x̄i is the new position for vertex xi [21].

Another advantage the medial surface has over a non-manifold medial axis extrac-

tion is that the topology is identical to that of the surface mesh. Edges which exist

between vertices of the original surface mesh remain identical between each vertex’s

associated medial axis point. This allows the hidden surface to be quickly and easily

stitched together from the medial axis.

In practice, the Fracture Map Algorithm is able to perform the medial surface gen-

eration in parallel with the initial five steps of the algorithm. Upon completion of

39

both, each fracture component is combined with its associated medial surface vertex,

and triangles are formed along boundaries separating the surface vertices from the me-

dial surface vertices. The result is a watertight mesh that extends to the approximate

bisection of the given fracture segment.

4.9 Surface Stitching

The final step is to stitch together the two disjoint polyhedral surfaces of each fracture

component to form a single watertight polyhedral surface mesh. This step is trivial

thanks to the identical topology both surfaces share with each other. Stitching is per-

formed by adjoining a new quad between every unshared edge and its corresponding

edge in the medial surface. The result is a set of watertight polyhedral meshes that

represent the original mesh after being fractured by a fracture map.

40

Chapter 5

Results

Results were obtained for the Fracture Map Algorithm on a number of polyhedral sur-

face meshes with a variety of contrasting inputs. A utility application was developed

to provide accessible user-interaction for the Fracture Map Algorithm. Section 5.1

introduces this application. Section 5.2 presents a number of example fractures gener-

ated via the Fracture Map Algorithm. Sections 5.4, 5.5, and 5.6 discuss the impact a

number of variables have on the performance of fractures. This includes the size of a

mesh, the fracture map size, and the fracture map complexity, respectively.

5.1 Implementation Details

The Fracture Map Utility Application was written in C++11 using OpenGL 2.0. The

utility has support for Windows, OS X, and Linux, providing a mechanism for loading

mesh files with defined texture coordinates, creating fracture maps, and performing the

Fracture Map Algorithm. Figure 5.1 showcases a screenshot of the utility on Windows

7. The medial surface derivation code is based on the original work of [60], with major

modifications to mesh preprocess and medial surface post-process steps.

In addition, a number of external open-source cross-platform libraries are lever-

aged within the codebase:

41

Figure 5.1: Screenshot of the Fracture Map Utility Application in Windows 7.

OpenGL Mathematics (GLM) – An OpenGL mathematics library providing con-

sistent datatypes and functionality based on the OpenGL Shading Language

(GLSL).

Developer’s Image Library (DevIL) – An image library for loading, saving, and

processing images of numerous formats.

Qhull – Provides efficient computation of the convex hull, Delaunay triangulation,

and Voronoi diagram of a mesh via the Quickhull algorithm.

OpenGL Extension Wrangler Library (GLEW) – Provides efficient run-time mech-

anisms for resolving supported OpenGL extensions on a platform.

Fast Light Toolkit (FLTK) – A user interface library with OpenGL/GLUT support.

Bullet 3D Game Multiphysics Library – Provides collision detection, soft body, and

42

rigid body dynamics for simulations.

Within the Fracture Map Utility Application, a model’s UV-space representation

is projected onto a 2-dimensional raster image. This displays the texture atlas of the

model and allows users to easily visualize fractures. This is shown in Figure 5.2.

Alternatively, a fracture map can be viewed by overlaying its line segments on top of

a pre-existing texture atlas, such as a diffuse map. This can be useful if a user wants a

fracture to align with features of a diffuse map.

Figure 5.2: The 2D raster image generated by the Fracture Map utility application.
This allows users to visualize the projection of the fracture lines onto the model’s 3-
dimensional surface

43

5.2 Example Fractures

A number of example fractures have been performed using textured models generated

via the Texturemontage algorithm presented by [62]. These meshes contain texture

atlases absent of overlapping geometry in UV-space. Additionally, for reference, the

fracture maps have been superimposed on top of diffuse maps 1024x1024 pixels in

size.

5.2.1 Buddha

The Buddha mesh comprises of 30272 triangles with a relatively simple texture atlas.

The fracture, shown in Figure 5.3 uses a fracture map that fragments the mesh into 13

components in 3.2 seconds.

5.2.2 Bunny

The bunny mesh comprises of 30338 triangles and has been fractured into 13 com-

ponents. The fracture, shown in Figure 5.4, created 29 fracture components and was

completed in 2.5 seconds.

