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Impact of Random Deployment on Operation and

Data Quality of Sensor Networks

Waltenegus Dargie

Chair of Computer Networks, Department of Computer Science, Technical University of
Dresden, 01062, Dresden, Germany

1. Summary

Several applications have been proposed for wireless sensor networks. The
application of Mainwaring et al. [15] gathers data from humidity, temper-
ature, barometric pressure, and light sensors to monitor the activities of
seabirds. Kim et al. [11] use wireless sensor networks for structural health
monitoring, in which the structural integrity of bridges and buildings is in-
spected using accelerometer sensors. The application of Werner-Allen et al.
[23] monitors active volcanoes using seismic and infrasonic sensors. The
underlying network was able to capture 230 volcano events in just over
three weeks. The application of Stoianov et al. [20] uses hydraulic and
acoustic/vibration sensors to monitor large diameter, bulk-water transmis-
sion pipelines. Likewise, wireless sensor networks are proposed for precision
agriculture [7, 6], healthcare [21], and underground mining [17].

Among the desirable features that inspired so many, one is the ease of
deployment. Since the nodes are capable of self-organization, they can be
placed easily in areas that are otherwise inaccessible to or impractical for
other types of sensing systems. In fact, some have proposed the deployment
of wireless sensor networks by dropping nodes from a plane, delivering them
in an artillery shell, or launching them via a catapult from onboard a ship
[2]. Arora et al. [3] report that an actual aerial deployment has been carried
out using an unmanned aerial vehicle (UAV) at a Marine Corps combat
centre in California – the nodes were able to establish a time-synchronized,
multi-hop communication network for tracking vehicles that passed along a
dirt road. While this has a practical relevance for some civil applications
(such as rescue operations), a more realistic deployment involves the careful
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planning and placement of sensors.
Even then, nodes may not be placed optimally to ensure that the network

is fully connected and high-quality data pertaining to the phenomena being
monitored can be extracted from the network. A good example is a wireless
sensor network that monitors gas (SO2, H2S, NH3, etc.) pipelines in oil
refineries. One can consider two types of deployment: (1) area deployment,
and (2) spot deployment. In area deployment, the entire field is covered
by sensors, so that no “blind” spots will exist. This type of deployment is
suitable if one expects a leakage to occur anywhere in the field; but it is
expensive. In spot monitoring, specific spots in pipelines (such as bends and
joints) are considered more likely places for a leak to occur. Subsequently,
the nodes are placed at or near these spots. The second type of deployment
is more economical and feasible for many real-world applications.

Spot deployment, however, entails a physical as well as a logical random
distribution of nodes. Physical randomness is unavoidable because of the
irregularities of the pipelines. Since the bends and joints are not uniformly
distributed, the nodes will not be either. This may result in disconnection due
to the absence of intermediate nodes between two or more clusters of nodes.
Moreover, some nodes may exhaust their energy more quickly than others
because they are intensively used as vital relaying nodes. Logical randomness
occurs because of the mobility of the phenomena – once there is a gas leak, it
diffuses at a velocity the magnitude and direction of which depends on several
factors, including the direction of the wind and the density of the gas. Since
the nodes are placed based on the likelihood of leakage occurrence, some may
not be able to capture the mobility of the gas and may potentially deliver
imperfect or even erroneous observation.

In the literature, these problems are partially addressed through dense
deployments [26, 25, 22]. While this can be a plausible solution, it cannot
always be supported due to mobility or space constraints. For example, in
supply-chain management, containers house the items being monitored as
well as the sensor nodes [16]; in healthcare applications, patients or nurses
should not be burdened with or hindered by too many sensor nodes [19, 12].

This work aims to address the problem of random deployment through
two complementary approaches:

The first approach aims to address the problem of random deployment
from a communication perspective. It begins by establishing a comprehensive
mathematical model to quantify the energy cost of various concerns of a fully
operational wireless sensor network. Based on the analytic model, an energy-
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efficient topology control protocol is developed. The protocol sets eligibility
metric to establish and maintain a multi-hop communication path and to
ensure that all nodes exhaust their energy in a uniform manner.

The second approach focuses on addressing the problem of imperfect sen-
sing from a signal processing perspective. It investigates the impact of de-
ployment errors (calibration, placement, and orientation errors) on the qual-
ity of the sensed data and attempts to identify robust and error-agnostic
features. If random placement is unavoidable and dense deployment can-
not be supported, robust and error-agnostic features enable one to recognize
interesting events from erroneous or imperfect data.

1.1. Energy Model

Any strategy that aims to enhance the quality of sensed data should also
consider the energy cost it introduces into the network. Energy is a crucial
and scarce resource in wireless sensor networks. In most cases, it is costly
to recharge or replace batteries, and how energy is consumed can directly
affect the scope and usefulness of the network. For example, Chintalapudi
et al. [9] deploy a wireless sensor network inside a four-storey office building
to monitor the response of the building to a forced excitation. Likewise, Kim
et al. [11] deploy a wireless sensor network on the Golden Gate Bridge to
monitor the response of the structure to ambient excitations (movement of
vehicles and wind). In both cases, the researchers’ field observations sug-
gest that such networks are most useful for intermittent monitoring, because
of the significant power consumption during aggressive oversampling, which
was needed in order to compensate for high packet loss rates (an average
packet loss rate of 30% was observed in one of the deployments setting).
Subsequently, it is vital to bear in mind the scarcity of this resource when a
communication protocol is developed.

As one of the contributions of this work, a comprehensive and realistic
mathematical model of a fully operational wireless sensor network is devel-
oped. While work already exists on the modelling of the energy consumption
of wireless sensor networks, much of the focus has been on the link and net-
work layers [8, 14]. To the best knowledge of this author, this is the first
comprehensive model that takes aspects of the physical, link, network, and
application layers into account to fully quantify the energy cost of an oper-
ational network. The model takes toxic gas detection in an oil refinery as a
scenario, and defines the sensing task as a combination of periodic and event-
based reporting. The energy model, however, is by no means limited to toxic
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gas detection. It can be used to characterize and examine any event-based,
query-based, or periodic-sensing application.

As a periodic-sensing application, the network periodically reports the
concentration of H2S and NH3 to a remote control station. As an event-
based application, aggressive and repetitive reporting is supported when the
concentrations of these gases exceed certain thresholds. A flat topology in
which all of the nodes play the same role, i.e. both as sensing and as relay-
ing nodes, is assumed. The model enables to estimate the lifetime of such
networks; and the energy budget can be broken down into different concerns.
The model takes into account various aspects, including the network density,
the duty cycle, the size of the contention window of the media access con-
trol (MAC) protocol, the average number of intermediate hops, the message
diffusion and gradient creation strategy, and the number of leakage sources.

Moreover, the model enables to express and estimate the cost of network
management – self-organization, neighbour discovery, and periodic schedule
synchronization – as a separate concern from the sensing task (i.e., the sen-
sing, processing, and transfer of interesting events). As an example, the
model shows that synchronization of sleeping schedules and periodic neigh-
bour discovery in hybrid MAC protocols costs a disproportionate amount
of energy. This assertion is in agreement with the current implementation
of TinyOS1, the most widely used runtime environment in wireless sensor
networks. TinyOS implements B-MAC [18], which is based on an adaptive
preamble, instead of S-MAC [24], which, even though highly referenced in
the literature, is based on asynchronous sleeping schedule.

1.2. Topology Control

The random deployment assumption requires a robust and energy-efficient
topology control protocol to ensure that the network is connected regardless
of the way the nodes are distributed in the network. At the same time,
it is also important to ensure that nodes in the network have a fair share
of the packet forwarding and data aggregation task so that they exhaust
their energy in a uniform manner – this prevents the network from fragment-
ing prematurely. In contrast, most existing flat topology networks function
based on either flooding or gossiping strategies. While highly flexible, rout-
ing (topology) protocols based on these strategies are known for their energy

1As of November 24, 2009, the current version is TinyOS 2.1.0. Source:
http://tinyos.net/scoop/section/Releases.
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consumption. The topology control protocol (1) sets a limit on the maximum
number of neighbouring nodes with which a node should collaborate, and (2)
computes the optimal transmission distance to ensure that the network is
connected.

The topology protocol proposed in this work is based on the energy model
described in Section 1.1 and the work of Bhardwaj et al. [4]. Bhardwaj et al.
develop an optimal multi-hop path that maximizes network lifetime. Each
node in the network establishes a link with a node that is a characteris-
tic distance, dchar, away from it. This distance is the most energy-efficient
transmission distance and it is calculated by taking several parameters (the
channel’s path-loss index and the power consumption of the hardware com-
ponents of the transceiver) into account. However, the model makes two
essential assumptions: (1) there are intermediate nodes that are placed on
the straight line that connects a source node with the sink node; and (2)
there is always a relaying node that is a distance dchar away from a data
forwarding node. These two assumptions are difficult to satisfy. Therefore,
our proposed topology control defines eligibility metric for nodes that are
placed away from the straight line that connects a source node with the sink
node, and which may not satisfy the dchar assumption to participate in es-
tablishing a multi-hop link. The features of the topology control protocol are
summarized as follows:

1. it takes the limitation of a node’s hardware (the transceiver) and some
of the characteristics of the channel into account to define the optimal
communication distance;

2. it aims to optimize the energy consumption of any arbitrary multi-hop
link based on local knowledge, i.e., knowledge about neighbours; and

3. it defines eligibility metric to ensure that intermediate nodes are fairly
selected, so as to guarantee a uniform energy consumption throughout
the network.

The performance of the topology control protocol was evaluated with
respect to node degree, robustness, graph stretch factor, normalized en-
ergy dissipation as a function of node density, and variance in energy re-
serve. Compared to graph-based topology control protocols (based on the K-
neighbourhood, relative neighbourhood graph, or Gabriel graph), the topol-
ogy control protocol performs particularly well in that it allows nodes to
exhaust their energy in a more uniform manner. This saves the network
from fragmenting prematurely.
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1.3. Signal Processing

The problem of random deployment cannot be solved by simply design-
ing robust and energy-efficient communication protocols. Considering the
resource scarcity in wireless sensor nodes and the harsh environments in
which the networks operate, data may still be corrupted or lost, and nodes
may be displaced from their initial position or suffer from thermal agitations.
All of these factors contribute to the delivery of imperfect data. In the end,
the applications that consume the raw sensor data should decide how to deal
with imperfect sensing.

This work aims to complement communication protocols with effective
and efficient signal processing strategies. Its main contributions are a thor-
ough investigation into error-agnostic time and frequency domain features for
processing data from acoustic and accelerometer sensors. A close scrutiny
into the proposed applications reveals that acoustic and accelerometer sensors
are frequently employed in wireless sensor networks. For example, acoustic
sensors are used in human activity recognition [10], active volcano monitor-
ing [23], traffic automation [3], and pipeline monitoring [20]. Likewise, ac-
celerometer sensors are used in healthcare applications (Parkinson’s disease
and epilepsy) [13, 12], structural health monitoring [11], and supply-chain
management [16].

The investigation is categorized into feature extraction and scene recog-
nition. In the first case, the aim is to investigate the expressive power of a
large number of time and frequency domain features. Data from accelerom-
eter sensors representing the movements of people (slow acceleration) and
cars (fast acceleration) are investigated. Both quantitative and qualitative
analyses are performed to examine the existence of correlation between mea-
surements representing the same type of events (movements) under different
deployment settings. The investigation reveals that while most frequency
domain features are error-agnostic, time domain features such as correla-
tion coefficients are expressive if absolute acceleration values are considered.
Moreover, these types of features can be extracted locally. Nevertheless, the
analysis shows that features representing slow movements are in general are
very sensitive to deployment errors.

In the second case, the main aim is to investigate different types of pre-
processing configurations during feature extraction – sampling rate, sampling
duration (sample size), and frame overlap during short time Fourier transfor-
mation. Activity recognition (context recognition) is taken as an application
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in which Bayesian networks and Hidden Markov models are used as recog-
nition schemes. These schemes take as inputs the features extracted from
acoustic sensors to estimate higher-level human activities.

2. Organization

This compilation consists of five journal articles. The paper by Dargie
et al. (DAR09A) presents the results of the analytic model for the energy cost
discussed in section 1.1; it also establishes the foundation for the topology
control protocol presented in section 1.2.

The paper by Dargie et al. (DAR09B) presents the design and implemen-
tation of the topology control protocol. This paper is an extended version of
the paper that was presented at AINA 2009 conference (DAR09E).

The last three papers focus on the signal processing aspects discussed in
section 1.3. The paper by Dargie and Denko (DAR09C) focuses on the anal-
ysis of error-agnostic feature extraction. The paper by Dargie (DAR09D)
presents a detailed account of the pre-processing configurations during fea-
ture extraction, and the trade-off between scene (context) recognition and
processing time. Finally, the paper by Dargie and Tersch (DAR08A) presents
the recognition accuracy associated with a large number of everyday human
activities based on frequency domain features extracted from acoustic sen-
sors.

2.1. Contribution

It is very hard to draw a line that distinguishes my own contribution from
the contributions of the other co-authors in this compiled work. The papers
are results of intensive team work that extends over a period of three years.
Most of the co-authors were graduate students who wrote their theses under
my supervision. Therefore, only a high-level description of my contribution
can be provided.

In (DAR09A), I was responsible for defining the sensing task for toxic
gas detection, the topology of the network, and the communication proto-
cols. Moreover, I was responsible for the link-layer mathematical model. I
produced more than 50% of the paper.

In (DAR09B), my main contribution was in defining the scope and use-
fulness of the topology control protocol and in providing a comprehensive
analysis of the state-of-the-art. I also collaborated with Mr Mochaourab in
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developing the eligibility metric for the newly developed topology control
protocol. I contributed more than 30% of the paper’s content.

In (DAR09C), my main contribution was the selection of the time and
frequency domain features and the definition of the experimental setting. I
also participated during the analysis of the measurements. The accelerometer
data were collected by Mr Robert Krüger. I contributed more than 70% of
the paper’s content.

In (DAR09D), my contribution was the development of the adaptive
context-recognition architecture and the implementation of some of its com-
ponents. Mr Daniel Hofmann contributed by implementing the recognition
engine and by gathering and analysing the acoustic data.

In (DAR08A), my contribution was the design and implementation of the
conceptual framework for context recognition. Mr Tobias Tersch contributed
by setting up the Bayesian network and by computing the conditional prob-
abilities. I contributed about 60% of the paper’s content.
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Abstract Several applications have been proposed for wire-
less sensor networks, including habitat monitoring, struc-
tural health monitoring, pipeline monitoring, precision agri-
culture, active volcano monitoring, and many more. The en-
ergy consumption of these applications is a critical feasibil-
ity metric that defines the scope and usefulness of wireless
sensor networks. This paper provides a comprehensive en-
ergy model for a fully functional wireless sensor network.
While the model uses toxic gas detection in oil refineries
as an example application, it can easily be generalized. The
model provides a sufficient insight about the energy demand
of the existing or proposed communication protocols.

Keywords Wireless sensor networks · Energy-model ·
Energy-efficient protocols · Lifetime of a wireless sensor
network

1 Introduction

Several applications have been proposed for wireless sensor
networks. The application of Mainwaring et al. [12] gathers
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data from humidity, temperature, barometric pressure, and
light sensors for monitoring the activities of seabirds. Kim
et al. [10] use wireless sensor networks for structural health
monitoring, in which the structural integrity of bridges and
buildings is inspected using accelerometer sensors. The net-
works are tasked with measuring the response of a structure
to an ambient excitation (heavy wind or passing vehicles)
or a forced shake (using shakers or impact hammers). The
application of Werner-Allan et al. [17] monitors active vol-
cano using seismic and infrasonic sensors. The underlying
network was able to capture 230 volcano events just over
three weeks. The application of Stoianov et al. [15] uses hy-
draulic and acoustic/vibration sensors for monitoring large
diameter, bulk-water transmission pipelines.

The most prevalent concern in wireless sensor networks
is the limited lifetime. The nodes operate with exhaustible
batteries; and recharging or replacing these batteries, given
the sheer size of the network and the deployment settings, is
a significant hurdle. For example, because of the energy con-
straint, Kim et al. [10] suggest that wireless sensor networks
can only be used during occasional inspection of bridges and
buildings, thereby limiting their scope as well as usefulness.
Subsequently, almost all types of communication protocols
and data processing algorithms target efficient use of energy
and optimization of network lifetime as their design goal.

In this paper, we carefully analyse the energy cost of a
fully operational wireless sensor network. The application
we use for our analysis will be toxic gas detection in oil re-
fineries. We will consider highly referenced, energy-aware
protocols for establishing and running the network. We shall
give particular consideration to the link and network layer
as well as to the self-organization (neighbor discovery and
interest dissemination) aspects, as these claim a significant
portion of the energy budget. Finally, we shall provide com-
prehensive analytic and simulation models based on which
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mailto:chaoxj@gmail.com
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the lifetime of the network can be estimated. The models
take into account node density, distributed sleeping sched-
ules, multi-hop communication and time synchronization.

The rest of this paper is organized as follows: In Sect. 2,
we discuss related work; in Sect. 3 we will briefly discuss
toxic gas detection in refineries; in Sect. 4, we will establish
basic assumptions for the network model; in Sects. 5 and 6,
we will provide a comprehensive analysis and simulation of
the energy cost. Finally in Sect. 7, we will discuss our ex-
periences and observations and provide concluding remarks
and outline for future work.

2 Related work

Tseng [16] provide an analytic energy model for estimat-
ing the energy consumption of a wireless sensor network
that employs the S-MAC medium access control proto-
col [18]. The model takes the cost of control messages
(RTS/CTS/ACK/DIFS) and the duty cycle of the sleeping
schedule of individual nodes into account. The model at-
tempts to define and estimate the energy consumption of var-
ious operation modes. In [19], an analytic, integrated data-
link layer model is presented. The model enables to esti-
mate the energy cost of link layer protocols. The strength of
the model is in its capability to give insight about the effect
of a link layer decision on other layer concerns, including
channel assignment, rate of transmission, power and man-
agement. However, the framework does not offer a compre-
hensive understanding of the energy cost of the entire net-
work.

Feeney [6] propose an analytical model for examining
the energy cost of routing in a mobile ad hoc networks. The
work attempts to demonstrate the trade-off between energy
consumption and reliability. Two popular routing protocols
are chosen for the analysis: Dynamic Source Routing (DSR)
[13] and Ad hoc On-demand Distance Vector (AODV) [11].
These two protocols support routing in flat topology net-
works, with all nodes participating equally in the routing
process. Moreover, both protocols are on-demand protocols,
in which nodes discover and maintain routes as needed. DSR
heavily depends on the cache of network wide topology
information extracted from source routing headers, while
AODV is a destination-oriented protocol based on the dis-
tributed Bellman-Ford algorithm. Both protocols are adap-
tive for dynamic topology. Similar to other energy models,
the network interface has four possible energy consumption
states: transmitting, receiving, idle, and sleeping. The idle
mode is the default mode for ad hoc environment. The en-
ergy cost is calculated as a function of packet size. The unit
energy of a packet is decided by the sender, the intended re-
ceiver(s), and the nodes overhearing the message. Chao et al.
[4] report an initial result of this work, but its mathematical
model was not fully developed.

