4,018 research outputs found

    Discrete moving frames on lattice varieties and lattice based multispace

    Get PDF
    In this paper, we develop the theory of the discrete moving frame in two different ways. In the first half of the paper, we consider a discrete moving frame defined on a lattice variety and the equivalence classes of global syzygies that result from the first fundamental group of the variety. In the second half, we consider the continuum limit of discrete moving frames as a local lattice coalesces to a point. To achieve a well-defined limit of discrete frames, we construct multispace, a generalization of the jet bundle that also generalizes Olver’s one dimensional construction. Using interpolation to provide coordinates, we prove that it is a manifold containing the usual jet bundle as a submanifold. We show that continuity of a multispace moving frame ensures that the discrete moving frame converges to a continuous one as lattices coalesce. The smooth frame is, at the same time, the restriction of the multispace frame to the embedded jet bundle. We prove further that the discrete invariants and syzygies approximate their smooth counterparts. In effect, a frame on multispace allows smooth frames and their discretisations to be studied simultaneously. In our last chapter we discuss two important applications, one to the discrete variational calculus, and the second to discrete integrable systems. Finally, in an appendix, we discuss a more general result concerning equicontinuous families of discretisations of moving frames, which are consistent with a smooth frame

    Hamiltonian evolutions of twisted gons in \RP^n

    Full text link
    In this paper we describe a well-chosen discrete moving frame and their associated invariants along projective polygons in \RP^n, and we use them to write explicit general expressions for invariant evolutions of projective NN-gons. We then use a reduction process inspired by a discrete Drinfeld-Sokolov reduction to obtain a natural Hamiltonian structure on the space of projective invariants, and we establish a close relationship between the projective NN-gon evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that {any} Hamiltonian evolution is induced on invariants by an evolution of NN-gons - what we call a projective realization - and we give the direct connection. Finally, in the planar case we provide completely integrable evolutions (the Boussinesq lattice related to the lattice W3W_3-algebra), their projective realizations and their Hamiltonian pencil. We generalize both structures to nn-dimensions and we prove that they are Poisson. We define explicitly the nn-dimensional generalization of the planar evolution (the discretization of the WnW_n-algebra) and prove that it is completely integrable, providing also its projective realization

    Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top

    Full text link
    We develop the theory of discrete time Lagrangian mechanics on Lie groups, originated in the work of Veselov and Moser, and the theory of Lagrangian reduction in the discrete time setting. The results thus obtained are applied to the investigation of an integrable time discretization of a famous integrable system of classical mechanics, -- the Lagrange top. We recall the derivation of the Euler--Poinsot equations of motion both in the frame moving with the body and in the rest frame (the latter ones being less widely known). We find a discrete time Lagrange function turning into the known continuous time Lagrangian in the continuous limit, and elaborate both descriptions of the resulting discrete time system, namely in the body frame and in the rest frame. This system naturally inherits Poisson properties of the continuous time system, the integrals of motion being deformed. The discrete time Lax representations are also found. Kirchhoff's kinetic analogy between elastic curves and motions of the Lagrange top is also generalised to the discrete context.Comment: LaTeX 2e, 44 pages, 1 figur

    Nonlinear d'Alembert formula for discrete pseudospherical surfaces

    Get PDF
    On the basis of loop group decompositions (Birkhoff decompositions), we give a discrete version of the nonlinear d'Alembert formula, a method of separation of variables of difference equations, for discrete constant negative Gauss curvature (pseudospherical) surfaces in Euclidean three space. We also compute two examples by this formula in detail.Comment: 21 pages, fixed typos (v3

    Integrable discretizations of some cases of the rigid body dynamics

    Full text link
    A heavy top with a fixed point and a rigid body in an ideal fluid are important examples of Hamiltonian systems on a dual to the semidirect product Lie algebra e(n)=so(n)Rne(n)=so(n)\ltimes\mathbb R^n. We give a Lagrangian derivation of the corresponding equations of motion, and introduce discrete time analogs of two integrable cases of these systems: the Lagrange top and the Clebsch case, respectively. The construction of discretizations is based on the discrete time Lagrangian mechanics on Lie groups, accompanied by the discrete time Lagrangian reduction. The resulting explicit maps on e(n)e^*(n) are Poisson with respect to the Lie--Poisson bracket, and are also completely integrable. Lax representations of these maps are also found.Comment: arXiv version is already officia
    corecore