3,587 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    AdamRTP: Adaptive multi-flow real-time multimedia transport protocol for Wireless Sensor Networks

    Get PDF
    Real-time multimedia applications are time sensitive and require extra resources from the network, e.g. large bandwidth and big memory. However, Wireless Sensor Networks (WSNs) suffer from limited resources such as computational, storage, and bandwidth capabilities. Therefore, sending real-time multimedia applications over WSNs can be very challenging. For this reason, we propose an Adaptive Multi-flow Real-time Multimedia Transport Protocol (AdamRTP) that has the ability to ease the process of transmitting real-time multimedia over WSNs by splitting the multimedia source stream into smaller independent flows using an MDC-aware encoder, then sending each flow to the destination using joint/disjoint path. AdamRTP uses dynamic adaptation techniques, e.g. number of flows and rate adaptation. Simulations experiments demonstrate that AdamRTP enhances the Quality of Service (QoS) of transmission. Also, we showed that in an ideal WSN, using multi-flows consumes less power than using a single flow and extends the life-time of the network

    Impact of Random Deployment on Operation and Data Quality of Sensor Networks

    Get PDF
    Several applications have been proposed for wireless sensor networks, including habitat monitoring, structural health monitoring, pipeline monitoring, and precision agriculture. Among the desirable features of wireless sensor networks, one is the ease of deployment. Since the nodes are capable of self-organization, they can be placed easily in areas that are otherwise inaccessible to or impractical for other types of sensing systems. In fact, some have proposed the deployment of wireless sensor networks by dropping nodes from a plane, delivering them in an artillery shell, or launching them via a catapult from onboard a ship. There are also reports of actual aerial deployments, for example the one carried out using an unmanned aerial vehicle (UAV) at a Marine Corps combat centre in California -- the nodes were able to establish a time-synchronized, multi-hop communication network for tracking vehicles that passed along a dirt road. While this has a practical relevance for some civil applications (such as rescue operations), a more realistic deployment involves the careful planning and placement of sensors. Even then, nodes may not be placed optimally to ensure that the network is fully connected and high-quality data pertaining to the phenomena being monitored can be extracted from the network. This work aims to address the problem of random deployment through two complementary approaches: The first approach aims to address the problem of random deployment from a communication perspective. It begins by establishing a comprehensive mathematical model to quantify the energy cost of various concerns of a fully operational wireless sensor network. Based on the analytic model, an energy-efficient topology control protocol is developed. The protocol sets eligibility metric to establish and maintain a multi-hop communication path and to ensure that all nodes exhaust their energy in a uniform manner. The second approach focuses on addressing the problem of imperfect sensing from a signal processing perspective. It investigates the impact of deployment errors (calibration, placement, and orientation errors) on the quality of the sensed data and attempts to identify robust and error-agnostic features. If random placement is unavoidable and dense deployment cannot be supported, robust and error-agnostic features enable one to recognize interesting events from erroneous or imperfect data

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto
    • …
    corecore