3 Toxic gas detection

The application we use to analyse the energy cost of the
communication protocols in wireless sensor networks is a
toxic gas detection application in oil refineries. There are
two reasons for choosing toxic gas detection: (1) Oil refiner-
ies cover extensive areas, requiring large scale sensing to
detect oil and gas leakages in pipelines. This fits into the
basic assumption that a wireless sensor network is made
up of hundreds and thousands of wireless sensing nodes.
(2) Presently, a good portion of the oil industry is replac-
ing cable based sensing systems by portable and wireless
devices which can easily be deployed and maintained. The
next evolution in toxic gas detection will be towards wire-
less sensor networks. For the detail description of the vari-
ous toxic gases that should be sensed, we refer our readers
to [4] and [5].

4 Network model

Our analysis and simulation of the network’s energy con-
sumption and lifetime is based on a network model. The
network model establishes the basic assumptions concern-
ing the network’s topology, the distribution and density of
nodes, and the way the network is connected. Moreover, it
defines the network’s sensing task.

Deployment refers to the way wireless sensor nodes are
placed in areas where the sensing task should be carried out.
This decision directly affects the quality of sensing as well
as the overall energy consumption of the entire network.
While there can be three basic monitoring strategies—spot,
area and fence—for toxic gas monitoring, spot monitoring
is the most suitable strategy [4].

Coverage is another significant performance metric. In
[2], it indicates how well a given area can be monitored by
the network. Even though there are some existing models for
estimating the number of sensors required to cover the en-
tire sensing field with a probability, p, of detection an event,
coverage is deployment dependent. For a spot monitoring
scenario, even though the whole area is not necessarily cov-
ered, all potential leakage sources are monitored.

As shown in Fig. 1, N nodes are distributed randomly
on a rectangular area A of size A = a × b. Without loss of
generality, we assume that a ≤ b. The node distribution can
be modelled as a two-dimensional Poisson distribution with
average density, λ. The probability of finding k nodes in A

is given by:

P(k nodes ∈ A) = eλA (λA)k

k! (1)

The connectivity figure speaks about the existence of a
communication link between a source anywhere in the net-
work and a single sink. In multi-hop communication, there
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Fig. 1 2D Poisson distributed node deployment

is at least one multi-hop path between a node and the sink
(base station). The probability that a network is connected,
i.e., all nodes can communicate with the sink either directly
or with the support of intermediate nodes, mainly depends
on the node density and the transmission range of individ-
ual nodes. If the nodes are assumed to be homogeneous, the
relationship between connectivity probability, transmission
range and node density is estimated by1 [3]:

p(conn) ∼= (1 − eλπr2
0 )n (2)

where p(conn) is the probability that the network is con-
nected; λ is the density of the network, n/A; ro is the thresh-
old transmission rage; and n � 1 is the number of deployed
nodes. The deployment scenario for our case is depicted in
Fig. 1. The spot monitoring strategy is complemented by
additional randomly deployed nodes for improved connec-
tivity. Each node has the same radio transmission range R,
and two nodes can communicate via a wireless link if their
Euclidean distance is less that the transmission range, i.e.,
d ≤ R. For simplification, fading and path efficiency are not
taken into account; we do not consider also the presence of
obstacles in the path of propagation.

Finally, the sensing task for which the network is de-
ployed determines the data traffic size in the network. For
toxic gas detection, there are two essential concerns: the
long and short term impact of toxic gases release. Hence,
every sensor node should periodically (a tunable parameter)
report the concentration of H2S and NH3 to a sink. This is
define as a normal case with a normal priority. In case of
a leakage that surpasses a threshold defined by the safety
board of the refinery (this is usually a concentration between
10 and 15 ppm, an alarm should be fired off within 30 sec-
onds. This is characterized as an abnormal condition with
high priority.

1This is without taking the border effect into account.

5 Energy model

In Sect. 4, we presented a number of factors that affect the
quality of sensing and the lifetime of a wireless sensor net-
work. In this section, we shall translate those factors into
quantifiable terms so that we can estimate the energy cost.
The model together with the sensing task description, and
the specification of the hardware devices and the communi-
cation protocols will be sufficient to estimate the lifetime.

The communication protocols we employ to establish the
wireless sensor network are the S-MAC [18], for medium
access control, and the Directed Diffusion [8], for support-
ing self-organization and routing. The justification for these
protocols is given in more detail elsewhere [4]. A more tech-
nical assessment of these protocols can be found in [20] and
[21].

Hop count is an essential performance parameter and in-
dicates how many hops a packet is relayed in average for
a given distance in a network. For a deterministic topology,
this hop-count estimation is a simple geometry problem. For
a random network model, however, a combination of sta-
tistics and probability theory is required. Fortunately, there
are many existing models already. To calculate the minimum
hop count, we determine the distance S between two random
nodes and divide it by the transmission range R. In the liter-
ature, the random distance formula [1] is widely adopted. It
is based on the calculation of the random distance distribu-
tion within a rectangular area:

E{S} = 1
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Taking E(S) as the expected distance between the source
and the destination in our random network, the lower bound
of the expected value of hop count can be expressed as:

Hmin = E{S}/R (4)

To achieve a more realistic analysis, transmission error
due to packet loss and collision should be included in the
energy model. Because the listening time in S-MAC is fixed,
a fixed contention window is better for coordination and
synchronization than an exponential back-off. However, a
fixed contention window can cause significant packet loss.
We used Bianchi’s model [7] to estimate packet loss due to
collision at the link layer. According to the model, the prob-
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Fig. 2 Possible intersections of two neighbor nodes

ability of successful transmission, psucc, can be calculated
as:

psucc = (λ − 1)τ (1 − τ)λ−2

1 − (1 − τ)λ−1
(5)

where λ refers to the network’s node density and τ =
2

(CW+1)
and CW is the carrier sensing contention window.

All data packets in S-MAC, except interest dissemina-
tion, are unicast and will cause RTS/CTS/ACK control over-
head. To estimate the energy cost of adaptive listening, it
is useful to estimate the number of neighbors which po-
tentially overhear the RTS/CTS message, i.e., the average
neighbors in enclosure of the sender and the receiver. This
can be calculated by first getting the overlaps of communi-
cation coverage between two random neighbors. When two
nodes becomes neighbors, their transmission circles inter-
sect, in which case Fig. 2 shows the two extreme scenarios.
The intersection area can be described as [14]:

2R2 cos−1
(

d

2R

)
− 1

2
d
√

4R2 − d2 (6)

where 0 ≤ d ≤ R and d is the Euclidean distance between
two nodes. Taking the assumption of the random Poisson
distribution of the nodes into account, then d is bound in
(0,R) with a uniform probability distribution. Accordingly,
d will be:

d = R

2
(7)

Then the average overlap of two circles can be described
by:

Ainter sec t ≈ 2.152R2 (8)

The enclosure area for neighbors of a sender or a receiver
is

A1 = 2πR2 − 2.152R2 ≈ 4.131R2 (9)

with

λ = N × πR2

a × b
(10)

And,

Nneighb = A1

a × b
× N ≈ A1

πR2
× λ = 1.314λ (11)

5.1 Energy consumption analytic model

For a thorough analysis of the energy model (from (12)
to (65)), the variables (parameters) listed in Table 1 and their
corresponding descriptions should be referred to. Additional
variables will be explained according to their context of use.

We propose two analytic models to estimate the energy
consumption of a toxic gas detection network. We call the
first model Pure Synchronization Energy Model (PSE) and
the other Full Application Energy Model (FAE). In PSE,
there will not be data transmission in the network; nodes
communicate with each other to perform synchronization
(i.e., exchanging sleeping schedules). Most existing S-MAC
based energy models assume that the whole network is
synchronized without actually considering the energy con-
sumed by the synchronization process. We present the PSE
model to provide a realistic picture of the contribution of
time synchronization on the overall energy consumption. In
the simulation section, we shall demonstrate that synchro-
nization and periodical neighbor discovery cost more energy
than data transmission. FAE models a fully functional net-
work in which both periodical and incidental data transmis-
sion and time synchronization are taking place.

5.1.1 Pure synchronization energy model

S-MAC carries out time synchronization in 4 steps: In the
first step, every node is initially active for syncp cycles,
waiting for the arrival of SYNC packet from other nodes.
The energy consumption of this phase is expressed as:

Elisten_sync = N × syncp × Tf rame × Pidle (12)

In the second step, nodes periodically resynchronize to
avoid clock drift. During this time, t , the number of attempts
every node sends SYNC packet is expressed as,

Nsync_sent_try = (
t/

(
syncp × Tf rame

) − syncp

)
(13)

Due to packet collision and loss, only a portion of these
packets will be successfully received:

Nsync_sent = Nsync_sent_try × psucc (14)

The energy consumed during sending SYNC packets at
this stage is given by:

Esync_per_node_sent = Etrans + Eidle + Esleep (15)

where

Etrans = Msync/Rdata_rate × Ptrans (16)
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Table 1 Variables definition
Variables Definition

Ptrans , Psleep , Precv , Pidle Energy consumption per time unit of four modes

Msync, MRT S , MCT S , Size of SYNC, RTS, CTS, ACK,

MACK , Minterest , Mdata Interest, and data Message

tsync_cw , tdata_cw Size of contention window

of SYNC and Data Message

tbackoff , tDIFS , tSIFS Size of backoff, DCF, Inter Frame Space

and Short Inter Frame Space

tidle Idle period of every transmission/reception

pair of one data packet

tadapt Adaptation time, frame length dependent

Inormal , Iabnormal Interest propagation frequency

for Normal and Abnormal case

inormal , iabnormal Normal and Abnormal event report interval

dreport_abnormal Report duration after a leak is detected

Rdata_rate Data rate

duty_cycle Duty cycle

Tf rame Frame length

psucc Probability of successful packet

transmission/reception

Rretry Max retry times

fsrch_cycle Frequency of neighbor Discovery

syncp The initial Synchronization period

Nneigh Average neighbors in enclosure

of sender and receiver

λ Network density

N Total number of nodes in an area, A

Nleak The number of nodes that detected leakage

Hmin Minimum hop count (Topology dependent)

And,

Eidle = Pidle × (Tf rame × duty_cycle

− Msync/Rdata_rate) (17)

Esleep = Psleep × Tf rame × (1 − duty_cycle) (18)

Esync_per_node_recv = (1 − λ) × (Erecv + Eidle_recv

+ Esleep_recv) (19)

The energy consumed during receiving the SYNC packets is
expressed as,

Erecv = (Msync/Rdata_rate × Precv) (20)

When a SYNC packet arrives at a receiving node, it ei-
ther succeeds or fails due to collision or channel error. Since
a failure reception consumes the same amount of energy as
a successfully received packet, we merge both scenarios to-
gether. In other words, all (λ − 1) neighbor nodes will re-
ceive the SYNC packet regardless of its usefulness. Then

total amount of energy consumed during periodical SYNC

packet sending and receiving is therefore calculated as:

Eperiod_sync_pure

= Nsync_sent_try × N × Esync_per_node_sent

+ Nsync_sent × N × Esync_per_node_recv (21)

In the third step, every node periodically performs neigh-

bor discovery by listening for the whole syncp cycles as de-

scribed in the first stage, i.e., for every syncp × fsrch_cycle

cycles. Note, however, that not all node enter into neigh-

bor discover phase at the same time since those nodes that

lose during contention for channel access will compete only

in the next contention cycle, after sending a SYNC packet.

Thus the periodical neighbor discovery will be delayed due

to collision.
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Enb_srch = N × syncp × psucc × Tf rame × Pidle

× t

Tf rame × syncp × fsrch_cycle

(22)

Finally, to calculate the energy consumption of transmit-
ting empty frames,2 first, we find out the number of empty
frames.

Nempty = (t/Tf rame − syncp − (t × psucc)

/(Tf rame × fsrch_cycle) − Nsync_sent_try

+ Nsync_sent × (λ − 1)) × N (23)

Here t/Tf rame gives the total number of frames per node
for the period, t . syncp is the probable duration of the ini-
tial synchronization time in which a node waits for SYNC
packet from other nodes. t

(Tf rame×fsrch_cycle)
is the neighbor

discovery frames; and Nsync_sent × λ expresses the num-
ber of frames for sending and transmitting periodical SYNC
packets. Subsequently, the expected energy consumption for
synchronization is expressed as:

Eempty = Nempty × Tf rame × (Pidle × duty_cycle

+ Psleep × (1 − duty_cycle)) (24)

The energy consumption for SYNC overhead without
data transmission is given by:

Esync_pure = Elisten_sync + Eperiod_sync_pure + Enb_srch

+ Eempty (25)

5.2 Full application energy model

In this model, the energy model contains two parts: the en-
ergy consumption due to synchronization and the energy
consumption due to data transmission. The four stages of
synchronization discussed in Sect. 5.1.1 apply for the Full
Application Energy Model as well. The amount of energy
consumed during listening for Sync packets and neighbor
discovery is the same as in the previous case. However, even
though both SYNC and data packets can be processed in the
same frame, in stage 2 of the synchronization stage, we cal-
culated only the energy for sending/receiving SYNC pack-
ets. The energy consumed during the remaining time can
be accounted for data transmission or receiving; or for idly
listening. Suppose Nsync_sent is the number of times every
node sends SYNC packets successfully and Nsync_sent_try

is the number of times a node broadcasts SYNC packets.

2Here we define empty frames as frames that contain scheduled idle
time only. In these frames, we need only calculate the energy consumed
during idle time.

The energy consumption during sending and receiving every
SYNC packet is given as follows:

Esync_per_node_sent

= Msync

Rdata_rate

× Ptrans

+ Pidle × (tsync_cw + tbackoff + tDIFS) (26)

Esync_per_node_recv

= (λ − 1) × Msync/Rdata_rate × Precv (27)

Because of the reason stated in step 2 of the PSE model,
we merge both scenarios together.

Eperiod_sync = Nsync_sent_try × N × Esync_per_node_sent

+ Nsync_sent × N × Esync_per_node_recv

(28)

Unlike stage 4 in Pure Synchronization Model, the empty
frames in this scenario are both data and SYNC packets
dependent; thus the total energy consumed during synchro-
nization is given as follows:

Esync = Elisten_sync + Eperiod_sync + Enb_srch (29)

Given the average neighbors in enclosure of two nodes,
the number of neighbors that overhear an RTS/CTS mes-
sage can be known.3 We use the psucc × Nneigh to denote
the number of nodes that will join adaptive listening. The
energy consumption due to nodes participating in an Adap-
tive Listening is given by:

Eadapt = (psucc × Nneigh × tadapt + tidle) × Pidle (30)

In One-phase pull of the Directed Diffusion routing pro-
tocol, there are no exploratory and reinforcement overheads.
One only needs to calculate the cost of flooding interest and
data transmission. In the Interest propagation phase, the sink
periodically sends interest to all nodes. The duration of a
period is relatively large. The successful transmission and
retransmission rate are described in Table 2.

α = psucc + (1 − psucc) × psucc × 2 + (1 − psucc)
2 × psucc

× 3 + · · · + (1 − psucc)
Rretry−1 × psucc × Rretry (31)

Based on the back off behavior of S-MAC, for every
transmission/reception pair of one data packet, the idle pe-
riod can be described as follows.

tidle = tdata_cw + tbackoff + tDIFS + 3tSIFS (32)

3There are also nodes that may not be able to hear an RTS/CTS mes-
sage.
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Table 2 Transmission times of
RTS Number of Send/Resend Send Times of

transmission times Possibility MRT S

1 psucc 1

2 (1 − psucc) × psucc 2

3 (1 − psucc)
2 × psucc 3

Rretry (1 − psucc)
(Rretry−1) × psucc Rretry

When a node finishes transmitting/receiving a packet, the
remaining time may not always fit to the scheduled active
and sleep time of the node, in which case the node has to
keep idle until the next active or sleep time arrives. Since
we already take the active period in one frame into account,
the extra idle time can be estimated by: (1 − duty_cycle) ×
Tf rame

2 . Accordingly, the energy consumption of interest
propagation can be expressed as:

Einterest_per_node = Eusef ul + Ewaste (33)

where

Eusef ul = Minterest /Rdata_rate × (Ptrans + psucc

× (λ − 1) × Precv) (34)

And,

Ewaste = (tDIFS + tdata_cw + tbackoff ) × Pidle

+ (1 + (λ − 1) × psucc) × (Pidle + Psleep) × 1

− duty_cycle) × Tf rame

2
(35)

Every interest packet is successfully transmitted with a
probability of psucc. This holds true for both normal and
abnormal conditions.

Enormal_set = Eabnormal_set = N × Einterest_per_node (36)

During a reporting phase, we have either a normal event
or an abnormal event. During a normal report, the H2S con-
centration is below 10 ppm. We first calculate the energy
consumption of a single event delivery path. Every packet
along a single path will be received Hmin times. It will be
forwarded to the next hop if the concentration is larger than
the max value in memory of the current node. The possibility
of every intermediate packet being successfully forwarded is
assumed to be 0.5. Thus,

Enormal_report_one_path

= Hmin × (EOH + Etrans + Ewaste) (37)

where

EOH = (Mdata + MRT S + MCT S + MACK)

/Rdata_rate × Precv (38)

And,

Etran = 0.5 × (Mdata + MRT S × α + MCT S

+ MACK)/Rdata_rate × Ptrans (39)

Ewaste = 0.5 × Eadapt × α + (Pidle + Psleep)

× (1 − duty_cycle) × Tf rame

2
(40)

The energy consumption during an abnormal case can
be calculated in a similar way. Based on the result of the
two phases above, we derive the energy consumption by N

nodes during time, t . This includes the energy consumption
of interest propagation phase and reporting phase:

Erouting_normal = t

Inormal

× Enormal_set + t

inormal

× Enormal_report_one_path × N (41)

Similarly, the energy consumption for the abnormal case
is expressed as follows:

Erouting_abnormal

= t

Iabnormal

× Eabnormal_set

+ dreport_abnormal

iabnormal

× Eabnormal_report_one_path × Nleak (42)

Here
dreport_abnormal

iabnormal
refers to the number of messages that a

leakage event keeps on reporting.