5.2.3 Cat

The cat mesh comprises of 14894 triangles and has been fractured into 13 components.

The fracture, shown in Figure 5.5, created 58 fracture components and was completed

in 2.0 seconds.

44

(a) (b)

(c) (d)

Figure 5.3: The resulting fracture, shown in (b) and (d) after using the fracture map
shown in (a). The medial surface generated for the hidden surface during the fracture
process is shown in (c).

5.2.4 Feline

The feline mesh comprises of 41066 triangles with a relatively complex texture atlas.

The fracture, shown in Figure 5.6 uses a fracture map that fragments the mesh into 9

45

(a) (b)

(c) (d)

Figure 5.4: The resulting fracture, shown in (b) and (d) after using the fracture map
shown in (a). The medial surface generated for the hidden surface during the fracture
process is shown in (c).

components in 3.4 seconds.

46

(a) (b)

(c) (d)

Figure 5.5: The resulting fracture, shown in (b) and (d) after using the fracture map
shown in (a). The medial surface generated for the hidden surface during the fracture
process is shown in (c).

5.3 Experimental Setup

Performance results were obtained via automated runs on a machine with a 3.214 Mhz

6 core AMD Phenom II X6 1090T processor, 4 GB of system RAM and running

47

(a) (b)

(c) (d)

Figure 5.6: The resulting fracture, shown in (b) and (d) after using the fracture map
shown in (a). The medial surface generated for the hidden surface during the fracture
process is shown in (c).

Windows 7. Performance data was gathered with a sample size of 100 runs on a

headless version of the Fracture Map Utility Applictation, excluding graphical display

overhead from the results.

48

5.4 Mesh Size

Many of the procedures within the Fracture Map Algorithm require iteration over each

element of an input mesh. As such, the size of an input mesh is expected to have

strong influence on the performance of the algorithm. Data was acquired using six

meshes with increasing face counts. All fractures were performed with fracture maps

of identical size and complexity. The results, shown in Table 5.1, follow this expected

outcome.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0

MODEL FACES

AVG TIME (MS)

Triangle Faces Avg Elapsed Time (ms)
10,000 789.49
15,000 1104.225
30,000 2316.495
40,000 3200.435
41,000 3200.435
51,000 4495.78

Table 5.1: The elapsed time to perform a fracture as the number of triangles in an input
mesh increases.

49

The results show steady linear growth of the elapsed time to fracture as the number

of faces in the input mesh are increased. This equates to approximately 80 milliseconds

per 1000 input faces.

5.5 Fracture Map Size

The size of a fracture map plays an important role during the fracture edge genera-

tion step, as each half edge of an input mesh is tested for intersections against nearby

fracture lines. The effect fracture map size has on performance was examined by com-

paring fracture times of a single input mesh with fracture maps of increasing fracture

node counts. The results, shown in Table 5.2, demonstrates little impact on perfor-

mance.

The stability seem can be attributed to the infrequent presence of acute fracture

line density. The quadtree used to store fracture lines in a spatially efficient manner

ensures the majority of half edges do not perform intersection tests over a large set of

lines despite the presence of a large number of overall fracture lines.

5.6 Fracture Map Complexity

The complexity of a fracture map is considered here as the number of fracture compo-

nents that result from the fracture. As such, increasing the number of fracture compo-

nents resulting from a fracture map also increases the number of intersections present

within the fracture map. This can have a potential impact during the fracture point

matching phase, as the number of fracture point branches that require matching will

be larger. The results, shown in Table 5.3, exhibit a stability similar to fracture map

size.

50

0

500

1000

1500

2000

2500

3000

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

FRACTUREMAP POINTS

AVG TIME (MS)

Fracture Map Points Avg Elapsed Time (ms)
10 2392.84
30 2387.97
50 2384.05
75 2397.1

100 2397.33

Table 5.2: The elapsed time to perform a fracture as the number of points in an input
fracture map increases.

This demonstrates the efficient handling of complex fracture types within the frac-

ture point matching phase, as the additional computation time required differs only by

49 milliseconds between 4 and 45 fracture components.

