342 research outputs found

    Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Full text link
    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as quadratic moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence

    A Mixed Mimetic Spectral Element Model of the Rotating Shallow Water Equations on the Cubed Sphere

    Full text link
    In a previous article [J. Comp. Phys. 357\mathbf{357} (2018) 282-304], the mixed mimetic spectral element method was used to solve the rotating shallow water equations in an idealized geometry. Here the method is extended to a smoothly varying, non-affine, cubed sphere geometry. The differential operators are encoded topologically via incidence matrices due to the use of spectral element edge functions to construct tensor product solution spaces in H(rot)H(\mathrm{rot}), H(div)H(\mathrm{div}) and L2L_2. These incidence matrices commute with respect to the metric terms in order to ensure that the mimetic properties are preserved independent of the geometry. This ensures conservation of mass, vorticity and energy for the rotating shallow water equations using inexact quadrature on the cubed sphere. The spectral convergence of errors are similarly preserved on the cubed sphere, with the generalized Piola transformation used to construct the metric terms for the physical field quantities

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Full text link
    We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.Comment: accepted versio

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201
    • …
    corecore