5.2.1 Energy for empty frames and missed part

As mentioned before, we now express the energy consumed
in idle time of empty frames that are not used during syn-
chronization or data transmission/reception during time t .
To estimate the number of empty frames, we calculate the
number of frames occupied in routing and synchronization
based on the analysis above. From the interest propagation
phase, we get the number of frames for both cases:

Nnormal_set = Nabnormal_set = N × λ (43)

The reporting frame is defined as

Nnormal_one_path = (1 + 0.5 × α) × Hmin (44)
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Fig. 3 Ratio among number of frames

Nabnormal_one_path = (1 + α) × Hmin (45)

Now with the above intermediate calculation, we derive
the number of frames required for data exchange:

Ndata = Fcomb + Fnormal + Fab (46)

where,

Fcomb = t

Inormal

× Nnormal_set

+ t

Iabnormal

× Nabnormal_set (47)

And,

Fnormal = t

inormal

× (N − 1) × Nnormal_one_path (48)

Fabnormal = dreport_abnormal

iabnormal

× Nleak × Nabnormal_one_path

(49)

Then with the number of frames for neighbor discovery
and SYNC packets exchanged, we compute at the n syn-
chronization stage, the number of frames for synchroniza-
tion:

Nsync_neighbor_discovery

=
(

syncp + t

(Tf rame × fsrch_cycle)
× psucc

)
× N (50)

Nsync_exchange

= (Nsync_sent_try + Nsync_sent × (λ − 1)) × N (51)

Nsync = Nsync_neighbor_discovery + Nsync_exchange (52)

Figure 3 shows the ratio among a number of frames used
for synchronization, data, or empty ϕ1 and ϕ2 are the num-
ber of frames that handle both SYNC and data packets.
While ϕ1 represents the overlap between frames of data and
neighbor discovery (the whole frame is in idle state), and
ϕ2 denotes the overlap between frames of data and common
SYNC packets exchange.

It is difficult to precisely determine how many frames a
node uses for both SYNC and data transmitting/receiving.

We divide the intersection between data and synchronization
into sub periods as ϕ1 and ϕ2 to decrease the uncertainty.
By adding frames on both payload and synchronization, we
can estimate the total frames produced by a node. This is
expressed as follows:

Nwork = Ndata + Nsync − ϕ1 − ϕ2 (53)

The total number of frames communicated during t is:

Ntotal = t/Tf rame × N (54)

So the number of empty frames can be calculated by sub-
tracting Nwork from Ntotal .

Nempty = Ntotal − Ndata − Nsync_neighbor_discovery

− Nsync_exchange + ϕ1 + ϕ2 (55)

Accordingly ,we get the energy consumed by empty
frames:

Eempty = Nempty × Tf rame × (duty_cycle × Pidle

+ (1 − duty_cycle) × Psleep) (56)

As we mentioned before, we only calculate the energy
for SYNC packets exchange till now, we need to add the
missing part here. From the Fig. 3, the Nsync_miss can be
calculated as follows:

Nsync_miss = Nsync_exchange − ϕ2 (57)

Thus

Esync_miss

= (Nsync_exchange − ϕ2)

× (Pidle × (Tf rame × duty_cycle − Msync/Rdata_rate)

+ Psleep × Tf rame × (1 − duty_cycle)) (58)

If we add Eempty and Esync_miss , we can get

Eempty + Esync_miss

= N + ×Tf rame × Nsleep_idle − (Nsync_exchange − ϕ2)

× (Pidle × Msync/Rdata_rate) (59)

With

N = Ntotal − Ndata − Nsync_neighbor_discovery + ϕ1 (60)

And,

Nsleepidle = duty_cycle × Pidle

+ (1 − duty_cycle) × Psleep (61)

ϕ1 ∈ [0,min(Ndata,Nsync_neighbor_discovery)] (62)

ϕ2 ∈ [0,min(Ndata,Nsync_exchange)] (63)
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Based on ϕ1 and ϕ2’s range, we could derive the up-
per bound and lower bound of the sum of Eempty and
Esync_miss . The distribution of ϕ1 and ϕ2 can be assumed
by a Binomial distribution with probability of 0.5, and with
a mean value of:

ϕ1 = 0.5 × min(Ndata,Nsync_neighbor_discovery) (64)

ϕ2 = 0.5 × min(Ndata,Nsync_exchange) (65)

And finally, taking all intermediate results into consider-
ation, the overall energy consumption of the network can be
summed up as follows:

Etotal = Erouting_normal + Erouting_abnormal

+ Esync + Eempty + Esync_miss (66)

6 Energy analysis

The simulation environment we use is the NS-2 simulator,
version 2.31 [9]. Our simulation model combines S-MAC
and the one-phase-pull algorithm in Directed Diffusion. In
the S-MAC protocol, we enable the adaptive listening and
global schedule functionalities. The default duty cycle is set
at 10 percent, and the data rate is 2 Mbps for the message
sizes we proposed in Sect. 5, the S-MAC frame length will
be 1.31 seconds with 10% duty cycle. Error encoding ra-
tio is set at 2, as specified by the default setting in S-MAC.
The data message size is 136 bytes and interest size is 96
bytes. We set the interest refresh time as 300 seconds and
changed the ping application to report normal data once in
600 seconds, the event generation time is randomly selected.
For every abnormal event, it generates 6 abnormal messages
repeatedly within 10 s.

We use the topology of randomly distributed nodes in an
area of 100 m × 70 m. One of these nodes is specified as the
sink node. The simulation duration is 600 seconds. All the
other parameter values are described in Table 3.

We change the network density and compare the energy
consumption for both the PSE and FAE models. There is a
linear relationship between the density and energy consump-
tion (Fig. 4). The analytic result for both PSE and FAE mod-
els is remarkably similar to the simulation results, for den-
sity below 45. The small deviation in the energy consump-
tion of the two scenarios illustrates that the synchronization
cost is high when S-MAC is used. There are two reasons for
this: (1) S-MAC repeatedly uses SYNC packets to synchro-
nize the local timer and discover new neighbors during the
entire lifetime; and (2) A node relentlessly attempts to send
out a broadcast SYNC packet even if it loses a contention.
For a high density networks, efficient packet transmission
can be achieved by tuning parameters such as the event gen-
eration interval and the interest propagation duration.

Fig. 4 Energy consumption increases when network density becomes
higher

Fig. 5 Energy consumption as duty cycle changes

6.1 Model validation and duty cycle

Figure 5 shows how energy consumption can be affected by
the duty cycle of the MAC protocol. We varied the duty cy-
cle of two different network densities: 14 and 35. The ana-
lytic results of the FAE model are similar to the simulation
results with the deviation of less than 10% for both densities.
The energy consumption increases due to the additional ac-
tive time as well as collision and synchronization overhead.
Because in S-MAC the listen time is fixed, when duty cycle
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Table 3 Simulation parameter
list Basic parameter Default value

Control message RTS/CTS/ACK 10 bytes

SYNC message 9 bytes

Interest message 96 bytes

Data message 136 bytes

Interest propagation frequency 300 seconds

Normal event report interval 300 seconds

Abnormal event report interval 10 seconds

Abnormal event report period 60 seconds

Abnormal event occurrence ratio 1%

Duty cycle 10%

Bandwidth 2 Mbps

Network density λ

Minimum hop counts Topology dependent

S-MAC Frame length Message size, duty cycle and Backoff Window

Adaptation time Frame length dependent

Max retry times 5

Frequency of neighbor Discovery 22

Synchronization period 10

Nominal transmission Range 40 m

Sensing field 7000 m2 (70 m × 100 m)

Transmission power 31.2 mW

Receive/idle power 22.2 mW

Radio@sleep status 3 µW

Fig. 6 Energy consumptions varies along with the leakage sources Fig. 7 Collision varies as number of leakage sources increases
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Fig. 8 Data aggregation impact on energy consumption

varies, the frame length will vary adversely. Therefore when
the duty cycle increases, the whole time will be divided into
more frames, which will result in SYNC packet overhead in-
crease. This in turn affects SYNC packets broadcasting in-
terval and the neighbor discovery, both of which are frame
size dependent.

Figure 6 denotes the relationship between energy con-
sumption and the number of leakage sources. We simulated
with three different densities: 14, 29, 43. When the leakage
source increases from 1 to 15 with an increasing step of 5,
the energy consumption rises in steps, but there is anom-
alous reduction in the simulation curves. The anomalous re-
duction becomes more obvious when network density in-
creases. When abnormal events dominate data transmission
for a certain period of time, the synchronization as well as
neighbor discovery will be delayed, and SYNC packet col-
lisions will be reduced temporarily and eventually results in
a transient energy decrease. The relationship between colli-
sion and the number of leakage sources is shown in Fig. 7.
In Fig. 6 and Fig. 7, these curves reveal similar behavior.
In Fig. 6, though our analytical result approaches the simu-
lation result, the analytical energy consumption raises only
slightly in a liner fashion, without any anomalous point. This
is because energy consumption in the analytical model is
more ideally calculated. Though it considers the collision
possibility in a statistical way, the collisions with other net-
work behaviors such as synchronization and message queu-
ing were difficult combine.

One way of reducing the data traffic in the network is by
forwarding a report from a node only if the maximum H2S
and NH3 concentrations it reports is greater than all the other
nodes in its neighborhood. This requires data aggregation,

but it reduces the traffic in the entire network significantly.
Figure 8 depicts the considerable energy saving under all
network densities.

7 Conclusions

Both in the analysis and simulation case, as the density of
the network increases, the energy utilization of the network
increases also. One reason for this is that in a large den-
sity networks, the power consumption of each node at the
link layer is significantly high due to collision. S-MAC be-
gins applying the sleep schedule for each node only once
the nodes have exchanged their schedule. Synchronization
claims a significant amount of energy. The disproportional
energy distribution even during normal sensing makes S-
MAC unsuitable for toxic gas detection. Moreover, during
simulation, we have observed that S-MAC’s performance
deteriorates considerably when the number of nodes in the
sensing field exceeded 40. The Bianchi model for computing
the energy cost during contention assumes saturation traffic,
in which all the nodes have data to send at all times. While
this is plausible for normal, periodic reports, it is unsuitable
for irregular and bursty traffics. The energy cost of normal
and abnormal events propagation decreases exponentially as
the interest propagation interval increases. Interest has to be
disseminated in the network to update routing paths and to
define a new sensing task. Interest dissemination prompts
gradient computation and reinforcement. The longer the in-
terval, the lower the energy cost. On the other hand, choos-
ing a long interest propagation interval implies a potential
increase in latency of event propagation, since old paths
might be broken for a number of reasons, as such is the case
when some nodes exhaust their energy more quickly than
others. There is a trade-off between latency and energy cost.

In our energy model, we have not considered the energy
required for local signal processing, such as the energy con-
sumed by the analog-to-digital (ADC) converter to produce
a high resolution senor data. In reality, however, the ADC
consumes a significant amount of power. In the future, we
will accommodate this fact to assess the feasibility of using
existing off-the-shelf hardware for building wireless sensor
networks.
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Abstract

The question of fairness in wireless sensor networks is not studied very well.
It is not unusual to observe in the literature fairness traded for low latency or
reliability. However, a disproportional use of some critical nodes as relaying
nodes can cause premature network fragmentation. This paper investigates
fairness in multi-hop wireless sensor networks and proposes a topology control
protocol that enables nodes to exhaust their energy fairly. Moreover, it
demonstrates that whereas the number of neighboring nodes with which a
node should cooperate depends on the density of the network, increasing this
number beyond a certain amount does not contribute to network connectivity.

1. Introduction

In wireless sensor networks, communication (receiving as well as trans-
mitting) consumes a significant amount of energy. Since routing involves
several nodes, its energy cost outweigh the cost of data processing. As to
the exact number of nodes that should participate in a routing task, so far
the research community is not in agreement. There are those who argue that
multi-hop communication is preferred over single hop communication. One
of the premises for this assumption is that as the distance of communication
increases, the probability of getting a line-of-sight (LOS) link decreases, in
which case the path loss index can no longer be assumed to be 2 but between
2 and 4, and in some cases, even 6. By reducing the distance of communica-
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Figure 1: A topology control protocol trimms off inefficient links from a disk graph G (left)
to produce an optimal topology T (right).

tion to a shorter length, it is possible to keep a LOS link, which significantly
reduces the transmission cost.

On the other hand, there are those (for example Ephremides [7] and
Haenggi [9]) who argue that this is an oversimplified analysis that does
not take into account the cost of routing overhead, delay, channel cod-
ing/decoding, end-to-end reliability, efficiency of transmission power ampli-
fiers, etc., and advocate long-hop routing. For densely and randomly de-
ployed wireless sensor networks (such as in pipelines with several turns in
short distances), short-hop routing is quite unsuitable. Apparently, long dis-
tance communication has also its disadvantages besides path loss, including
interference.

A topology control protocol is necessary to set an upper and lower bound
on the number of links that can be active in the network. This ensures that
the network remains connected and its lifetime is optimized. Moreover, it
guarantees an available link to a higher-level routing protocol that is defined
based on an application-specific metric (such as minimum hop, minimum
delay, minimum energy consumption, and maximum available power). Fig-
ure 1 displays how a topology control protocol can be employed to trim off
inefficient links in a wireless (sensor) network.

In wired networks, the way the network elements are physically intercon-
nected directly influences the network’s topology. Routing protocols take this
fact into account when routes are computed. In wireless networks, however,
as long as the communication range suffices, essentially all nodes can estab-
lish a link with each other, creating a mesh-topology network [7], which is
not energy efficient. Another problem is that during the operation of the net-
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work, some nodes may exhaust their energy more rapidly than others while
others may become dysfunctional. A topology control protocol deals with
all these dynamics and ensures that the network is connected with energy
efficient links.

The main challenge is to develop a topology control strategy that is sim-
ple, scalable, and less resource intensive. Ideally, it should function based
on local information only. In most cases, additional knowledge such as the
placement and relative position of a node to the sink node can be obtained
from layout information or from blueprints; and can be used to determine
relative neighborhood. We propose a localized algorithm that enables nodes
to autonomously create and maintain energy-efficient links. The protocol
defines proximity and eligibility metrics to ensure network connectivity and
to optimize lifetime.

The paper is organized as follows: First, we discuss related work in section
2. In section 3, the network model and the basic assumptions of the model
are outlined. In section 4, the theoretical concept of the fair and efficient
topology control (FETC) protocol is presented. In section 5, the eligibility
criterion for ensuring a fair utilization of energy in wireless sensor networks
is discussed. In section 6, the algorithm for executing the topology control
protocol is presented. In section 7, a brief summary of the mathematical
descriptions and algorithms of the protocols that are used for comparisons
are presented. In section 8, the simulation settings and results are discussed.
Finally, in section 9, we provide concluding remarks and future work.

2. Related Work

Most existing approaches to topology control apply computational geom-
etry techniques and proximity graphs to build sparse, but connected links.

Bhardwaj et al. [18], provide a model for computing the most energy
efficient number of hops to relay data from any source in a linear topology
network to a fixed base station. The number of hops depends on a char-
acteristic distance and the distance of the source to the base station. The
characteristic distance itself depends on the propagation environment and
radio parameters. We extend this approach to support random deployment
in a 2-dimensional plain. Jeng et al. [12] use Neighborhood Graphs to com-
pute adjustable neighborhood regions and to optimize the node degree. A
similar work that optimizes a node degree is proposed in [20] - their con-
structed graph is a subgraph of the Relative Neighborhood Graph [11] and
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the protocol uses local information (signal strength information). In both
cases, fairness in energy dissipation is not addressed.

Wattenhofer et al. [19] propose a topology control protocol to dynam-
ically adjust transmission power based on local decisions. Accordingly, a
node increases its transmission power until it finds a neighbor node in every
direction. But the question how a node trims off inefficient links in case it
discovers several neighbors is not addressed.

The topology control protocol of Kung et al. [13] selects suitable com-
munication nodes, adjusts service loads of critical nodes, and manages sleep-
ing schedules. The protocol principally divides the topology operation into
topology formation phase and topology adjustment phases. In the topol-
ogy formation phase, a link is set up while during the topology adjustment
phase, the links are adjusted with an optimal balance of critical nodes in the
backbone.

Our strategy is different from the strategies above in the following specific
features:

1. It takes the limitations of a node’s hardware (the transceiver) and chan-
nel characteristics into account to compute the most optimal commu-
nication distance;

2. It aims to optimize the energy consumption of any arbitrary multi-hop
link based on local knowledge, i.e., knowledge about neighbors; and,

3. Defines an eligibility metric to ensure that relying nodes are fairly se-
lected. This guarantees a fairly uniform energy consumption through-
out the network.

3. Network Model

Given a flat topology network1 of n nodes placed randomly in the Euclid-
ian plane, let V be the set of vertices representing the nodes and E be the
set of undirected edges representing the communication links between them.
The graph of the network is denoted as G = (V, E). In addition, let gdigraph

represent the digraph2 of the network with Edigraph, the set of undirected
edges.

1In a flat topology network, all nodes play the same roles, both as sensing and as
relaying nodes.

2A digraph is a graph with directed edges.
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Each node i, i ∈ V , has a unique identity, idi, and is represented in the
Euclidian plane with its coordinates. A directed edge between two nodes i
and j is denoted as [i→ j], [i → j] ∈ Edigraph, and has a distance of d(i, j).
An undirected edge between i and j is denoted as [i ↔ j], [i ↔ j] ∈ E.
This paper assumes a random distribution of the nodes in a wide rectangular
field of deployment. One way to model this type of deployment is by using
a 2-dimensional Poisson point process [4]. The points are equally likely to
occur anywhere within a bounded region A, and the probability of finding n
nodes in A is given as:

Pr[n nodes in A] = e−λ · (λ ·A)2

n!
(1)

where λ is the Poisson process density which is related to the density of
the network. The set of neighbors of i, with which i is directly connected
are denoted as the set N(i) and defined as N(i) : [i↔ j] ∈ Edigraph. Let
NL(i) be the neighbor table list in which the state of each i in N(i) is
stored. NL(i) contains the identity, energy reserve, eligibility parameters,
and required transmission power to reach each neighbor. Each node has a
maximum transmission power of Pt−max and can assign varying transmission
powers corresponding to each neighboring node. The transmission power
from node i to j is denoted as Pt−ij. The residual energy of a node i at time
t is denoted as et

i. Furthermore, all nodes start with equal initial battery
capacity E.

Communication in the network takes place over a wireless medium in
which the transmitted signal experiences an attenuation over distance. More-
over, during propagation, the electromagnetic waves experience losses in the
form of reflection, diffraction, and scattering. The received signal power,
in general, decays as a power law function of the distance separating the
transmitter and the receiver. Thus, the received signal power can be written
as:

Prx ∝
Ptx

dγ
(2)

where γ is the path loss exponent and indicates the rate at which the path
loss increases with distance. Depending on the presence or absence of a line
of sight link, different values are assigned to γ.

The power consumption model of the radio transceiver used in this pa-
per is adopted from [18, 10], which considers varying transmission powers
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to meet minimum receiver sensitivity requirements. This assumption is jus-
tified, since most existing transceivers support variable transmission power
levels in several discrete steps. An example of such a transceiver is the Texas
Instruments Chipcon, CC2420 [1]. Moreover, the model includes the energy
consumed in signal reception which, in today’s transceivers, is a considerable
amount. A transceiver’s energy consumption is mainly accounted for digital
signal processing (DSP) and the energy consumed by the front end circuit
and the power amplifier/voltage amplifier. The power consumed in trans-
mitting a message at r bits/s over a distance of d meters can be calculated
as [10]:

PT (d) = (α11 + α2 · dγ)r (3)

And the power consumed by the receiver to receive this message is given
as [10]:

PR = (α12) · r (4)

The variables α11 and α12 are constants and depend on several factors,
such as the digital coding and decoding mechanisms; modulation and demod-
ulation, and pulse shaping filters. α2 depends on the antenna characteristics,
channel conditions, amplifier efficiency, and receiver sensitivity.