51

0

500

1000

1500

2000

2500

3000

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

FRACTURED MESH COMPONENTS

AVG TIME (MS)

Fracture Components Avg Elapsed Time (ms)
4 2374.29
7 2378.42
18 2382.29
25 2390.32
32 2401.3
45 2423.35

Table 5.3: The elapsed time to perform a fracture as the number of resulting fracture
components from an input fracture map increases.

52

Chapter 6

Future Work

6.1 Multithreading

Due to the nature of the Fracture Map Algorithm, it is potentially highly paralleliz-

able. The current implementation takes only minor advantage of an asynchronous en-

vironment by performing mesh fracturing and medial surface generation concurrently,

reducing the elapsed time by approximately 22% over a synchronous implementation.

However, each step of the algorithm aligns well with a producer-consumer design pat-

tern, allowing for further performance gains to be reaped.

The fracture edge generation process produces a triangle ready to be consumed

by the fracture point matching process once all three of its fracture half edges have

been generated. Once both triangles adjacent to an edge have completed matching,

the fracture edge can be resolved. Furthermore, a triangle can be triangulated once all

three edges have been resolved. Despite the potential performance benefit, the current

implementation of the Fracture Map Algorithm does not take advantage of a producer-

consumer design due to time constraints.

53

6.2 Fracture Map Complexity

The current Fracture Map Algorithm implementation allows for fracture maps repre-

sented only by simple piecewise linear segments, but results in a cumbersome work-

flow when applying topological changes to a fracture map. Extending the fracture map

representation to handle complex curves such as Bezier curves or NURBS would allow

faster fracture map creation and more accurate representation of the desired fracture

topology.

6.3 Medial Surface

The Fracture Map Algorithm is not restricted to exclusive use of Voronoi-based ex-

traction methods, allowing the use of various other implementations to be swapped in

if better results are provided.

6.3.1 Noise Reduction

One of the primary variables for the effectiveness of a medial surface to model a hidden

surface is its ability to accurately model the major topological features of a mesh’s

geometry. The medial surface’ sensitivity to small perturbations makes this difficult

to achieve. The current implementation uses Laplacian smoothing to reduce noise,

but this can produce artifacts within narrow regions of a mesh. The result is a medial

surface that protrudes from the mesh surface. Figure 6.1 showcases an example of

such an artifact.

There are a number of alternative techniques for extracting major features within

a medial surface. A large subset of such techniques derive an importance value for

54

Figure 6.1: An artifact resulting from smoothing methods for noise reduction in a
medial surface. The medial surface protrudes from the mesh surface.

each medial point, filtering out points deemed unnecessary based on a given threshold.

[14] derives importance based on the circumradius of the closest boundary points,

whereas [4] bases the value on the angle formed between the closest boundary point.

[35] constructs a scale-axis transform by computing the medial axis on the union of an

object’s scaled medial balls followed by an inverse scaling of the resulting axis.

Such techniques can provide more consistent results across input meshes without

requiring a large degree of parameter modification before converging on an acceptable

medial surface.

6.3.2 Hidden Surface

The medial surface of a mesh provides a proficient representation for the hidden sur-

face of fracture components. However, the technique results in a hollow representa-

tion of the mesh. The technique used by the Fracture Map Algorithm and extended

55

from [27] provides important advantages by utilizing identical topology of the original

mesh. Unfortunately, the technique also gives the input mesh an appearing of having

been a hollow object. For most applications this does not produce undesirable results,

however, applications that require a mesh to appear entirely solid will find the results

insufficient.

Alternatively, an approach that sacrifices the advantages of a manifold medial sur-

face can use proximity information from the Voronoi diagram to generate a hidden

surfaces only along contours that have been exposed by the fracturing process. The

Voronoi cells adjacent to an inner Voronoi vertex indicate vertices along the surface

mesh that share the same point along the medial surface. Vertices on the same side of

the surface mesh can be filtered out with (V0−M) · (V1−M)≤ η where Vi is a vertex

in the surface mesh associated with a Voronoi cell adjacent to the inner Voronoi vertex,

M, in question.

56

Bibliography

[1] T. Akenine-Moller, E. Haines, and N. Hoffman. Real-Time Rendering. AK Pe-

ters, 3rd edition, July 2008.

[2] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface re-

construction algorithm. In Proceedings of the 25th annual conference on Com-

puter graphics and interactive techniques, SIGGRAPH ’98, pages 415–421, New

York, NY, USA, 1998. ACM.

