8 research outputs found

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Selected Papers from 2020 IEEE International Conference on High Voltage Engineering (ICHVE 2020)

    Get PDF
    The 2020 IEEE International Conference on High Voltage Engineering (ICHVE 2020) was held on 6–10 September 2020 in Beijing, China. The conference was organized by the Tsinghua University, China, and endorsed by the IEEE Dielectrics and Electrical Insulation Society. This conference has attracted a great deal of attention from researchers around the world in the field of high voltage engineering. The forum offered the opportunity to present the latest developments and different emerging challenges in high voltage engineering, including the topics of ultra-high voltage, smart grids, and insulating materials

    Resource-efficient algorithms and circuits for highly-scalable BMI channel architectures

    No full text
    The study of the human brain has for long fascinated mankind. This organ that controls all cognitive processes and physical actions remains, to this day, among the least understood biological systems. Several billions of neurons form intricate interconnected networks communicating information through through complex electrochemical activities. Electrode arrays, such as for EEG, ECoG, and MEAs (microelectrode arrays), have enabled the observation of neural activity through recording of these electrical signals for both investigative and clinical applications. Although MEAs are widely considered the most invasive such method for recording, they do however provide highest resolution (both spatially and temporally). Due to close proximity, each microelectrode can pick up spiking activity from multiple neurons. This thesis focuses on the design and implementation of novel circuits and systems suitable for high channel count implantable neural interfaces. Implantability poses stringent requirements on the design, such as ultra-low power, small silicon footprint, reduced communication bandwidth and high efficiency to avoid information loss. The information extraction chain typically involves signal amplification and conditioning, spike detection, and spike sorting to determine the spatial and time firing pattern of each neuron. This thesis first provides a background to the origin and basic electrophysiology of these biopotential signals followed by a thorough review of the relevant state-of-the circuits and systems for facilitating the neural interface. Within this context, novel front-end circuits are presented for achieving resource-constrained biopotential amplification whilst additionally considering the signal dynamics and realistic requirements for effective classification. Specifically, it is shown how a band-limited biopotential amplifier can reduce power requirements without compromising detectability. Furthermore through the development of a novel automatic gain control for neural spike recording, the dynamic range of the signal in subsequent processing blocks can be maintained in multichannel systems. This is particularly effective if now considering systems that no longer requiring independent tuning of amplification gains for each individual channel. This also alleviates the common requirement to over-spec the resolution in data conversion therefore saving power, area and data capacity. Dealing with basic spike detection and feature extraction, a novel circuit for maxima detection is presented for identifying and signalling the onset of spike peaks and troughs. This is then combined with a novel non-linear energy operator (NEO) preprocessor and applied to spike detection. This again contributes to the general theme of achieving a calibration-free multi-channel system that is signal-driven and adaptive. Another original contribution herein includes a spike rate encoder circuit suitable for applications that are not are not affected by providing multi-unit responses. Finally, spike sorting (feature extraction and clustering) is examined. A new method for feature extraction is proposed based on utilising the extrema of the first and second derivatives of the signal. It is shown that this provides an extremely resource-efficient metric than can achieve noise immunity than other methods of comparable complexity. Furthermore, a novel unsupervised clustering method is proposed which adaptively determines the number of clusters and assigns incoming spikes to appropriate cluster on-the-fly. In addition to high accuracy achieved by the combination of these methods for spike sorting, a major advantage is their low-computational complexity that renders them readily implementable in low-power hardware.Open Acces

    Future Trends in Advanced Materials and Processes

    Get PDF
    The Special Issue “Future Trends in Advanced Materials and Processes” contains original high-quality research papers and comprehensive reviews addressing the relevant state-of-the-art topics in the area of materials focusing on relevant or innovative applications such as radiological hazard evaluations of non-metallic materials, composite materials' characterization, geopolymers, metallic biomaterials, etc

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Molecular phylogeny of horseshoe crab using mitochondrial Cox1 gene as a benchmark sequence

    Get PDF
    An effort to assess the utility of 650 bp Cytochrome C oxidase subunit I (DNA barcode) gene in delineating the members horseshoe crabs (Family: xiphosura) with closely related sister taxa was made. A total of 33 sequences were extracted from National Center for Biotechnological Information (NCBI) which include horseshoe crabs, beetles, common crabs and scorpion sequences. Constructed phylogram showed beetles are closely related with horseshoe crabs than common crabs. Scorpion spp were distantly related to xiphosurans. Phylogram and observed genetic distance (GD) date were also revealed that Limulus polyphemus was closely related with Tachypleus tridentatus than with T.gigas. Carcinoscorpius rotundicauda was distantly related with L.polyphemus. The observed mean Genetic Distance (GD) value was higher in 3rd codon position in all the selected group of organisms. Among the horseshoe crabs high GC content was observed in L.polyphemus (38.32%) and lowest was observed in T.tridentatus (32.35%). We conclude that COI sequencing (barcoding) could be used in identifying and delineating evolutionary relatedness with closely related specie

    Crab and cockle shells as heterogeneous catalysts in the production of biodiesel

    Get PDF
    In the present study, the waste crab and cockle shells were utilized as source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shells are calcium carbonate which transformed into calcium oxide upon activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be catalyst amount, 5 wt.% and methanol/oil mass ratio, 0.5:1. The waste catalysts perform equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to five times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity
    corecore