Two widely used propagation models are the Friss Free Space model (γ =
2) and the Two-Ray Ground propagation model (γ = 4). Depending on
the separation distance between the communicating nodes, the propagation
model is chosen. A cross-over distance which determines this selection is
defined in [10]. If the distance is below this cross-over distance (dcrossover),
then the free space propagation model is taken, else the two-ray ground
propagation model is used. The received signal strength as a function of
distance is formulated as [15]:

Prx(d) =
PtxGtGrλ

2

(4π)2d2L
(5)

where d is the distance between the transmitter and the receiver in meters;
Ptx and Prx are the transmitted and received power, respectively; Gt and
Gr are the corresponding gains of the transmitting and receiving antenna;
ht and hr are the height of the transmitting and receiving antenna above
ground; λ is the wavelength of the carrier signal; and L is the system loss
factor not related to propagation.
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Where there is no line-of-sight link between the transmitter and receiver,
the Two-Ray Ground model is more accurate than the Friss Free Space
model. The received power at a distance d from the transmitter can be
expressed as [15]:

Prx(d) =
PtxGtGrh

2
t h

2
r

d4
(6)

The cross-over distance is formulated as [10]:

dcrossover =
4π
√

Lhrht

λ
(7)

4. Fair and Efficient Topology Control

In this section, we establish the basic model of the topology control pro-
tocol. The model defines weighted relaying regions in a 2-dimensional plane
for any arbitrary node in the network. The weighted regions specify the
degree of eligibility of a neighboring node to become a relaying node. The
eligibility criteria sets a trade-off between minimizing the overall energy cost
of a multi-hop communication; and the minimization of disconnected links
that occur due to disproportionate energy consumption by individual nodes.
The eligibility of each node is computed by taking only local information into
account.

4.1. Background

In [18], Bhardwaj et al. sets a theoretical upper bound on the lifetime
of a linear-topology wireless sensor network that supports multi-hop com-
munication. Their model calculates the optimal number of hops based on
the notion of a characteristic distance, dchar. This distance is computed by
taking the hardware components of a transmitter and a receiver as well as
the channel’s characteristics. Then, for any arbitrary transmitting node, t, a
receiving node, r, and a separating distance, D, between them, there exists
an optimal number of hops, Kopt, such that:

Kopt =

⌊
D

dchar

⌋
or

⌈
D

dchar

⌉
(8)

The characteristic distance, dchar, is independent of D and calculated as:
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dchar = γ

√
α1

α2(γ − 1)
(9)

where α1 = α11 + α12.

4.2. Hop Model

For any arbitrary node i, the position of a neighboring node can be ex-
pressed in terms of its deviation from the optimal relaying position. The
optimal relaying position is the direct line that connects node i with the
base station and it is a function of the characteristic distance, dchar. The
deviation from this line of a neighbor node is illustrated in Figure 2.

Figure 2: Hop model

Taking i as the origin of the coordinate system, the x− and y− coordinates
of node i are expressed as dchar · a and dchar · b respectively, where a, b ∈ R.
The distance from i to j is then d(i, j) = dchar · c, where c =

√
a2 + b2. The

x-coordinate is the progress3 of the hop.

Since the computation of a multi-hop link is based on local information
only, the optimal number of hops, Kopt, can only be an estimation:

K = D
ā·dchar

= Kopt

ā

(10)

where ā is the average value of all as.

3Progress is the “effective” distance traversed in one hop.
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4.3. Hop Efficiency

In order to develop an efficiency measure for a single hop link, we compare
the energy consumption of a theoretically optimal multi-hop link with a link
that results from our hop model given in the previous section.

The rate at which energy is consumed by a relaying node can be calculated
as the overall power consumed during data reception and transmission over
a distance d. The Power consumption of a single-hop link can be estimated
by:

Prelay(d) = (α1 + α2d
γ)r (11)

Since the most energy-efficient route between node i and the BS is the hop-
by-hop line of sight link that connects the two nodes, the minimum energy
rate Plink−min that should be consumed during a communication is given as:

Plink−min(D) = K ′
opt · Prelay(dchar) (12)

where D is the overall distance to the BS. However, in a randomly deployed
sensor network, nodes are not distributed along the optimal link line. There-
fore, the power consumed by a link of distance D′ ≥ D with intervening
nodes deviating from the optimal link line can be expressed as:

Plink(D
′) =

K∑
i=1

Prelay(ci · dchar). (13)

Taking Plink−min(D) as a relative measure, building the ratio of Plink−min(D)
over Plink(D

′) gives a measure of the efficiency of a chosen link. In maximizing
this ratio, the most energy efficient link can be determined.

Plink−min(D)

Plink(D′)
=

K ′
opt · Prelay(dchar)∑K

i=1 Prelay(ci · dchar)
(14)

Theorem 1. The overall link efficiency measure, Λ, of a multi-hop link can
be formulated as:

Λ ≤ ã · γ
c̄γ + γ − 1

(15)

where c̄ is the normalized average link distance over dchar.
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Proof. Defining the overall link efficiency Λ =
Plink−min(D)

Plink(D′) , we can write

Λ =
K ′

opt · Prelay(dchar)∑K
i=1 Prelay(ci · dchar)

=
K ′

opt(α1 + α2 · dγ
char)r∑K

i=1(α1 + α2(ci · dchar)γ)r

=
K ′

opt(α1 + α2 · dγ
char)

K · α1 + α2 · dγ
char

∑K
i=1 cγ

i

=
K ′

opt(α1 + α2 · dγ
char)

K
(
α1 + α2 · dγ

char · 1
K
·
∑K

i=1 cγ
i

)

Having cγ a strictly convex function (c ∈ R
+, 2 < γ < 6), we can use Jensen’s

inequality for convex functions, which states that

∀{λi}, λi ∈ R
+such that

∑
i

λi = 1

f

(∑
i

λixi

)
≤
∑

i

λif(xi) (16)

with equality if all xis are equal, to get

c̄γ ≤
∑K

i=1(ci)
γ

K
(17)

Using this and the estimated overall-link hop4, we can further express:

Λ ≤ ã(α1 + α2 · dγ
char)

α1 + α2 · dγ
char · c̄γ

.

Substituting dchar given in Equation 9 in the inequation, we get

4The estimated overall-link hop progress normalized over the characteristic distance

and denoted as ã, is the ratio of hops K
′
opt, and the number of hops, K: ã =

K
′
opt

K .
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Λ ≤
ã
(
α1 + α2

(
α1

α2(γ−1)

))
α1 + α2

(
α1

α2(γ−1)

)
c̄γ

≤
ã(α1 + α1

γ−1
)

α1 + ( α1

γ−1
)c̄γ

≤
ã · (1 + 1

γ−1
)

1 + ( 1
γ−1

)c̄γ

≤ ã · γ
c̄γ + γ − 1

A transmitting node’s knowledge is limited to its immediate neighbors.
Therefore, the efficiency model is applied to enable a node compare and
select a neighbor that can participate in building a multi-hop link whose
overall energy consumption is minimum. Theorem 1 is employed for the
single hop case, substituting the average values with the single hop values.
A neighboring node j in the plane of a searching node is Λj efficient for the
overall link. Hence, its eligibility of being a neighbor of node j is determined
accordingly.

Λj =
a · γ

cγ + γ − 1
=

cos ϕ · c · γ
cγ + γ − 1

(18)

If a transmitting node has no knowledge of the direction of message prop-
agation, i.e., the position of the base station is not known, then it cannot
estimate the deviation of a node’s position from the optimal link. Hence, ϕ
is set to 0 and Λ can be written as:

Λj =
c · γ

cγ + γ − 1
(19)

In Figure 3, Λ is plotted when no base station direction information is present
at the node. The x−axis is the normalized distance to the neighboring node
over dchar.

5. Node Eligibility Metric

The eligibility metric Λj derived in the previous section, defines an effi-
ciency measure for a position in the region of transmission range of a node.
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Figure 3: Plot of Λ for path-loss exponents of 2 and 4 where no direction information of
the base station exists.

Thus, a node j within the transmission range of node i acquires this measure
Λj as its eligibility to be a neighbor. A link established based on this metric
ensures an energy-efficient multi-hop communication. This is one aspect to
consider when building the network, as it is essential to reduce the overall
energy dissipation due to routing. Another aspect to consider is fairness be-
tween the nodes. In order to ensure that nodes exhaust their energy reserves
more uniformly, those nodes that have relatively high energy reserves should
should be chosen as relying nodes. Hence, we define the metric Υj =

ej

E
.

Similar to the overall efficiency metric, Λ, Υj is applied to a neighboring
node to measure its relative energy reserve with respect to the other nodes.

Combining both metrics, we can achieve overall link efficiency and fairness
through a common eligibility measure of a neighboring node. Thus, we define:

Ψj = Λj ·Υj (20)

A node i having node j in its transmission range calculates Ψj , 0 ≤ Ψj ≤ 1.
This determines a measure for node j, for which node i can estimate how
eligible it is to be a neighbor.
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To accommodate node failure and node mobility, the topology control
protocol runs periodically, enabling actual message exchange between the
nodes and timely topology adjustment. Moreover, the specific structure of a
topology depends on whether nodes have information about the direction of
the base station. We denote the graph that is built with the knowledge about
the direction of the base station with GFETCD. Otherwise, it is denoted as
GFETC.

6. Protocol Description

Topology formation is accomplished in two phases. The first phase is the
neighbor discovery phase in which each node selects k nodes in its neighbor-
hood. The neighbor selection is carried out according to the node eligibility
criterion. However, the network graph that is created in this phase is not
symmetric. The second phase is concerned with building a symmetric graph
from the initial topology that is formed in phase 1. The symmetry is obtained
by adding the reverse edge to every asymmetric link.

These phases are described in more detail as follows:
Phase 1: Choosing k Neighboring Nodes (For a generic node i)

1. Node i wakes up at time t1, and announces its identity (idi) and energy
reserve (et1

i ) at the maximum power (Pt−max).

2. Node i receives the messages from the neighboring nodes and stores
their identities in its neighbor list N (i).

3. Node i estimates the distance to each node in N (i). Node i has the
energy reserves of the neighboring nodes (ej) as well as the distances
to them (d(i, j)), where j ∈ N (i).

4. Node i calculates Ψj, for each neighbor in its list.

5. Node i chooses the k neighbors in its list N (i) that have the highest
value of Ψ. If originally node i has less than k neighbors, then all nodes
are chosen.

6. Node i updates its neighbor list according to the chosen nodes in step
5.

The developed graph according to phase 1 of the protocol, has directed
links and the graph is a directed graph, Gdigraph. Hence, a symmetry phase
is necessary to enforce symmetry in the graph. In this phase we build the
symmetric super-graph of Gdigraph.
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The symmetric super-graph of Gdigraph is defined as the undirected graph
G obtained from Gdigraph by adding the undirected edge [i ↔ j] whenever
edge [i → j] or [i ← j] is in Gdigraph. That is, G = (V, E), where E = {[i ↔
j]|[i→ j] ∈ Edigraph or [i← j] ∈ Edigraph}.

Phase 2: Enforcing Graph Symmetry (For generic node i)

1. At time t2, node i announces its identity (idi) and list of Neighbors
(N (i)) at maximum power (Pt−max).

2. Node i receives the neighbor lists, and calculates the set of symmetric
neighbors. Node i checks all neighbor lists and finds if it exists there.
When that is the case, it checks if the neighbor list originates from
a neighbor in its neighbor list. If not, the corresponding neighbor is
added to its list N (i).

After the symmetric graph is constructed, node i determines for each
neighbor in N (i) the minimum required transmission power to reach it; then
this information is stored in its neighbor table list NL(i). When communi-
cating with a node in its neighbor list, a node adjusts its transmitter power
accordingly. The selected neighbors of a node i are its logical neighbors.
That is, there can be nodes in its maximum transmission range it may not
be selected as neighbors. These nodes in N (i) are used for the purpose of
routing.

7. Evaluation Background

Two types of topology control protocols are considered. The first types
exploit knowledge of the geometric properties of nodes and graph theories
to establish a network’s topology. These types of topology control protocols
model networks by considering nodes as points in a Euclidean space and
communication links as straight lines that connect two of these points. These
types of protocols require little knowledge of the deployment setting, but
they perform poorly because they consider the channel characteristics as
static. The second types employ probabilistic models to capture and take
into account network dynamics. Both types of approaches require an initial
graph upon which they apply their algorithms. This same graph can also
serve as a reference to evaluate the gains and losses of the topology control
protocols.
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7.1. Disk Graph

Most existing topology control protocols use the disk graph shown in
Figure 1 as a reference – The Disk Graph (DG) has an edge between two
nodes u and v if they are at a distance less than dmax, d(u, v) < dmax, where
dmax refers to the maximum transmission range of a node. Table 1 displays
the algorithm we used to generate the Disk Graph Topology.

Building the Original Topology Graph Goriginal

1: for each i ∈ V
2: for each j ∈ V
3: if d(i, j) ≤ dmax

4: N (i)⇐= j
5: NL(i)⇐= [i→ j]

Table 1: Algorithm for determining the original topology.

A network based on the Disk Graph topology will have the highest graph
size – which refers to the number of edges (communication links) in the graph.
As a result, it is inefficient in terms of its energy consumption. There are
different strategies to trim off inefficient links from the DG. For our evalua-
tion, we consider three proximity graphs which are widely referenced in the
literature: relative neighborhood graph, Gabriel graph, and K-neighborhood
graph. Proximity graphs have the property of being connected if the original
graph (i.e., the Disk Graph) is connected. For the sake of completeness, we
briefly summarize these strategies and the algorithms we used to construct
the corresponding topologies:

7.2. Relative Neighborhood Graph

The Relative Neighborhood Graph [11, 16] (RNG) of a set V is a proximity
graph such that there exists an edge between points u and v if and only if
the lune based region5 is empty of other points. The RNG graph has an
edge between two points u and v, if there is no other point w such that:
max{d(u, w), d(v, w)} < d(u, v).

5A lune is the region of intersection made between two circles that have the same radius.
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1: initialize Grng ⇐= Ggg

2: for each i ∈ V
3: for each j ∈ N (i)
4: for each k ∈ N (i)
5: if max(d(i, k), d(j, k)) < d(i, j)
6: remove j from N (i)
7: remove [i→ j] from NL(i)

Table 2: Algorithm for constructing the Relative Neighborhood Graph Topology.

7.3. Gabriel Graph

The Gabriel Graph (GG) of a set V is a proximity graph in which an edge
between points u and v exists if and only if a disk whose antipodal points
are u and v does not contain any other points in V [8]. Mathematically,
the GG graph has an edge between two points u and v if and only if there
is no other point w such that d2(u, w) + d2(v, w) < d2(u, v). Obviously,
RNG ⊆ GG ⊆ DG. The GG topology algorithm initializes with the disk
graph and the RNG topology algorithm initializes with the GG graph, since
the RNG is a subgraph of the GG.

Building the Gabriel Graph Topology Ggg

1: initialize Ggg ⇐= Goriginal

2: for each i ∈ V
3: for each j ∈ N (i)
4: for each k ∈ N (i)
5: if d(i, k)2 + d(j, k)2 < d(i, j)2

6: remove j from N (i)
7: remove [i→ j] from NL(i)

Table 3: Algorithmic representation for determining the Gabriel Graph Topology.

7.4. KNeigh

The KNeigh Protocol, as described in [2], builds the topology based on
the k nearest neighbors. The preferred value of k for a large-scale network
is derived in the same work and it is set to 9. We represent the algorithm
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for building the KNeigh topology based on the algorithm described in Table
5. The algorithm begins on the original topology, each node selecting its
neighbors according to its distances to them. The algorithm has two phases:
In the first phase, 9 nearest neighbors are chosen based on their proximity
to the node. In the second phase (the symmetry phase that begins at step
10), each node ensures that it is listed as a neighbor node by those nodes
which it elects as neighbors. This is to ensure the existence of bidirectional
links. If this is not the case, a node drops the neighbors in whose list it is
not included. The KNeigh protocol applies further pruning to remove links
whose transmission cost in a multi-hop communication is inefficient.

7.5. FETC abd FETCD

The algorithm for constructing FETC and its variant, FETCD, is given
previously, in Section 4. The two protocols are different in that in FETCD,
all nodes have knowledge of the direction of the base station and take this
into account to calculate Ψ. Table 4 summarizes how eligibility is measured
for the two protocols.

Topology Ψj

FETC
cij ·γij

c
γij
ij +γij−1

· ej

E

FETCD
cos ϕij ·cij ·γij

c
γij
ij +γij−1

· ej

E

Table 4: Elligiblity metric with and without knowledge of the base station’s direction

7.6. Routing

The performance of the topology control protocols is best examined when
data transmission takes place. For our simulation, we use two different rout-
ing protocols: shortest path and energy-aware routing protocols. The first
protocol computes a route that has the shortest distance from the source to
the destination. The second protocol computes a route that has the maxi-
mum overall energy reserves.
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Determining the KNeigh Topology GKNeigh

1: initialize GKNeigh ⇐= Goriginal

2: for each i ∈ V
3: L(i)⇐= []
4: for each j ∈ N (i)
5: L(i)⇐= d(i, j)
6: sort L(i) in ascending order
7: if number of elements in L(i) > 9
8: i updates N (i) and NL(i) to the first 9 elements in

L(i)
9: Symmetry Phase

10: for each i ∈ V
11: for each j ∈ N (i)
12: if [i→ j] ∈ NL(i) and [j → i] /∈ NL(j)
13: remove j from N (i)
14: remove [i→ j] from NL(i)
15: Pruning Phase
16: for each i ∈ V
17: for each j ∈ N (i)
18: if d(i, j) ≤ dcrossover then γij = 2
19: else γij = 4
20: for each k ∈ N (i)
21: if d(i, k) ≤ dcrossover then γik = 2
22: else γik = 4
23: if d(j, k) ≤ dcrossover then γjk = 2
24: else γjk = 4
25: if d(i, k)γik + d(j, k)γjk < d(i, j)γij

26: remove j from N (i)
27: remove [i→ j] from NL(i)

Table 5: Algorithm for determining the KNeigh Graph Topology.
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Node i

ID Position Energy Reserve Neighbor List Path to BS
idi (xi, yi) ei N (i) R(i)

Table 6: Structure of a node implementation.

8. Simulation

We use MATLAB R© as a simulation tool. We generate the nodes’ random
placement – a Poisson point process – using a technique described in [14].
Then, with the position information and the channel characteristic parame-
ters, we built the topologies which define for each node a set of neighbors.
The parameters that enable a node to make local decisions are displayed in
table 6.