[3] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. In Proceedings of

the sixth ACM symposium on Solid modeling and applications, SMA ’01, pages

249–266, New York, NY, USA, 2001. ACM.

[4] N. Amenta and R. K. Kolluri. The medial axis of a union of balls. Computational

Geometry, 20(12):25 – 37, 2001. ¡ce:title¿Selected papers from the 12th Annual

Canadian Conference on¡/ce:title¿.

[5] Z. Bao, J.-M. Hong, J. Teran, and R. Fedkiw. Fracturing rigid materials. Visual-

ization and Computer Graphics, IEEE Transactions on, 13(2):370 –378, march-

april 2007.

[6] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for

convex hulls. ACM Trans. Math. Softw., 22(4):469–483, Dec. 1996.

57

[7] D. Bielser, P. Glardon, M. Teschner, and M. Gross. A state machine for real-time

cutting of tetrahedral meshes. In Computer Graphics and Applications, 2003.

Proceedings. 11th Pacific Conference on, pages 377–386, 2003.

[8] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA ’02,

pages 147–151, New York, NY, USA, 2002. ACM.

[9] J. Bloomenthal and C. Lim. Skeletal methods of shape manipulation. In Pro-

ceedings of the International Conference on Shape Modeling and Applications,

SMI ’99, pages 44–, Washington, DC, USA, 1999. IEEE Computer Society.

[10] H. Blum. A Transformation for Extracting New Descriptors of Shape. In

W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form,

pages 362–380. MIT Press, Cambridge, 1967.

[11] H. Blum. Biological shape and visual science (part I). Journal of Theoretical

Biology, 38:205–287, 1973.

[12] J. Brandt. Convergence and continuity criteria for discrete approximations of

the continuous planar skeleton. CVGIP: Image Understanding, 59(1):116 – 124,

1994.

[13] C. D. Bruyns and S. Senger. Interactive cutting of 3d surface meshes. Comput-

ers and Graphics, 25(4):635 – 642, 2001. Intelligent Interactive Assistance and

Mobile Multimedia Computing.

[14] F. Chazal and A. Lieutier. The ”λ-medial axis”. Graph. Models, 67(4):304–

331, July 2005.

[15] B. Chazelle. Triangulating a Simple Polygon in Linear Time. In IEEE Symposium

on Foundations of Computer Science, pages 220–230, 1990.

58

[16] S. W. Choi and H.-P. Seidel. Hyperbolic hausdorff distance for medial axis trans-

form. Graphical Models, 63(5):369 – 384, 2001.

[17] T. Culver, J. Keyser, and D. Manocha. Exact computation of the medial axis of a

polyhedron. Computer Aided Geometric Design, 21(1):65 – 98, 2004.

[18] L. d. F. Da. Multidimensional Scale Space Shape Analysis. In Proc. International

Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging,

pages 214–217, Santorini, Greece, Sept. 1999.

[19] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and Image

Processing, 14(3):227 – 248, 1980.

[20] H. Delingette, S. Cotin, and N. Ayache. A hybrid elastic model allowing real-time

cutting, deformations and force-feedback for surgery training and simulation. In

Computer Animation, 1999. Proceedings, pages 70–81, 1999.

[21] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular

meshes using diffusion and curvature flow. In Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’99,

pages 317–324, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-

lishing Co.

[22] T. K. Dey and W. Zhao. Approximate medial axis as a voronoi subcomplex. In

Proceedings of the seventh ACM symposium on Solid modeling and applications,

SMA ’02, pages 356–366, New York, NY, USA, 2002. ACM.

[23] M. Foskey, M. C. Lin, and D. Manocha. Efficient computation of a simplified

medial axis. In Proceedings of the eighth ACM symposium on Solid modeling

and applications, SM ’03, pages 96–107, New York, NY, USA, 2003. ACM.

59

[24] S. Frisken-Gibson. Using linked volumes to model object collisions, deforma-

tion, cutting, carving, and joining. Visualization and Computer Graphics, IEEE

Transactions on, 5(4):333–348, 1999.

[25] T. Funkhouser. Polygonal meshes, Fall 2002.

[26] P. S. Heckbert. Survey of texture mapping. IEEE Comput. Graph. Appl., 6:56–67,

November 1986.

[27] M. Hisada, A. G. Belyaev, and T. L. Kunii. A skeleton-based approach for detec-

tion of perceptually salient features on polygonal surfaces. Computer Graphics

Forum, 21(4):689–700, 2002.

