166 research outputs found

    Variational integrators for stochastic dissipative Hamiltonian systems

    Get PDF

    Stochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems

    Get PDF
    Stochastic variational integrators for constrained, stochastic mechanical systems are developed in this paper. The main results of the paper are twofold: an equivalence is established between a stochastic Hamilton-Pontryagin (HP) principle in generalized coordinates and constrained coordinates via Lagrange multipliers, and variational partitioned Runge-Kutta (VPRK) integrators are extended to this class of systems. Among these integrators are first and second-order strongly convergent RATTLE-type integrators. We prove order of accuracy of the methods provided. The paper also reviews the deterministic treatment of VPRK integrators from the HP viewpoint.Comment: 26 pages, 2 figure

    Discrete mechanics and variational integrators

    Get PDF
    This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge–Kutta schemes are presented

    Variational Integrators and Generating Functions for Stochastic Hamiltonian Systems

    Get PDF
    In this work, the stochastic version of the variational principle is established, important for stochastic symplectic integration, and for structure-preserving algorithms of stochastic dynamical systems. Based on it, the stochastic variational integrators in formulation of stochastic Lagrangian functions are proposed, and some applications to symplectic integrations are given. Three types of generating functions in the cases of one and two noises are discussed for constructing new schemes

    R-adaptive multisymplectic and variational integrators

    Get PDF
    Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this paper we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. Numerical results for the Sine-Gordon equation are also presented.Comment: 65 pages, 13 figure

    Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems

    Get PDF
    The purpose of this work is twofold. First, we demonstrate analytically that the classical Newmark family as well as related integration algorithms are variational in the sense of the Veselov formulation of discrete mechanics. Such variational algorithms are well known to be symplectic and momentum preserving and to often have excellent global energy behavior. This analytical result is veried through numerical examples and is believed to be one of the primary reasons that this class of algorithms performs so well. Second, we develop algorithms for mechanical systems with forcing, and in particular, for dissipative systems. In this case, we develop integrators that are based on a discretization of the Lagrange d'Alembert principle as well as on a variational formulation of dissipation. It is demonstrated that these types of structured integrators have good numerical behavior in terms of obtaining the correct amounts by which the energy changes over the integration run

    Multi-symplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise

    Full text link
    One- and multi-dimensional stochastic Maxwell equations with additive noise are considered in this paper. It is known that such system can be written in the multi-symplectic structure, and the stochastic energy increases linearly in time. High order discontinuous Galerkin methods are designed for the stochastic Maxwell equations with additive noise, and we show that the proposed methods satisfy the discrete form of the stochastic energy linear growth property and preserve the multi-symplectic structure on the discrete level. Optimal error estimate of the semi-discrete DG method is also analyzed. The fully discrete methods are obtained by coupling with symplectic temporal discretizations. One- and two-dimensional numerical results are provided to demonstrate the performance of the proposed methods, and optimal error estimates and linear growth of the discrete energy can be observed for all cases
    • …
    corecore