Our simulation is divided into two categories. In the first category, the
graphs are investigated from a theoretical point of view, i.e., the graphs’
connectivity and node degree are investigated. In the second category, more
practical aspects of a wireless sensor network are investigated, namely, the
energy cost of the multi-hop links that are built by the different topology
control techniques and fairness routing data.

The region of deployment is 500 m × 500 m 2-dimensional plane. The
number of nodes deployed in this region is: 100, 200, 300, 400, and 500.
Accordingly, different deployment densities are examined. The base station
is chosen to be the furthest node with the highest x − coordinate in the
deployment. The base station is assumed to have an infinite energy reserve,
which is true in reality.

We denote a period of time as a time step in which one bit of information
is sent to the base station over a multi-hop link. For each event originating
from an arbitrary node i, all eligible relay nodes that are along the path
decrease their energy reserve according to our energy model. A relaying
node consumes reception power as well as transmission power, depending
on its relative distance from a sending node and the next hop. The path-
loss exponent γ can be either 2 or 4, according to the required transmission
distance. Here we introduce the crossover distance, dcrossover, as in [10]. If the
transmission distance is less than dcrossover, γ is taken as 2. Else, γ is taken
as 4. In Table 7, the parameter values used in the simulation are presented.
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Description Parameter Value

Transmitting antenna Gain Gt 1
Receiving antenna Gain Gr 1

Transmitting antenna height hr 1.5 m
Receiving antenna height hr 1.5 m

Maximum transmitting Power Pt−max 0 dBm
Receiver Sensitivity Prx−thresh -85 dBm

Carrier signal wavelength λ 0.1224 m (2.45 GHz)
System loss factor L 1

Initial Battery Capacity E
Transmitter electronics energy α11 26.5 mJ/bit

Receiver electronics energy α12 59.1 mJ/bit
Efficiency ηamp 0.023

Radio amplifier energy α2 (γ = 4)
(γ = 4)

Path loss exponent γ 2 or 4
Relay Rate r 1 bits/s

Characteristic Distance dchar 100 m (γ = 2)
71 m (γ = 4)

Table 7: Parameters

8.1. Graph Connectivity

Connectivity is one of the essential properties of a network graph. The
connectivity of a graph is an expression of its 1-connectivity, i.e., each node
in the network has at least one multi-hop path that connects it with the base
station. For various network densities, we considered different values of k
that keep the network connected despite trimming off inefficient links. For
a network with a 2D Poisson distribution, the probability that a graph is
connected is given as [17]:

Pr(1-conn) �

(
1− e−λ·π·d2

max

)n

(21)

where dmax is the maximum transmission range of the nodes; λ is related to
the network density; and n >> 1 is the number of nodes. In Figure 4, we
plot the probability of graph connectivity as the density of the network varies
from 40 to 70 nodes (worst case situation). As can be seen, deploying less
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than 70 nodes in an area of 500 × 500 m2 does not result in a connectivity
probability of 1 regardless of the node degree – In fact, the connectivity
probability does not increase for k > 5. Comparatively, the GG and RNG
graphs can achieve 100% connectivity for the same density. This is one of
the reasons why GG and RNG graphs are favored for topology control.
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Figure 4: Probability of graph connectivity

8.2. Energy Consumption

We investigated two aspects: the overall network energy consumption
and the achievable fairness in the distribution of energy reserve. Fairness is
measured by quantifying the variances in the energy reserves of the nodes.
We run 100 time-steps for five network densities: 100, 200, 300, 400, and 500.
In a time step, 100 nodes are randomly chosen, and one bit of information
is sent from each of these nodes along a multi-hop link to the base station.
For each network density, 10 random deployments are generated and data
transmission (event generation) take place. The average variance of the 10
deployments is used to construct the results for the corresponding network
density. This is done for the two routing protocols, namely, the shortest path
routing and the energy aware routing.

First we studied the rate of energy dissipation in the network. This is
the amount of energy dissipated in the overall network as a function of the
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Figure 5: Variance in the nodes’ Energy Reserves.

time steps. We normalized the results over the rate of energy consumption
of the original topology (the disk graph). Therefore, only relational analysis
is displayed.

Figure 5 displays the energy variations as a function of the time stamps.
In both graphs, FETC and FETCD, produce the least energy consumption
rate in the network. Moreover, for both cases, the curves reveal that the
two protocols have gentler slops, which indicate lower increasing rates in the
variance of energy in the network. The graphs which result in high energy
variation are the KNeigh, GG, and RNG topologies. These graphs suffer
from the increased number of hops, since they attempt to build the topology
based on the nearest neighbors. This increases the energy dissipation of
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the multi-hop links. The FETC graph has a slight increment in the energy
variance as the network density increases. This is expected, as the topology
does not exploit knowledge of the direction of the base station to avoid longer
routes.

Figure 6: Variance in the nodes’ Energy Reserves after 100 time steps.

The second aspect of comparison is in the form of normalized energy
dissipation as a measure of fairness between nodes. In Figure 6, the variance
of the nodes energy reserves for different node densities after the 100th time
step is displayed. The Kneigh, GG, RNG achieve lower fairness compared to
the original graph (which has a value of 1).

8.3. Qualitative Aspects

So far, the performance of the protocol was discussed quantitatively. In
the following subsection, the qualitative aspects are briefly discussed.

8.3.1. Message complexity

The execution of a topology control protocol causes a certain message
overhead in the network. The message complexity is an important aspect to
mind. Our protocol has a communication complexity6 of O(n). Each node
has to send 2 messages in order to determine the topology of the network.

6The message complexity is defined as the communication effort in terms of the O −
notion that is necessary to run the topology control protocol [3].
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8.3.2. Update policy

To deal with node mobility or failures, the topology control protocol is
executed periodically. Finding the optimal rate of computation is not a
trivial problem [3], and depends on the expected mobility rate. The recon-
figuration or re-execution of the topology control protocol can be triggered
synchronously or asynchronously. Asynchronous execution is achieved when
each node has the choice to determine the time to run the protocol. Syn-
chronous updates, on the other hand, are done when all the nodes execute
the topology control protocol at the same time. Our protocol has an asyn-
chronous update policy. Each node initiates the FETC protocol at different
times; and has to wait for the replies from the other neighboring nodes for
completing the protocol execution. Asynchronous updates are preferred over
synchronous updates because of the low retransmission cost at the link layer
due to collision.

8.3.3. Node degree

Low node degrees are preferable in order to reduce the overhead of route
calculations in the network, but this is often at the cost of the probability of
connectivity. A study on the network connectivity and the minimum number
of neighbors is carried out in [21]. There it has shown that the minimum
value of the node degree which guarantees connectivity with high probability
is dependent on the number of nodes in the network, such that Θ(log n)
neighbors are necessary and sufficient for connectivity of the communication
graph.

The FETC protocol does not necessarily take the nearest neighbors as
criteria for neighbor selection. Instead, it consider logical linking. The case
where the logical links and the physical links are identical is when the density
of the node distribution is so small that the nearest neighbor distance is
greater than the characteristic distance. In that case, the k nearest neighbors
are selected as the optimal neighbors. We validate the connectivity issue of
our topology for different values of k through intensive simulations; for all
the densities we considered, the optimal probability of connectivity can be
achieved for k = 5.

8.3.4. Longer hops

A density-independent distance is proposed to determine the neighboring
nodes, which in turn may result in higher transmission powers than other
topology control protocols. Transmission over long distance is often argued
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as being a cause of interference. Since interference is not included in our
model, we refer readers to [9] in which convincing reasons in favor of long-
hop routings are given.

In [9], it is argued that it is unclear if a single, short duration transmis-
sion at high power will bring more interference than multiple short range
transmissions. Whereas the former case permits more efficient reuse of the
communication channel, the signal to interference ratio (SIR) does not de-
pend on the absolute power levels. Hence, increasing all transmission power
levels at the same time does not have a negative impact on any packet re-
ception probability. This indicates that a long-hop transmission does not
necessarily cause more interference. Only the signal to interference and noise
ratio (SINR) increases.
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Figure 7: Contour Plot of the distribution function of the distance between a point and
its nearest neighbor in a Poisson point process of density λ = 0.01.

Topologies that are formed by considering nearest neighbors cannot avoid
the presence of nodes that are near to the base station. These nodes exhaust
their energy reserve more quickly than others since they are frequently used.
This leads to an energy imbalance in the network. Furthermore, such topolo-
gies suffer from traffic accumulation at these particular nodes, making them
bottle necks for the network information flow. In [6], the optimal number of
relay nodes as a function of the transmission rate is studied. It is shown that
as the desired end-to-end rate increases, the optimal number of relay nodes
decreases.

Longer hops have higher path efficiencies. The path efficiency is defined
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as the ration of the Euclidean distance of the end nodes and the multi-hop
traveled distance. This is the case, since the probability of finding a relaying
node that is near to the optimal line of communication is higher. The distance
between a point and its nearest neighbor in a sector φ for the Poisson point
process is given in [5], with the cumulative distribution function given as:

F (r) = Pr(R < r) = 1− e−λ φ
2
r2

(22)

where r is the distance to the node and λ is the Poisson process density. In
Figure 7, F (r) is plotted. For small sectors, the estimated distance to the
nearest neighbor increases. Hence nodes near to the optimal link line have
higher chances to be elected.

9. Conclusion

The energy efficiency of a wireless sensor network and the lifetime maxi-
mization problem is tackled by considering two aspects: The overall network
energy consumption efficiency and fairness. Based on theoretical work on
upper bounds of the network lifetime, we exploited the notion of a charac-
teristic distance, dchar, that is dependent on the radio characteristic and the
channel condition. From a node’s view point, an estimation is made over the
neighboring nodes on their overall link efficiency in relaying a message. This
is done according to their positions relative to an optimal relaying position
and the position of the base station. The efficiency estimation is made hop
by hop. Fairness in energy utilization, and thereby connectivity, is addressed
by taking the energy reserves of the nodes in the neighbor selection criteria
into account.

The simulation results confirmed that our topology is not as sparse as
the RNG, GG, and K-Neighbor topologies. However, with respect to the
original topology (the mesh topology), the node degree is slightly increased
with network density. Interesting results are obtained concerning the energy
dissipation rate in the overall network. Unlike the other topology control
protocols, the energy dissipation rates are little affected by increasing net-
work densities. Moreover, concerning the energy reserves between the nodes,
contrary to the RNG, GG, and KNeigh topologies, we have minimized im-
balance. The results showed that nearest neighbor topologies are energy
inefficient for high density networks. The original topology (disk graph), on
the other hand, contains inefficient long links which significantly decreased
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the energy efficiency of the network. These results show that our network
topology suits to prolong the lifetime of the network.
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Analysis of Error-Agnostic Time- and
Frequency-Domain Features Extracted From
Measurements of 3-D Accelerometer Sensors

Waltenegus Dargie, Member, IEEE, and Mieso K. Denko, Senior Member, IEEE

Abstract—This paper investigates the expressive power of sev-
eral time- and frequency-domain features extracted from 3-D ac-
celerometer sensors. The raw data represent movements of hu-
mans and cars. The aim is to obtain a quantitative as well as a
qualitative expression of the uncertainty associated with random
placement of sensors in wireless sensor networks. Random place-
ment causes calibration, location and orientation errors to occur.
Different type of movements are considered—slow and fast move-
ments; horizontal, vertical, and lateral movements; smooth and
jerky movements, etc. Particular attention is given to the anal-
ysis of the existence of correlation between sets of raw data which
should represent similar or correlated movements. The investiga-
tion demonstrates that while frequency-domain features are gener-
ally robust, there are also computationally less intensive time-do-
main features which have low to moderate uncertainty. Moreover,
features extracted from slow movements are generally error prone,
regardless of their specific domain.

Index Terms—Accelerometer sensors, feature extraction, fre-
quency-domain features, measurement errors, time-domain
features, wireless sensor networks.

I. INTRODUCTION

T HIS paper examines an essential assumption based on
which a large number of self-organizing and communi-

cation protocols in wireless sensor networks are developed:
namely, nodes are deployed randomly. The assumption is
plausible for some reasons. For example, in a rescue operation,
one may not be able to carefully place sensor nodes, given the
urgency of the operation. Likewise, in a health care application
that monitors the activities of nurses, the nurses may not be
able to pay much attention as to how the nodes are placed in
some parts of their body (lower arm, upper arm; lower leg,
thigh; back, shoulder, etc.). The assumption, however, should
not entirely ignore placement and orientation errors and their
impact on the quality of sensed data. One way to go around
this problem is to have dense deployment, so that by taking
measurements from a large number of closely placed nodes,
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these errors can be minimized. Dense deployment, however, has
its own problem due to cost, management, and computational
complexities.

Another approach is to identify error agnostic features that
can be extracted from the sensed data. Ideally, these features
enable to recognize interesting events in the network with ap-
preciable accuracy regardless of how and where the sensors are
placed. Hence, we investigate the robustness of time- and fre-
quency-domain features to calibration, placement, and orien-
tation errors. We focus on cheap and randomly deployed ac-
celerometer sensors that monitor the 3-D movements of humans
and cars.

A close scrutiny into existing or proposed applications for
wireless sensor networks reveals that movement (vibration)
sensors are widely employed. For instance, accelerometer sen-
sors are used to monitor the integrity of structures (bridges and
building) [1]; transportation infrastructures [2]; supply-chain
management [3]; Healthcare [4]; and active volcano [5]. Al-
most all of these applications employ model-based digital
signal processing to detect interesting events such as defects in
structures, abnormal drives, and damage in wheels.

We shall demonstrate that even though frequency-domain
features are in general error agnostic, there are also simple
and straightforward time-domain features that can be useful
to many practical applications. The computational complexity
of time domain features is significantly lower and can be
carried out locally, on the wireless sensor nodes. Another
interesting observation is that slow movements are error prone
and difficult to recognize both with time- and frequency-
domain features.

The contribution of this paper is summarized as follows.
1) Whereas there is a significant body of work on accelerom-

eter sensors, to the best of our knowledge, this is the first
comprehensive work that investigates the expressiveness of
a large set of time- and frequency-domain features.

2) A qualitative metric based on fuzzy-sets and fuzzy mem-
bership functions that are defined and employed to examine
the robustness of the features considered.

The remaining part of this paper is organized as follows. In
Section II, related work is summarized. In Section III, the time-
and frequency-domain features that are used in our analysis are
discussed. In Section IV, the methodology to acquire the sensor
data is presented; and the description of the scenarios for data
collection is given. In Section V, a detail account of the analysis
as well as its results are discussed. Finally, in Section VI, con-
cluding remarks and outlook to future work are given.

1932-8184/$26.00 © 2010 IEEE
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II. RELATED WORK

A significant body of work exists on energy-efficient proto-
cols for communication and self-organization in wireless sensor
networks. Comparatively, the research community has so far fo-
cused on three aspects of signal processing, namely, aggrega-
tion, sampling, and compression. Dargie et al. [6] and Chao et
al. [7] employ a local maxima technique to reduce the network’s
traffic. Ganesan et al. [8] propose data aggregation and compres-
sion mechanisms based on spatial interpolation of data and tem-
poral signal segmentation. Lin proposes a sampling frequency
control algorithm and a data compression algorithm [9]—each
of them are dependent on the quality of the higher level features
extracted from the raw sensor data. The sampling algorithm
adjusts the sampling rate based on the features quality. When
the sampling frequency cannot be controlled, a data compres-
sion algorithm is adopted to reduce the amount of transmitted
data. Tang and Raghavendra [10] propose the ESPIHT compres-
sion algorithm that uses a distributed source coding and exploits
spatio-temporal correlation. Bandyopadhyay et al. [11] give an-
alytical results concerning the tradeoffs between sensor density,
energy usage, throughput, delay, temporal sampling rates and
spatial sampling rates. A more detailed survey concerning the
existing data aggregation and information fusion approaches is
given by Nakamura et al. [12] and [13]. Likewise, Tang et al.
[10] surveys compression techniques.

As far as modeling and processing measurements of ac-
celerometer sensors are concerned, several techniques and
features have been considered. Huynh and Schiele [14] rec-
ommend a careful selection of features for different activities.
Their experiment result suggests that the choice of a feature
and a corresponding window length over which the feature
is computed affect a recognition rate. Lukowicz et al. [15]
investigate the existence of correlation in accelerometer signals
to estimate various human activities.

Perhaps the most frequently employed technique in exam-
ining accelerometer data is coherence. An interesting work re-
lated to this is the one carried out by Engin et al. [16] and [17], in
which the presence of correlation between different axes of in-
dividual accelerometers and between different segments of the
same limb (of a human body) is used to study the characteristics
of tremor in patients with Parkinson’s disease (PD).

Marin-Perianu et al. [18] experiment with an incremental
correlation algorithm that enables wireless sensor nodes to
determine whether they are traveling together (in supply chain
management). The algorithm is implemented locally on a
sensor node and the data processed is a real-time data series.
The scalability of the algorithm is tested with respect to com-
plexities related to communication, energy, memory and speed
of execution.

The approaches above identify a set of time- and frequency-
domain features and adopt a particular technique to recognize
various activities; and to examine the existence of correlation
between these activities. Except for Huynh and Schiele, who
show how a recognition rate can be affected by the choice of fea-
tures and their window length, the rest focus rather on the mod-
eling aspect and employ a single technique (usually the coher-
ence function) to recognize activities. These approaches, how-

TABLE I
TIME- AND FREQUENCY-DOMAIN FEATURES TO ANALYZE

DATA FROM ACCELEROMETER SENSORS

ever, do not reveal sufficient insight about the robustness of the
features employed. We build upon the existing approaches, but
place our focus on investigating the robustness of the features
to measurement errors.

III. MAIN FEATURES

The time- and frequency-domain features we consider are
listed in Table I. These features are used by many of the
applications listed in Section I to recognize the occurrence of
interesting phenomena. The time domain features capture and
express temporal aspects, while the frequency-domain features
capture and express spectral aspects. The extraction of time
domain features does not require intensive pre-processing, but
requires that transmission errors (noise and packet-loss) should
be accounted for. Moreover, the comparison of two or more
time-series measurements requires that the measurements are
synchronized in time. On the other hand, the frequency-do-
main features are robust to transmission errors, but require
intensive pre-processing [framing, windowing, filtering, and
fast Fourier transformation (FFT)]. Hence, there is a tradeoff
between the cost of feature extraction and the robustness of
the features.

In the next subsections, a brief summary of the features listed
in Table I is given.

A. Time-Domain Features

1) Zero-Crossing: This reveals how often a signal (measure-
ment) crosses a zero-reference line. It is a direct indication of
the fundamental frequency of the signal. If the calibration posi-
tion is known, the zero-crossing rate can be used to estimate the
orientation of an accelerometer sensor. For example, if a sensor
is calibrated by standing it up (say, along the -axis), then it will
produce an acceleration of 1 g if it is laid flat with a displacement
of 90 either in the -axis or in the -axis. The zero-crossing rate
is expressed as

(1)

where is a discrete, time-series sequence and and
are the th and th sample values. if the evalu-
ation is true, otherwise. Sensors which have different
calibration will apparently have different zero-reference line.
Therefore, it is difficult to compare their time-series measure-
ments. To avoid this problem, the mean-value crossing rate is
used, in which case a calibration-sensitive threshold is defined
as .
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2) Correlation Coefficient: This is a measure of the existence
of a linear dependency between two time-series measurements.
It takes the quotients of the covariance and variance of the indi-
vidual measurements into account

(2)

where
and, .