[28] H. Huy Viet, T. Kamada, and H. Tanaka. An algorithm for cutting 3d surface

meshes. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on, volume 4, pages 762 – 765, aug. 2006.

[29] B. Kajak. Improved algorithms for ear-clipping triangulation. PhD thesis, 2011.

[30] S. Kim, J. Park, and J. Park. Progressive mesh cutting for real-time haptic incision

simulator. In ACM SIGGRAPH ASIA 2010 Posters, SA ’10, pages 61:1–61:1,

New York, NY, USA, 2010. ACM.

[31] R. Kimmel, R. Malladi, and N. Sochen. Images as embedded maps and minimal

surfaces: Movies, color, texture, and volumetric medical images. Int. J. Comput.

Vision, 39:111–129, September 2000.

[32] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R. R. Martin. Feature sensitive mesh seg-

mentation. In Proceedings of the 2006 ACM symposium on Solid and physical

modeling, SPM ’06, pages 17–25, New York, NY, USA, 2006. ACM.

60

[33] L. Lam, S.-W. Lee, and C. Suen. Thinning methodologies-a comprehensive

survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

14(9):869–885, 1992.

[34] G. H. Meisters. Polygons Have Ears. The American Mathematical Monthly,

82(6):648–651, June 1975.

[35] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis representations for 3d

geometry. In ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 101:1–

101:10, New York, NY, USA, 2010. ACM.

[36] E. N. Mortensen and W. A. Barrett. Intelligent scissors for image composition.

In In Computer Graphics, SIGGRAPH Proceedings, pages 191–198, 1995.

[37] M. Muller, M. Teschner, and M. Gross. Physically-based simulation of objects

represented by surface meshes. In Computer Graphics International, 2004. Pro-

ceedings, pages 26 –33, june 2004.

[38] D. Nehab and H. Hoppe. Random-access rendering of general vector graphics. In

ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia ’08, pages 135:1–135:10,

New York, NY, USA, 2008. ACM.

[39] H.-W. Nienhuys and A. Frank van der Stappen. A surgery simulation supporting

cuts and finite element deformation. In W. Niessen and M. Viergever, editors,

Medical Image Computing and Computer-Assisted Intervention MICCAI 2001,

volume 2208 of Lecture Notes in Computer Science, pages 145–152. Springer

Berlin Heidelberg, 2001.

[40] J. F. O’Brien and J. K. Hodgins. Graphical modeling and animation of brit-

tle fracture. In Proceedings of ACM SIGGRAPH 1999, pages 137–146. ACM

Press/Addison-Wesley Publishing Co., Aug. 1999.

61

[41] S. Prohaska and H.-C. Hege. Fast visualization of plane-like structures in voxel

data. In Visualization, 2002. VIS 2002. IEEE, pages 29–36, 2002.

[42] C. Pudney. Distance-ordered homotopic thinning: A skeletonization algorithm

for 3d digital images. Computer Vision and Image Understanding, 72(3):404 –

413, 1998.

[43] Z. Qin, M. D. McCool, and C. Kaplan. Precise vector textures for real-time 3d

rendering. In Proceedings of the 2008 symposium on Interactive 3D graphics

and games, I3D ’08, pages 199–206, New York, NY, USA, 2008. ACM.

[44] I. Ragnemalm. The euclidean distance transform in arbitrary dimensions. In Im-

age Processing and its Applications, 1992., International Conference on, pages

290–293, 1992.

[45] M. Ramanathan and B. Gurumoorthy. A tracing algorithm for constructing me-

dial axis transform of 3d objects bound by free-form surfaces. In Shape Modeling

and Applications, 2005 International Conference, pages 226 – 235, june 2005.

[46] J. M. Reddy and G. M. Turkiyyah. Computation of 3d skeletons using a gen-

eralized delaunay triangulation technique. Computer-Aided Design, 27(9):677 –

694, 1995.

[47] J. Rhoades, G. Turk, A. Bell, A. State, U. Neumann, and A. Varshney. Real-time

procedural textures. In Proceedings of the 1992 symposium on Interactive 3D

graphics, I3D ’92, pages 95–100, New York, NY, USA, 1992. ACM.