3) Cross Correlation: Is an indication of the existence of
a correlation between two time series measurements and

, where and may represent either the same type of
movement measured at different locations, or a single move-
ment measured at the same location but at different times. In
case represents , where is a specified time lag,
the two variables are usually not statistically independent, and
large cross correlations between and can result. Mathe-
matically, the cross correlation, , is described as follows:

(3)

Similarly, the autocorrelation is the cross correlation of a
time-series measurement with itself.

B. Frequency-Domain Features

In order to extract frequency-domain features, the FFT is
computed. It has a computational complexity of ,
where is the number of samples. It is the fastest transforma-
tion process between time and frequency domain. However, the
FFT does not reveal how fast the signal’s frequency changes
over time. Therefore, it is necessary to divide the time-series
measurements into different, short-duration windows. In order
to avoid frequency leakages at the two edges of each window, it
is customary to overlap neighbor frames, as a rule the overlap
is 25% to 50% [6], [19]. Afterwards, FFT is performed on each
of these windows. This process is called Short Time Fourier
Transformation (STFT). Once the FFT or STFT coefficients
are obtained, various more expressive features can be extracted.
Below is a short summary of some of them.

1) Spectral Centroid: This represents the balancing point of
the spectral power distribution

(4)

where is the magnitude value of the spectrum at position
(frequency) .

2) Band Energy: Expresses the energy of the subbands nor-
malized by the total energy of the signal.

3) Spectral Roll-Off (SRO): Measures the frequency below
which a certain amount of spectral energy resides. It measures
the “skewness” of the spectral shape [20]. Mathematically, it is
expressed as

(5)

The sum of the spectrum up to the roll-off frequency signifies
1 of the total spectrum.

4) Spectral Flux: This is defined as the difference between
the magnitude spectra of successive frames [20]

(6)

where is the normalized magnitude value of the po-
sition of the frame.

5) Maxima: This measures the similarity in transition of
the first Maxima of an expressive feature. The measurements
should have the same number of samples and these samples
will be transformed into the frequency domain. The discrete
samples produce discrete frequency coefficients. Since the
Maxima is dependent on the dominant frequency components,
they can be considered to contain typical structural characteris-
tics. Equation (7) expresses how the corresponding frequencies
can be calculated from the discrete spectrum

(7)

Hence, two sets of measurements exhibit similarity if their
first Maxima exhibit strong similarities. This applies to the
magnitude as well as the position of the Maxima.

IV. METHODOLOGY

We used SunSpot sensor nodes, each containing three ac-
celerometers that are aligned orthogonally, along the -, -, and

-axes. For the detail description of the nodes employed in the
experiment, the reader is referred to [21]. The nodes maximum
sampling frequency was 350 Hz (i.e., maximum sampling at

3 ms). The average communication delay between the sensor
nodes and the remote sink was 4 ms. To minimize packet loss, all
data are logged to a remote computer at an average frequency of
150 Hz. Sampling was carried out in a controlled environment to
make sure that reading of all sensors takes place in a similar set-
ting. Throughout the measurement, the RAM memory did not
overflow so that there was no local congestion.

The measurements were subject to three types of errors (un-
certainties): calibration, random placement (some sensors were
not placed near the event of interest), and random orientation
(alignment).2 Fig. 1 displays an example of a combined error
that arises from orientation and calibration differences between
two sensor nodes measuring one and the same movement. The
aim of this paper is to quantify and qualitatively describe the
degree of indifference of the features considered to these types
of errors.

A. Measurements

In this subsection, we describe the different types of move-
ments we considered for our analysis. Each of these movements

1In speech recognition the spectral-roll is expressed as ��� �
������� � 	�
, where � as a rule equals 85%.

2There are, of course, other sources of errors, but we do not consider them
here.
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Fig. 1. Snapshot of two time-series measurements taken by two different nodes
measuring the same movement. The two sensor nodes have different calibrations
and placements. In both graphs, the x-axis represents time, and the y-axis the
magnitude of acceleration.

was captured by at least two SunSpot sensor nodes in different
placement settings. The nodes directly transmit the raw data to
a nearby base station. Each packet was acknowledged; in case
of a lost or corrupted packet, retransmission was requested and
granted.

1) Movement of People:
• A single person: Two sensor nodes were placed at the op-

posite thighs and wrists of a walking person. The mea-
surements were taken from calibrated sensors, but each
time, they were placed randomly and they had random
orientation.3

• Two persons climbed up and down a staircase, side by
side (without synchronization of steps): Two sensor nodes
were randomly placed in the thighs and wrists of each test
person. The persons climbed a staircase of 18 steps side by
side. After the climb was over, the persons turned back and
climbed down the staircase. The two types of movements
were labeled independently.

• Two persons climbed up and down a staircase one after an-
other (without synchronization of steps): Two sensors were
attached to the test persons as described in the previous set-
ting, but this time, one person was walking in front of the
other.

• Dancing: Two sensor nodes were attached to the thighs
of the test persons. They danced for about a minute. The
dance was a free and uncoordinated movement (with no
premeditated pattern), but the occurrence of certain body
contacts signifying some distinct movements were labeled.

• Couch: Two nodes were attached at the thighs of two test
persons. The experiment measured actions and reaction

3Orientation errors were kept below 90 throughout the experiment, however.

TABLE II
OVERVIEW OF THE MEASUREMENTS DURATION AND DATA SIZE

movements whenever the test persons sat down on and got
up from a couch. During the analysis of the measurements,
other types of movements (drinking a coffee from a mug;
writing, etc.) were deliberately filtered out.

2) Movement of Car:
• Highway drive: a series of measurements were taken from

two accelerometer sensor nodes that were placed on the
back and front seats of a car during a highway drive, with
an average speed of 120 kmph. The sensors themselves
were untethered. Measurements from these sensors were
taken to investigate the existence of correlation between
the different parts of a car even though these parts react
differently to accelerations and brakes as well as to the
irregular surface on which the car drives.

• Highway drive: Two sensors were attached to the seat belts
of the driver and the front passenger and were very close
to the center of gravity. However, exact alignment to the
center of gravity was not made.

• Free drive: In this setting, the sensors were placed in the
front cabin of the car; they were calibrated and aligned to
the seats of the driver and the front passenger. This mea-
surement was used as a reference to the measurements
taken in the previous settings.

• City drive: the sensors were placed inside the glove box at
the front cabin of the car, untethered.

Table II summarizes the durations and size of the measure-
ments obtained.

V. ANALYSIS AND RESULTS

A. Time-Domain Features

1) Zero-Crossing Rate: Comparison of the zero-crossing
rates of the correlated and uncorrelated movements is a
straightforward and inexpensive process. However, a high
zero-crossing rate may indicate a high frequency measurement
as well as a measurement which is highly corrupted by noise.
As expected, all the measurements we took exhibit strong
dissimilarities due to calibration error. Even those sensors
which had similar orientation and placement and measured the
same movement resulted in 40/s zero-crossing rate due to
calibration error. Substituting the zero-crossing rate by a mean
value-crossing rate resulted in a deviation ranging between 2
and 15/s for individual axes; and only 0–2/s for the absolute
acceleration values of the individual measurements.4 Cross test

4The absolute acceleration value, ��� is given as: ��� �
�
� � � � � .
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Fig. 2. Autocorrelation of the absolute acceleration values of the measurements
taken from the first person.

of uncorrelated measurements, on the other hand, resulted in an
overall deviation that ranges from 7 to 50/s for the individual
axes; and 5–30/s for the absolute acceleration value.

2) Mean Value: The mean value is perhaps the simplest
and the least computationally intensive feature. The deviation
in value between similar (correlated) fast movements (car) for
individual axes was 0.5 g. The absolute mean value of these
movements, even for randomly oriented measurements, has a
markedly small deviation, i.e., 0.05 g. On the contrary, the
deviation in human movements was high. For example, the
average deviation in the absolute acceleration value of similar
(correlated) measurements was 0.4 g.

3) Correlation Coefficient: The correlation coefficient in this
context is a measure of the degree of similarity in movement
patterns, i.e., how similar are the temporal structure of two sets
of measurements. Once again, the measurements that are taken
from the different parts of a car during the same drive yield a cor-
relation between 0.4 and 0.9. On the other hand, the correlation
between dissimilar measurements was . Exceptions
to this were the measurements taken from the sensors which laid
fixed on the front and back seats of the car. In which case, it was
not at all possible to establish correlation. The correlation coef-
ficients related to human movements are markedly small, i.e., in
the ranges of 0.2 and 0.3 for measurements representing similar
movements. The correlation coefficients of the absolute accel-
eration values of all the measurements are notably better. The
scenario that produced the highest correlation was the move-
ments of people on the couch. Figs. 2 and 3 show the absolute
values of the correlation of the readings taken from the thighs
of the two people as described in Section IV-A. As can be seen,
the movement of one person produced a reaction movement in
the other person.

The problem with autocorrelation is its requirement of time
synchronization. In the absence of time synchronization, the
correlation coefficients of all movements were very small.

4) Cross Correlation: The cross correlation is used to mea-
sure the magnitude of the time offset between two time-series
measurements. This is particularly useful to model correlated
movements that cannot be compared piecewise. A typical
example is the correlation between the movements of people
climbing up and down a staircase without synchronizing their

Fig. 3. Autocorrelation of the absolute acceleration values of the measurements
taken from the second person.

Fig. 4. Membership function for establishing the fuzzy set of the MCR feature.

steps. Intuitively, the movements should demonstrate strong
correlations. However, due to the anatomy of the persons and
the relative distance between the two people (back and forth),
a sample-by-sample correlation was irrelevant. With the help
of the cross correlation, we were able to detect and correct
a mean offset value of 1.4 s over all the three axes of the
accelerometer sensors.

5) Autocorrelation: Another approach to deal with measure-
ments that cannot be compared piecewise is to test the linear
correlation between two autocorrelation functions. This feature
performs very well to test uncorrelated movements instead of
correlated movements. For example, comparison of the autocor-
relation of the measurements taken during the staircase move-
ments revealed that the structure of the autocorrelation functions
was almost identical even though their magnitude at any given
location was different.

Table V summarizes the different time-domain features we
considered. The features test both the presence and the absence
of correlation between different measurements. In the second
and the third column, the boundary signifies the width of the
variance of similarity.

For a qualitative analysis, we defined fuzzy sets to model the
uncertainty associated with each feature. We used empirical ob-
servations to define the membership function of the fuzzy sets
for each feature. In each case, the membership function is de-
fined as a trapezoid function in which the beginning and the end
of the trapezoids were taken from the experiment results. The
trapezoid function for the MCR is shown in Fig. 4. Equation (8)
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TABLE III
MEMBERSHIP FUNCTION DEFINITION FOR THE MCR

TABLE IV
MEMBERSHIP FUNCTION DEFINITION FOR THE

LINEAR CORRELATION COEFFICIENTS

TABLE V
SUMMARY OF TIME DOMAIN FEATURES

shows the expression of the membership function for this fea-
ture. Tables III and IV display the membership definitions of the
MCR and the linear correlation coefficients

(8)

B. Frequency-Domain Features

The frequency-domain features were extracted after trans-
forming the time-series measurements in their entirety into fre-
quency domain using the FFT. Exception to this is the short-time
Fourier transform (STFT), in which case, the time series mea-
surements were divided into several overlapping short frames
before they were transformed into frequency-domain features.

All the frequency-domain features require preprocessing. The
resource consumption of these steps is discussed in more detail
in [6] and [19]. Additional to these processes, we carry out fre-
quency normalization using a hamming window, so that the fre-
quency resolution for each measurement is optimized.

1) Maxima: The -maxima of a frequency spectrum was
used to compare the dominant frequencies of different measure-
ments. To obtain a significant size of representative frequency
samples, first the -th Maxima were summed up and divided by
the total Maxima. Once this was done, comparison was made
by selecting the -th Maxima and observing the deviation from
the average Maxima.

For human movements, was sufficient, while for car
should be in the order of 1000. This is because human move-

ments contain low frequency components. The average distance
between the first 100 Maxima of the individual axis for similar
movements lied between 0.7 and 3 Hz, while it was between
0.7 and 3.5 Hz for the absolute value of the individual axes. On
the other hand, the same distance for uncorrelated (dissimilar)
movements was between 1.4 and 3.9 Hz for the individual axes
and between 1.6 and 4.8 Hz for the absolute value. For car move-
ment and with the distance between the first 1000 Maxima, the
corresponding results were between 5–13 Hz for strong corre-
lation and 20–30 Hz, for uncorrelated (individual dimensions);
and 7–18 Hz and 11–25 Hz for absolute values.

2) Energy: The spectrum energy of a set of sensor readings
reveals the spectrum’s structure. In this context, the spectrum
energy refers to the overall energy of the two readings being
analyzed. To start with, the spectrum was divided into sub-
bands and the portion of energy in each band was normalized
by the overall energy of the spectrum. Correlation test was per-
formed subband by subband comparison on different measure-
ments—the stronger the correlation between the measurements,
the lesser the difference between the subband energies. As a re-
sult the average difference of the subband energies was used to
measure correlation. In our analysis, the energy mass of similar
movements of objects was between 0.006 and 0.1, while for un-
correlated, dissimilar movements, the mass was between 0.2 and
0.9. Human movement was very difficult to categorize with the
energy mass as the range was not strikingly different for similar
and dissimilar movements.

3) Linear Correlation Coefficient: Ideally, if the spectral
structures of two sets of measurements are similar, then there
is a strong correlation between them. The frequency-domain
linear correlation coefficients examine this hypothesis. Indeed
the measurements taken from different places during the same
type of movement revealed the existence of a strong correlation
(between 0.6 and 0.99). Unfortunately, we also observed that
correlation coefficients of unrelated movements frequently
yielded values above 0.6. The best explanation for this is that
all types of movements have high frequency components which
undermine the significance of the band-pass frequencies, which
are distinct from movement to movement. As a result, a large
portion of the curves are similar and can wrongly be interpreted
as being correlated.

We attempted to reduce this effect by quantizing the mea-
surements. Even though there was some improvement, linear
correlation coefficients in the frequency domain are the feeblest
features. Moreover, the quantization level was very much de-
pendent on the measurements being compared or tested—the
bigger the pick to pick individual amplitudes, the larger should
be the quantization level.

We investigated the change of frequencies over time as a mea-
sure of correlation. For this, we used the STFT, which is com-
puted by dividing the sensor measurements into several overlap-
ping frames. Each frame is then Fourier transformed, and the
complex result is added to a matrix, recording the magnitude
and phase of each point in time and frequency domain. As a
scaling factor, we summed up the correlation coefficients and di-
vided them by the size of the frequencies being considered. The
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test showed that a marked difference between the movements of
people and the movements of cars. For human movements, the
results were on the average between 0.1 and 0.3, which confirms
the results we got in the time domain for the same data set. Cross
tests of uncorrelated movements resulted in weighted linear cor-
relation coefficients that rangeg from 0.03 to 0.09. This much
could not be achieved in the time domain for the same data sets.

The result of car related movements were even better. While
the correlation coefficients for similar movements were between
0.2 and 0.6, for unrelated movements, these were between 0.02
and 0.1. This observation suggests that other frequency-domain
analysis, such as coherence, can be more expressive if they con-
sider STFT instead of the FFT.

4) Spectral Roll-Off: The spectral roll-off is another struc-
tural feature in the frequency domain in which only the Fourier
transformation of the acceleration vectors was taken into ac-
count. In most cases, such as in speech recognition, it is usually
customary to consider . This, however, did not pro-
duce any significant difference between correlated and uncorre-
lated movements. Not unexpectedly, a significant portion of the
energy of most movements was contained within the lower fre-
quency components. Subsequently, we lowered down the value
of to 60%. As a result, similar movements revealed a roll-off
distance that ranged from 0–4 Hz while the roll-off distance for
uncorrelated movements were between 2.5 and 10 Hz.

5) Spectral Centroid: The spectral centroid is similar to
the “first -Maxima” and indicates the relative location of the
“center of gravity of the spectrum. It is computed as the weighted
mean of the frequencies—the magnitudes of the frequencies
being taken as weights. This scheme requires a precise knowl-
edge of the movements being considered. The analysis was
carried out by dividing the main frame into several subbands and
the centroid of each subbands was independently computed and
piecewise comparison was performed. The mean difference of
the subband centroids, , is summarized by (9) as

(9)

where and refers to the spectral centroid of sensor 1
and 2, respectively; and is the number of subbands.

Regardless of the movement types, division of the entire spec-
trum into five equal segments resulted in a centroid distance that
ranged from 0.2 to 0.5 Hz for related movements; and from
0.3 to 1.7 Hz for unrelated movements. By taking the abso-
lute values of the spectrum, the related movements yielded a
better correlation, the centroid being tighter than the previous,
i.e., from 0.2 to 0.3 Hz.

6) Spectral Flux: The spectral flux is a measure of how
quickly the power spectral changes. Ideally, similar movements
should have a deviation of 0 flow. To compute the spectral flux
of two measurements, both should have the same time duration.
In the simplest case of considering the entire duration, we ob-
tained a spectral flux that ranged from 0.0026 to 0.25 for similar
movements—0.25 is rather the worst case. Otherwise, the spec-
tral flux of similar movements was between 0 and 0.1. On the
contrary, the spectral flux of unrelated movements varied from
0.2 to 1.0.

TABLE VI
SUMMARY OF THE FREQUENCY-DOMAIN FEATURES

Table VI summarizes our observation for the frequency-do-
main analysis.

VI. CONCLUSIONS

We investigated the expression power of several time- and
frequency-domain features in the presence of calibration, place-
ment and orientation errors. The measurements from which the
features are extracted represent movements of humans (slow
movements) and cars (fast movements) for various scenarios,
both in calibrated and un-calibrated conditions. The time-do-
main features we considered were zero-crossing rate (mean-
value crossing rate), correlation coefficients, and cross corre-
lations. The frequency-domain features were Maxima and en-
ergy; correlation coefficients of FFT and STFT, spectral roll-off,
spectral centroids, and spectral flux. We observed that the fea-
tures extracted from the absolute values of the raw measure-
ments were more robust to noise and calibration errors than the
features extracted directly from the raw measurements of indi-
vidual axes. The frequency-domain features that were least vul-
nerable to noise and exhibit the strongest expression power were
the correlation coefficients of the absolute values of the STFTs.
The features extracted from slow movements were in general
prone to measurement errors.

In the future, we aim to extend our studies by employing
different types of sensors. We have already collected a large
amount of data with MicaZ sensors. This will enable us to eval-
uate how feature extraction can be affected by node architecture.
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Adaptive Audio-Based Context Recognition
Waltenegus Dargie, Member, IEEE

Abstract—Context recognition is an essential aspect of intelli-
gent systems and environments. In most cases, the recognition
of a context of interest cannot be achieved in a single step. Be-
tween measuring a physical phenomenon and the estimation or
recognition of what this phenomenon represents, there are sev-
eral intermediate stages which require a significant computation.
Understanding the resource requirements of these steps is vital to
determine the feasibility of context recognition on a given device.
In this paper, we propose an adaptive context-recognition architec-
ture that accommodates uncertain knowledge to deal with sensed
data. The architecture consists of an adaptation component that
monitors the capability and workload of a device and dynamically
adapts recognition accuracy and processing time. The architecture
is implemented for an audio-based context recognition. A detail
account of the tradeoff between recognition time and recognition
accuracy is provided.

Index Terms—Audio-signal processing, context awareness, con-
text reasoning, context recognition, context-recognition accuracy,
context-recognition time.

I. INTRODUCTION

CONTEXT-AWARENESS is an essential aspect of intel-
ligent computing systems. It deals with the collection

of raw data from various sensors which are placed in vari-
ous places and devices and the processing of these data to
extract meaningful higher level activities and social situations
(higher level contexts). The successful recognition or estima-
tion of higher level contexts enables intelligent computing
systems to perform the following functions: 1) seamlessly adapt
to a perceived change; 2) augment human perception; and
3) provide relevant services in a proactive manner.

Several smart systems and collaborative environments have
been proposed in the recent past. For example, the iBadge
[1] wearable system monitors the social and individual activ-
ities of children in a nursery school. It incorporates sensing,
processing, communication, and actuating units. The sensing
unit includes a magnetic sensor, a dual-axis accelerometer, a
temperature sensor, a humidity sensor, a pressure sensor, and
a light sensor. It includes also an ultrasound transceiver and
an RF transceiver for position and distance estimations. The
processing unit includes speech and sensor data processing.
A server side application assists a teacher by receiving and
processing location, orientation, ambient, and audio contexts
from the iBadge to determine the social and learning status
of a child. The location and orientation contexts are used to
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determine whether a child is isolated or associates with other
children. The audio context is used to determine whether a child
is sociable or aggressive.

Dargie and Tersch [2] use acoustic signals and audio digital-
signal processing to determine more that 20 different activities
in a university campus. The context-recognition process in-
volves modeling frequency-domain audio features and building
a Bayesian network. Similarly, Dargie and Hammann [3] use
Bayesian networks to estimate the whereabouts of a mobile
user. The Bayesian network models stochastic features of data
taken from various sensors (humidity, temperature, and light).

Likewise, Magee et al. [4] introduce the nonintrusive
communication-interface system called EyeKeys. It runs on an
ordinary computer with a video input from an inexpensive Uni-
versal Serial Bus camera and works without special lighting.
EyeKeys detects and tracks the person’s face using multiscale
template correlation. The symmetry between left and right eyes
is exploited to detect if the person is looking at the camera or to
the left or to the right side. The detected eye direction is used to
control applications such as spelling programs or games.

Several system architectures have been proposed to de-
velop intelligent systems and environments. The architecture
of Dargie and Tersch [2] consists of raw-data extraction,
atomic-feature extraction, atomic-scene recognition, and con-
text recognition. The architecture employs a knowledge base
to model various everyday human activities. The iBadge sys-
tem discussed earlier is built with the Sylph architecture [1],
which consists of sensor modules, a proxy core, and a service-
discovery module. Wang et al. [5] propose the semantic space
framework that consists of context wrappers, a knowledge base,
aggregators, a context-query engine, and a context reasoner.
Chen et al. [6] propose the CoBra middleware, which consists
of a knowledge base, a context-reasoning engine, a context-
acquisition module, and a policy-management module. Simi-
larly, Korpipää et al. [7] propose a distributed architecture for
context recognition and management. The architecture consists
of a context manager, a resource server, a context-recognition
service, a change-detection service, and a security service.
The context manager shields applications from the concern of
context acquisition by functioning as a central server. All the
other services post their output to it.

There is a remarkable similarity between the proposed ar-
chitectures. First of all, they all support the separation of
context acquisition from context usage. This is done by pro-
viding context widgets, context wrappers, context-acquisition
modules, and context-query engines. Second, they support the
presentation of a context at various abstraction levels—this is
the task of interpretors, aggregators, and reasoning engines.
Third, they support the dynamic binding of context sources by
introducing service-discovery mechanisms.

While these architectures identify the conceptual steps of
a context recognition, they are, however, higher level, in that

1083-4427/$25.00 © 2009 IEEE
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they rarely address the associated system complexity. System
complexity is rather a crucial issue for several practical reasons.
For example, the scope and usefulness of a context of interest
depends on its timeliness and accuracy—both metrics being
application-specific. Furthermore, the workload of the intelli-
gent system, which is a dynamic aspect, influences both met-
rics, and itself depends on the available resources (such as the
energy reserve, CPU speed, communication bandwidth, active
memory, and storage). Variable system resources, in turn, di-
rectly affect the way sensed data can be obtained, processed,
and communicated. Subsequently, a context-recognition archi-
tecture should take these dynamic aspects into account.

We provide an adaptive context-recognition architecture
which has two essential aspects.

1) It takes the workload of a device into account and
adapts the accuracy and duration of a context-recognition
process.

2) It takes the capability of a device into account to select a
suitable complexity class. This enables us to recognize a
context of interest on heterogeneous devices.

The implementation of the architecture will be demonstrated
for auditory-based context recognition. In earlier reports [3],
[8], a part of the architecture (i.e., without the adaptation
component) was implemented to recognize the whereabouts of
a mobile user (rooms, corridors, or outdoor). The raw data were
obtained from temperature, humidity, and light sensors.

The rest of this paper is organized as follows. In Section II,
we present related work. In Section III, we present the con-
ceptual architecture for computing context as an abstraction
of real-world settings. In Section IV, a scenario is given for
which the architecture is implemented. In Section V, we report
the implementation details of the conceptual architecture. In
Section VI, we provide a detailed account of the adaptation
aspect of our architecture. In Section VII, we discuss our
experience and provide comparisons of our result with previous
results and close this paper with concluding remarks.

II. RELATED WORK

A. Adaptive Architecture

As far as adaptive context recognition is concerned, to
the best of our knowledge, previous contribution is limited
in this area. The adaptive context-recognition approach of
Nam et al. [9] and Young et al. [10] focus on filter fusion to sup-
port a robust face recognition under uneven illumination (image
processing). The system’s working environment is learned, and
the environmental context is identified (bright, normal, or poor
illumination). Based on the initial context, a group of classifiers
that are most likely to produce accurate output is generated for
each environmental context. A combination of the results of
multiple classifiers is determined using a t-test decision model.

Laasonen et al. [11] propose an adaptive framework for iden-
tifying the whereabouts of a mobile user from cellular-network
data. Adaptation is defined as a dynamic thread-off between
accuracy and resource consumption. The authors define three
concepts (bases, areas, and routes) on the basis of which the
complexity of a context-recognition process is estimated. Past
and present locations, as well as mobility information, are used to
reduce the resource consumption of a context-recognition task.

Stäger et al. [12] provide an empirical design process
for audio-based context recognition. The process is a result
of examining the tradeoff between power consumption and
context-recognition accuracy. Given a hardware and its nominal
power-consumption profile, the process tunes audio parameters
(sampling rate, frame size, size of feature vector, etc.) to
satisfy the power-consumption constraint. Based on this design
guideline, they developed a wearable context-aware system that
recognizes the activity of a user in a kitchen. The sources of
audio data are a microwave, a coffee maker, a hot-water nozzle,
a coffee grinder, and a water tap.

B. Acoustic Context Recognition

Most existing or proposed auditory-based context-recognition
schemes focus mainly on computational aspects, namely, on the
accuracy, processing time, and power consumption of a context-
recognition task.

Even though auditory-based context-recognition shares sev-
eral similarities with speech recognition, there are also notable
differences. For example, in speech recognition, knowledge
of human perception (tone, pitch, loudness, etc.) is useful to
disambiguate an uttered speech. This is possible because of
the following conditions: 1) the speaker is not far from the
microphone and speaks sufficiently clearly and loudly, and
2) there is no significant hindrance between the speaker and
the microphone. This is not the case in auditory-based context
recognition.

To begin with, the amplitude of the audio signal representing
a user’s surrounding is not appreciably large, since the audio
sources are usually far away from the user (microphone).
Second, the device in which the microphone is embedded can
be hidden inside a suitcase or a pocket. Third, whereas the
frequency of interest in speech recognition is well below 4 kHz,
the signal collected from a user’s surrounding may incorporate
frequencies that are up to and above 10 kHz. All these facts
should therefore be taken into account when designing an
auditory-based recognition system.

Eronen et al. [13] identify time- and frequency-domain fea-
tures, as well as stochastic features, to classify various everyday
outdoor and indoor scenes (streets, restaurants, offices, homes,
cars). They report that, by using Mel-frequency cepstral coef-
ficients (MFCCs) and hidden Markov Models (HMMs), they
were able to achieve a recognition accuracy of up to 88%. The
recognition accuracy as a function of the test-sequence length
appears to converge after about 30–60 s. Interestingly, they
report that human’s recognition accuracy of the same data set
was 82% with an average reaction time of 14 s.

Korpipää et al. [14] employ a naive Bayesian classifier and
an extensive set of audio features derived partly from the
algorithms of the MPEG-7 standard. The classification is based
mainly on audio features measured in a home scenario. With
a resolution of 1 s in segments of 5–30 s and using leave-one-
out cross validation, they achieve a recognition rate of 87% of
true positives and 95% of true negatives. The result is averaged
over nine 8-min scenarios containing 17 segments of different
lengths and nine different contexts. The reference accuracies
measured by testing training data are 88% (true positive) and
95% (true negative), suggesting that the model is capable of
covering the variability introduced in the data on purpose.

Authorized licensed use limited to: SAECHSISCHE STAATS UND LANDESBIBLIOTHEK. Downloaded on April 11,2010 at 16:59:18 UTC from IEEE Xplore.  Restrictions apply. 



DARGIE: ADAPTIVE AUDIO-BASED CONTEXT RECOGNITION 717

Reference recognition accuracy in controlled conditions is 96%
and 100%, respectively.

Ma et al. [15] also employ HMMs on MFCCs to recognize
ten auditory scenes. By varying the hidden states of the HMMs,
they achieve different recognition rates. For example, with
just three states, the classifier achieves a context-recognition
accuracy of 78%, while with 15 states, the recognition accuracy
reaches 91.5%. Remarkably, the authors observe a decline in
context recognition for higher hidden states. Smith et al. [16]
extend the work of Ma et al. [15] by introducing a belief-
revision mechanism to improve the recognition rate (92.27%)
and to increase the number of contexts that can be recognized
(namely, 12).

C. Summary of Related Work

This paper is more similar to the work of Eronen et al.,
Korpipää et al., and Stäger et al. There are, however, significant
differences. First, while they offer no reusable and extensible
system architecture, we provide one that can be used beyond
audio-based context recognition. Second, even though they
extensively investigate the impact of spectral parameters on
recognition accuracy, they do not exploit knowledge of the dy-
namic workload of a device to support adaptation (Stäger et al.,
for instance, demonstrate the influence of power consumption
on context recognition, but runtime power-aware context recog-
nition is not supported). Third, they do not take recognition time
into account, which is rather a vital aspect, as the relevance of
a piece of context is determined by its timeliness.

This paper complements these approaches by providing an
adaptation component. Depending on the capability and work-
load of a device it performs the following tasks: 1) determines
how much resource should be made available for a context-
recognition task, and 2) informs the user about the expected
processing time and accuracy.

III. ARCHITECTURE

Recognition of the social and conceptual settings in which
computing devices operate cannot be captured in a single step.
Between the measuring of audio signals and the recognition
of what these signals represent, there are normally several in-
termediate stages. These stages consume significant resources.
Defining different abstract stages enables rapid prototyping and
reuse of components. If required, this approach enables also
gradual implementation. Subsequently, we provide a concep-
tual architecture for a context recognition. Its basic differences
from existing or proposed architectures can be summarized as
follows.

1) The provision of a belief (uncertain knowledge) modeling
component.

2) The provision of an adaptation component that exploits
knowledge of the resource profile and dynamic workload
of a device when computing a context.

To better present the architecture, we separate the recognition
components from the adaptation component. The recognition
component is shown in Fig. 1, while the adaptation component
is shown in Fig. 2. The recognition part of the architecture
consists of a set of primitive context servers (PCSs), an aggre-
gator, an empirical ambient knowledge (EAK) component, and
a composer.

Fig. 1. Conceptual architecture for computing a context.

Fig. 2. Adaptation component that ensures the recognition of a context on
several devices.

A. Primitive Context Server (PCS)

A PCS abstracts from other components (such as an aggre-
gator) the details and complexities of extracting a meaningful
feature or an atomic context from a physical sensor. This
feature is not application-specific or situation-specific and can
be shared by multiple applications or situations. It refers to a
single aspect of a certain phenomenon or a real-world object.

B. Aggregator

A piece of context obtained from a single source may not
be sufficient to appropriately model a real-world situation [17].
The real world is far too complex to be captured in complete
detail in this way. Aggregation deals with the association, corre-
lation, and combination of data from single or multiple sources
to achieve a refined estimation. Subsequently, an aggregator
gathers and processes data from multiple sensors which are
spatially and temporally related. The outcome is a feature or
a set of features that is (are) meaningful for a single application
or a set of applications.

C. Empirical Ambient Knowledge (EAK)

A prior knowledge of entities (places, devices, persons, etc.)
is useful both for modeling a situation of interest and for
appropriately interpreting sensor measurements. In most cases,
this knowledge is taken as a fact however incomplete. However,
as far as dealing with physical sensors is concerned, whatever
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knowledge we have cannot be taken as fact but as an uncertain
knowledge or belief. Here are some examples of beliefs.

1) Human thermal and humidity perception varies from
season to season. A temperature ranging from 20 ◦C to
23.6 ◦C is perceived as comfortable in winter, while in
summer, the range from 22.8 ◦C to 26 ◦C is perceived as
comfortable. Likewise, a relative humidity ranging from
30% to 60% is perceived as comfortable in winter, while
in summer, the range from 40% to 60% is perceived as
comfortable.

2) In winter, a person is more sensitive to drought than in
summer. Hence, the acceptable air velocity inside a room
should be below 0.15 m/s, while in summer, it could be
up to 0.25 m/s.

The above beliefs can be modeled as uncertain knowledge
because they may hold true for most places, but they must not be
taken as fact. For these reasons, our architecture separates facts
from beliefs. The EAK associates conditional probabilities (or
fuzzy membership functions, basic probability mass functions,
etc.) to describe the degree of truthfulness of the uncertain
knowledge it stores.

D. Composer

The composer computes a higher level context (setting) by
classifying freshly acquired evidence from sensors according
to the facts and beliefs stored in the EAK.

E. Adaptation

The problem with the recognition architecture is that, in
itself, it does not guarantee equal support of all users inde-
pendent of their end devices, i.e., devices such as laptops,
mobile phones, and PDAs. It also does not take into account the
dynamic workload of a device. To address these concerns, we
have introduced an additional adaptation component that can be
plugged into the architecture. It consists of two subcomponents,
namely, the platform-performance monitor and the complexity
control. This is shown in Fig. 2.

1) Platform-Performance Monitor: A platform has a static
and a dynamic aspect. Its static aspect refers to its nominal
resource profile, maximum available power, processor speed,
memory, networking capability, storage, etc. Its dynamic aspect
refers to its present workload and remaining resources. Both as-
pects should be taken into account to perform context recogni-
tion, since the accuracy, as well as the processing time, depends
on these aspects. The platform-performance monitor provides
the complexity control with an updated information regarding
the platform’s present workload and available resources.

2) Complexity Control: Context recognition is a tradeoff
between recognition accuracy and processing time. The com-
plexity control receives from the consumers of a context
(a user or an application) an upper and lower threshold on
these two recognition metrics and allocates resources for the
recognition of the context accordingly. If a context recognition
takes a processing time below a lower threshold, it increases
the complexity level of the process to improve accuracy (i.e.,
by sacrificing more resources). If, on the other hand, a context-
recognition process exceeds the upper threshold time, it reduces
the complexity in favor of reducing the processing time below
the specified upper bound. The complexity itself is determined

by a set of parameters. The complexity control dynamically
adjusts the accuracy and processing time according to the actual
workload of the device.

In Section VI, we will give a detailed explanation of an
audio-based context recognition and the parameters that can
be tuned to adjust recognition accuracy and processing time.
Parameter tuning will be made according to the user’s require-
ment and the device’s capability and present workload.

IV. SCENARIO

We implemented the conceptual architecture for audio-
based context recognition. The implementation automates the
recognition of various human activities in two different settings.

The first setting is a university campus. At the Faculty of
Computer Science (Technical University of Dresden), a Chair
occupies several rooms and uses them for different purposes.
Some of these rooms are offices, laboratories, a conference
room, a library, and a kitchen. There are also other rooms which
are shared with other Chairs. The employees may be inter-
ested in some of these rooms for various activities including
project meetings, thesis presentation, student consultations, im-
promptu chats among each other, brief discussions with visitors,
celebration of a birthday party (graduation), etc.

Some Chairs have online room-reservation systems, but there
are times when these systems are not flexible enough. This is
because employees should reserve a room well ahead of the
intended purpose. Our aim is to complement a room-reservation
system and not to replace it. For any impromptu activity, an
employee creates a query request in order to find out which
rooms are free or occupied by less imperative activities (such as
bilateral discussions or a casual chat). The system responds to
the query by returning the names and locations of the rooms that
satisfy the request without compromising privacy, i.e., without
actually providing specific contents pertaining to the activities.

The approach can also be useful in other places. For example,
in several big companies, a significant number of employees
are mobile and hold universal keys. The keys give them access
into their company buildings anywhere in the world. A context
recognition can be useful to dynamically locate meetings and
seminars; kitchens, special occasions, unoccupied rooms, etc.
Recognition of the activities discussed earlier can also be
helpful to mobile devices to dynamically adapt to the envi-
ronments wherein they operate. For example, a mobile phone
can dynamically switch from a ringing mode to a vibration or
silence mode when an employee enters into a meeting room or
holds a presentation.

In the second setting, the activities in trains and trams are
recognized. The intention is to help and simplify the task of a
human controller. Given the size and the number of carriages
in a train, a limited number of controllers may not be able to
effectively monitor what is taking place in a passenger train.
Dynamic activity recognition will simplify this task.

For the first setting, the contexts of interest are casual talk,
party, group discussion, lecture (presentation), and quietness.1

For the second setting, the contexts of interest are fighting
(aggression), loudness (such as drunken sport fans shouting),
casual talk, and quiet.