[48] T. Saito and J. ichiro Toriwaki. A sequential thinning algorithm for three dimen-

sional digital pictures using the euclidian distance transform. In Proc. 9th SCIA,

pages 507–516, Uppsala, Sweden, June 1995.

62

[49] G. Sela, J. Subag, A. J. Lindblad, D. Albocher, S. Schein, G. Elber, and

G. Turkiyya. Real-time haptic incision simulation using fem-based discontin-

uous free form deformation. In In SPM 06: Proc. of the 2006 ACM symposium

on Solid and physical modeling, pages 75–84. ACM Press, 2006.

[50] E. Sherbrooke, N. Patrikalakis, and E. Brisson. An algorithm for the medial axis

transform of 3d polyhedral solids. Visualization and Computer Graphics, IEEE

Transactions on, 2(1):44–61, 1996.

[51] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. The hamilton-jacobi skele-

ton. In Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-

tional Conference on, volume 2, pages 828–834 vol.2, 1999.

[52] J. Smith, A. Witkin, and D. Baraff. Fast and controllable simulation of the shat-

tering of brittle objects. In In Graphics Interface, pages 27–34. Blackwell Pub-

lishing, 2000.

[53] D. Steinemann, M. A. Otaduy, and M. Gross. Fast arbitrary splitting of deform-

ing objects. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-

sium on Computer animation, SCA ’06, pages 63–72, Aire-la-Ville, Switzerland,

Switzerland, 2006. Eurographics Association.

[54] D. W. Storti, G. M. Turkiyyah, M. A. Ganter, C. T. Lim, and D. M. Stal. Skeleton-

based modeling operations on solids. In Proceedings of the fourth ACM sympo-

sium on Solid modeling and applications, SMA ’97, pages 141–154, New York,

NY, USA, 1997. ACM.

[55] A. Sud, M. Foskey, and D. Manocha. Homotopy-preserving medial axis sim-

plification. In Proceedings of the 2005 ACM symposium on Solid and physical

modeling, SPM ’05, pages 39–50, New York, NY, USA, 2005. ACM.

63

[56] R. Tam and W. Heidrich. Shape simplification based on the medial axis trans-

form. In Visualization, 2003. VIS 2003. IEEE, pages 481–488, 2003.

[57] R. E. Tarjan and C. J. V. Wyk. An o(n log log n)-time algorithm for triangulating

a simple polygon, 1988.

[58] K. C.-H. Wong, T. Y.-H. Siu, W. Tommy, Y. hang Siu, P. ann Heng, and H. Sun.

Interactive volume cutting, 1998.

[59] A. G. Ye and D. M. Lewis. Procedural texture mapping on fpgas. In Proceed-

ings of the 1999 ACM/SIGDA seventh international symposium on Field pro-

grammable gate arrays, FPGA ’99, pages 112–120, New York, NY, USA, 1999.

ACM.

[60] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh

deformations. In Proceedings of the eighth ACM symposium on Solid modeling

and applications, SM ’03, pages 247–253, New York, NY, USA, 2003. ACM.

[61] W. Zhao. Shape and medial axis approximation from samples. PhD thesis, 2003.

AAI3124420.

[62] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y. Shum. Texture-

montage: Seamless texturing of arbitrary surfaces from multiple images. ACM

Transactions on Graphics, 24(3):1148–1155, 2005.

64

	List of Tables
	List of Figures
	Introduction
	Background
	Polyhedral Surface Meshes
	Texture Mapping
	Medial Axis
	Triangulation

	Related Work
	Medial Axis Extraction
	Tracing Method
	Voxel-Based Method
	Voronoi-Based Method

	3-Dimensional Mesh Cutting Algorithms

	Fracture Map Algorithm
	Overview
	Terminology
	Fracture Edge Generation
	Fracture Point Matching
	Fracture Edge Resolution
	Triangulation
	Fracture Polygon Creation
	Convex Fracture Polygon Triangulation
	Concave Fracture Polygon Triangulation

	Fracture Component Segmentation
	Hidden Surface Generation
	Surface Stitching

	Results
	Implementation Details
	Example Fractures
	Buddha
	Bunny
	Cat
	Feline

	Experimental Setup
	Mesh Size
	Fracture Map Size
	Fracture Map Complexity

	Future Work
	Multithreading
	Fracture Map Complexity
	Medial Surface
	Noise Reduction
	Hidden Surface

	Bibliography