1A quiet room is assumed to be empty.
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For the two scenarios, there are two different deployment
strategies. In the first setting, microphones are carefully placed
in different rooms, and the signals from these microphones
are processed centrally by a resource-rich computer.2 Other
devices place a higher level query request to this computer in
order to learn what is taking place in certain places or where
certain activities are taking place. In the second deployment
setting, the microphones embedded in mobile devices are used
to gather data, and the mobile devices themselves process the
data. The second deployment setting does not relay on the
existence of any established sensing infrastructure. For both
settings, however, adaptation is useful, as the processing time
and accuracy are dependent on the capability of the device as
well as its present or anticipated workload.

V. IMPLEMENTATION

This section reports the implementation details of the con-
ceptual architecture discussed in Section III for the scenario
presented in Section IV.

A. PCS

The PCS is implemented for abstracting the acquisition of
audio signals from ordinary microphones which were embed-
ded in ordinary laptop computers. The PCS can be configured
or reconfigured at any time to determine the beginning, dura-
tion, sampling rate, and resolution of the audio signal being
sampled. Once acoustic signals are sampled, it extracts time-
and frequency-domain parameters.

In order to extract suitable features, the PCS divides the
audio data stream into small time frames. This is useful to
model a nonstationary signal as quasi-stationary. There should
be a 25%–50% overlap between adjacent frames to compensate
the loss of information due to frequency leakage. Frequency
leakage occurs due to the abrupt separation of neighboring
frames; as a result of which, high-frequency components will
emerge at the edges of each frame. This should be removed by
a process called windowing, i.e., each frame is multiplied by a
window function that decays rapidly toward the edges.

The length of a frame is mostly between 10 and 50 ms, and it
influences the recognition accuracy as well as the computation
time. To extract temporal features, further processing is not
necessary. To extract spectral features, however, at least two
additional steps are necessary: frequency-leakage correction
and fast Fourier transformation (FFT). After windowing, an
FFT is applied on each frame to obtain the magnitude of the
power spectrum of each frame.

B. Aggregator

The aggregator extracts application- and domain-specific
features from the time- and frequency-domain properties of
each frame. The time-domain features include a frame’s zero-
crossing rate, bandwidth, band energy, and average energy.
The frequency-domain features include spectral centroid, spec-
tral roll-off, linear spectral energy, log-spectral energy, and

2Krysander and Frisk [18] propose an algorithm for optimal selection and
placement of sensors to meet a diagnosis requirement specification concerning
fault detectability and fault isolability.

Fig. 3. Triangular filter bank for extracting the MFCCs.

spectral flux. For us, however, the most interesting features
are the MFCCs. These are representations of the frequency
bands which are Mel-scaled to approximate the human auditory
perception more accurately than the linearly spaced frequency
bands obtained directly from the FFT. The MFCCs enable
context-recognition schemes to “perceive” their surroundings
as humans would perceive theirs.

Therefore, the main task of the aggregator is to transform the
linear-frequency spectrum obtained by the PCS into MFCCs.
This is achieved by first scaling the frequency spectrum loga-
rithmically using the so-called Mel filter bank H(k,m)

X ′(m) = ln

(
N−1∑
k=0

|X(k)| ×H(k,m)

)
(1)

for m = 1, 2, . . . ,M , where M is the number of filter banks
and M � N . The Mel filter bank is a collection of triangular
filters defined by the center frequencies fc(m), given as

H(k,m)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for f(k)<fc(m−1)
f(k)−fc(m−1)

fc(m)−fc(m−1) , for fc(m−1) ≤ f(k)<fc(m)
f(k)−fc(m+1)

fc(m)−fc(m+1) , for fc(m)≤f(k)<fc(m+1)
0, for f(k)≥fc(m+1) .

(2)

The size of the triangular filter bank is variable. These filters
are equidistant in the Mel-frequency domain, and there is a 50%
overlap between adjacent filters. Fig. 3 shows 20 triangular Mel
filters.

The center frequencies of the filter bank are computed by
approximating the Mel scale with

φ = 2595× log10

(
f

700
+ 1
)

. (3)

The center frequencies on the Mel scale are given by

c(m) = mΔφ (4)

where m = 1, 2, . . . ,M and M is the number of filter banks.
Δφ is described as

Δφ =
φmax − φmin

M + 1
(5)

where φmax is the highest frequency of the filter bank on the
Mel scale and φmin is the lowest frequency in the Mel scale.
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Finally, the MFCCs are obtained by computing the DCT of
X ′(m) using

c(l) =
M∑

m=1

X ′(m) cos
(

l
π

M

(
m− 1

2

))
(6)

for l = 1, 2, . . . ,M , where c(l) is the lth MFCC.
Finally, to reduce the effect of very low and very high MFCC

components (at both edges of the Mel spectrum), the so-called
liftering process3 is performed. Equation (7) shows a typical
liftering function.

C ′(l) =
(

1 +
L

2
× sin

πl

L

)
× C(l) (7)

where L is a constant.

C. Separation of Concern

There are two essential reasons for separating feature extrac-
tion (by aggregators) from preprocessing (by PCS).

1) Signal processing is independent of any feature, i.e.,
the outcome can be shared by multiple aggregators that
are interested in extracting different features. For exam-
ple, an aggregator can extract MPEG-7 features instead
of MFCCs for an entirely different context-recognition
assignment.

2) A significant amount of resource is consumed during sig-
nal processing—this will be demonstrated in Section VI.
Therefore, it is more efficient for the adaptation compo-
nent to deal with a single component (a PCS) instead
of two.

It must be noted, however, that there is a tradeoff be-
tween flexibility and efficiency. Obviously, combining the two
processes as a single monolithic process avoids the extra cost
of running two independent components. But then, if one is
interested in using the same lower level features for different
recognition schemes, the monolithic approach does not work.
The separation avoids repeating the preprocessing, thereby
saving significant computational resources.

D. Composer

The composer receives the most representative and inde-
pendent higher level audio features from the aggregator and
performs estimation or recognition. This is done by computing
the likelihood probabilities of individual context types in a well-
defined context space. We have experimented with various tech-
niques, including Bayesian networks and HMMs. We choose
HMM because it is most convenient to train and requires little
prior knowledge.

An HMM is a deterministic, stochastic, and finite-state ma-
chine. A Markov chain or process is a sequence of events
(called states) of which the probability of each is entirely
dependent on the event immediately preceding it. An HMM
represents stochastic sequences as Markov chains; the states
are not directly observed, but are associated with observable
symbols (or evidences), called emissions, and their occurrence
probabilities depend on the hidden states. The generation of

3The linear-frequency-domain equivalent process is bandpass filtering, while
the time-domain equivalent process is smoothing [19].

Fig. 4. Left-to-right HMM with five states.

a random sequence is the result of a random transition in the
chain. In order to model a process with an HMM, the following
elements should be available.

1) The number of states in the model N .
2) The number of observation symbols M , as well as a

probability distribution matrix B, in each of the states
describing the occurrence of observable symbols.

3) The state-transition probability matrix A.
Given the number of states in the model, N = (S1, S2,

. . . , Sn), the state-transition probability matrix, and the current
state (at time t) of the model, it is possible to predict the model’s
state at time t + 1.

The state-transition matrix is a square matrix in which each
element describes the probability of the model being in state Sj

at time t + 1 given its immediate preceding state

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N (8)

where q refers to a state. The transition probabilities between
all states build a state-transition matrix A of size N ×N .

A =

⎡
⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

⎤
⎥⎥⎦ . (9)

The probability of observing the symbol Oi from a set of
symbols (O1, O2, . . . , OM ) when the state machine is in state
Sj at time t is given as follows:

bij = P (ot = Oj |qt = Si), 1 ≤ i ≤ N, 1 ≤ j ≤M. (10)

The probability of observing a symbol in state Sj is indepen-
dent of all previous states and observed symbols. Subsequently,
the N ×M observation matrix can be described as follows:

B =

⎡
⎢⎢⎣

b11 b12 · · · b1M

b21 b22 · · · b2N
...

...
. . .

...
bN1 bN2 · · · bNN

⎤
⎥⎥⎦ . (11)

To complete the description of an HMM, knowledge of the
model’s initial state is required: π = (π1, π2, . . . , πN ). The ini-
tial state of the model, the transition probability matrix, and the
observation matrix together make up an HMM, signified by λ.

λ = {A,B, π}. (12)

The topology of an HMM depends on the process model.
Fig. 4 shows the so-called “left-to-right” model which sets a
restriction on the way state transitions should be observed—at
any given time, either there will be no transition at all or
transition should occur in a forward direction only. Even
though this restriction is not applicable for audio-based context
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Fig. 5. Recognition of a context using HMMs.

recognition (for example, an audio data may reveal events
that repeat themselves), the “left-to-right” topology is useful
in modeling time dependences between a sequence of events.
For context recognition, the frame duration is normally very
short (in the range of milliseconds), and compared to this
duration, a meaningful audio scene lasts over several audio
frames. Therefore, it is possible to describe an audio scene as a
time sequence of several frames (events).

1) Training: An HMM can be trained to configure its model
parameters λ = {A,B, π} to a sequence of observed symbols
O = (o1, o2, . . . , oM ). In other words, given an initial descrip-
tion of the model parameters4 λ0 and a sequence of observation
symbols O, the model parameters should be optimized such that
the probability P (O|λ) is maximum

P (O|λ) =
∑

q

π1bq1(O1) ·
M∏

t=2

aqt−1qtbqt(Ot). (13)

This is a formidable challenge, since there is no analytic ap-
proach to tackle it. However, there are a plethora of estimation
algorithms that produce satisfactory results for most real-world
situations. We adopt the Baum–Welch algorithm and maximize
P (O|λ) locally.

2) Recognition: During the recognition process, the task of
the composer is to determine which of the HMMs (one for each
higher level context) the audio data best fit. In other words,
given an HMM, λ, and a sequence of observable symbols O,
it computes a sequence of states Q that maximize P (Q|O, λ).
P (Q|O, λ) is called the likelihood probability.

We employed the Viterbi algorithm to compute the log-
likelihood probability distribution because, as it is, P (Q|O, λ)
is very small.

3) Vector Quantization: It is not possible to directly feed the
continuous n-dimensional feature vectors (MFCC) to an HMM,
since the model is made up of discrete observation symbols
and states. Therefore, the composer maps the n-dimensional
feature vectors into a single vector or codebook. The size of the
codebook can be tuned between 64 and 256. Fig. 5 shows the

4This can be an approximation based on a prior knowledge of the context
type or an arbitrary assignment of parameter values.

TABLE I
RELATIVE TIME DISTRIBUTION OF A CONTEXT-RECOGNITION PROCESS

sequence of symbols being provided to different HMMs, each
of which computes the likelihood probability of the sequence
according to its model parameters. The context with the highest
likelihood probability is chosen to be the one that is best
represented by the audio signal.

E. EAK

The EAK manages the features extracted from the training
data set, establishes conditional dependences between the con-
texts and the features, and revises its beliefs whenever new
data sets are available. Moreover, it stores the structure and the
model parameters of the HMMs.

VI. ADAPTATION

A. Defining Complexity Classes

The accuracy and processing time of a context recognition
depends on the available resources in a device. It is possible to
tune various parameters according to the resource profile and
workload of the device. As a result, the context-recognition
accuracy and time can be adapted. Parameter tuning requires
knowledge of each parameter and its contribution to a con-
text recognition. Table I is an overview of the intermediate
stages of the auditory-based context recognition and the relative
processing time required by each stage. To produce Table I, we
recorded several audio scenes with a nominal duration of 10 s.
The audio data were sampled at the rate of 48 kHz, and the
context recognition was performed on a laptop computer with
a processor speed of 700 MHz and a random-access memory
of 256 MB; it had a 4% average workload over a period of
30 min. The frame size was 512 samples with an overlapping
percentage of 50%. Each frame had a width of 23.21 ms.

The preprocessing time includes offset-compensation, pre-
emphasis, framing, and windowing. Apparently, a large portion
of the device’s resources is consumed by signal processing (in-
cluding the FFT) and not by feature extraction or classification.
We varied the hidden states of the HMMs and the size of the
codebook but could not observe any appreciable change during
the entire processing time. This was an essential observation.
Since signal processing is done inside the PCS, the adaptation
component should deal with it.

Dealing with PCS means tuning various signal-processing
parameters. For example, if time instead of accuracy is more
important to an application, the PCS reduces the raw auditory
data by reducing the sampling rate. The minimum sampling rate
is 8 kHz. A sampling rate below this does not fulfill Shannon’s
sampling requirement and does deteriorate the recognition ac-
curacy significantly. At the same time, increasing the sampling
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TABLE II
THREE CLASSES OF RESOURCE PROFILES

rate above 22.05 kHz does not improve the recognition accu-
racy appreciably. Additional parameters that can be tuned by
the PCS are the frame size and percentage of frame overlapping.
Frame overlapping offers a greater flexibility to adjust process-
ing time and can be varied between 50% and 25%. A 25%
overlap can reduce the raw auditory data by more than 30%.

Another possibility of adapting recognition and processing
time is by defining different complexity classes (profiles). This
classes are taken as static templates into which the computation
profiles of mobile devices should fit.

The main challenge here is to define a quantitative rela-
tionship between recognition time and accuracy, on the one
hand, and resource consumption and CPU workload, on the
other hand. We performed an extensive experiment to model
relationship between these parameters. This turned out to be a
very difficult task. Instead, we applied a heuristic judgment to
define three complexity classes that represent the computational
capability of different mobile devices. We defined the three
complexity classes by assuming that, at any given time, a
mobile user may own either a laptop, a PDA, or a mobile phone.
This same assumption also enables us to model the different
workload of a single device, such as a laptop. According to the
classification, we set the upper and lower bounds on recognition
time, which can be used to appropriate computing resources for
a recognition task. The three classes of profiles are defined as
Class Low, Class Medium, and Class High.

Table II provides the description of the three complexity
classes for the context types identified in the two scenarios,
eight context types in all.

B. Upper and Lower Bounds on the Recognition Time

The time required for computing a context determines the
usefulness of the context. We used benchmarking to estimate
the upper and lower bounds of the recognition time that can
be achieved by each complexity class. A benchmarking can be
explained as follows: A device will be given a task of known
complexity, and the time required for accomplishing the task
is measured. Usually, the chosen task is similar in complexity
to the one the device should carry out afterward. If the com-
putation time is not acceptable by the application developer or
the end-user, a runtime reconfiguration (for example, reducing
the sampling rate) is made so that the complexity of the task
is reduced. This implies that the duration of the audio signal
representing the audio scene, the preprocessing, the size of
the auditory features, the size of the codebook, etc., can be
dynamically adjusted.

Table III shows the lower and upper bounds of the recogni-
tion time we computed for the three complexity classes.

TABLE III
UPPER AND LOWER BOUNDS OF A CONTEXT-RECOGNITION TIME

TABLE IV
OVERVIEW OF THE AUDITORY SIGNAL USED FOR

TRAINING AND RECOGNITION

TABLE V
EFFECT OF FRAME LENGTH ON ACCURACY

C. Accuracy

Accuracy in the context of this paper should be understood as
the number of correct decisions the context-recognition scheme
makes. This depends on the following factors:

1) the number of contending context types;
2) the degree of similarity between these contending context

types;
3) the amount of auditory data to be processed (by implica-

tion, the duration of context-recognition time).

The remaining part of this paper focuses on the third fac-
tor. To compute the accuracy of context recognition and to
attribute the result to the various recognition parameters, we
made repeated experiments. It should be noted that we used
ordinary microphones and did not pay much attention to the
position or orientation of the laptop in which the microphone
was embedded. Our intention was to appropriately represent the
way ordinary users handle their mobile devices.

Table IV describes the training scenario. The audio signals
were processed according to the three profile classes, name-
ly, the sampling rates were set to 22 050, 11 025, and 8000 Hz,
while the record length was adjusted for each context to 10, 5,
and 1 s. We used the recorded auditory signals to train and test
the HMMs. As mentioned before, during the testing phase, the
HMMs computed a likelihood probability distribution for all
the contexts of interest.

1) Frame Length: An HMM attempts to recognize a context
of interest by constructing a time sequence of audio frames
and by creating conditional dependences between these frames.
An audio frame represents the smallest unit of information.
If the frame duration is too short, an auditory event of longer
duration can be divided into many frames, represented falsely
as several events; on the contrary, if the frame is too long,
several evanescent events can be mistaken for a single long-
duration event. Table V displays the effect of frame length
on the accuracy of context recognition. As can be seen from
the table, the optimal frame duration which yields the highest
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TABLE VI
EFFECT OF FRAME OVERLAPPING ON

CONTEXT-RECOGNITION ACCURACY

TABLE VII
EFFECT OF AUDIO FEATURES ON ACCURACY

accuracy is achieved at the sampling frequency of 22 050 Hz,
namely, 23.22 ms, with the sample size of 512.

2) Overlapping: Through the windowing process (to atten-
uate the effect of high-frequency components during the abrupt
separation of frames), some information is lost at the two edges
of a frame. That is the reason why a frame overlapping is
required. In the literature (speech recognition), a 50% overlap
is recommended, but surprisingly, for context recognition, the
optimal frame overlapping was achieved at 25%.

This can be explained as follows: For speech recognition,
the spectral bandwidth is below 4 kHz, whereas for context
recognition, the bandwidth is significantly larger (ca. 10 kHz).
As a result, a 25% frame overlapping was sufficient to com-
pensate for the lost information at the edges of a frame.
Table VI summarizes recognition accuracy as a function of
frame overlapping.

3) Audio Features: The selection of the right type and
amount of audio features depends on the spectral aspect of the
audio scene being processed. For example, for audio events that
are made up of frequently changing scenes having both low-
and high-frequency components, a large number of MFCCs
may be necessary. This way, it is possible to ensure the in-
clusion of a wide range of frequencies in the extracted fea-
tures. However, merely increasing the spectral features above
a certain threshold may not have any impact on the recognition
accuracy.

Our context types involve events that have both slowly and
quickly changing scenes as well as low- and high-frequency
components. Therefore, we varied the MFCCs from 8 to 14.
The result is presented in Table VII.

As can be seen in the table, the number of MFCCs that
achieved the highest recognition accuracy is 12 (and not 14!).
Perhaps this number would be different for a different record
(of the same scenes) or had we employed a different mi-
crophone. The best way to explain this is by relating the
number of MFCCs with the number of Mel filters [see (6)].
Increasing the Mel filters directly affects the way a frame is
subdivided in the frequency domain. This subdivision may
result in fragmenting an audio scene into different subbands, as
if they were independent events. This can cause an erroneous
conclusion.

TABLE VIII
CODEBOOK SIZE VERSUS RECOGNITION ACCURACY

Apart from pure MFCCs, we experimented also with ad-
ditional time- and frequency-domain features5 to study their
combined effect on recognition accuracy.

4) Size of the Codebook: The vector quantization reduces
the infinite range of values of the feature vectors into a limited
size of code vectors. During this process, if the size of the
codebook is significantly small, then many features will be
represented by a single vector, and the quantization error will
become significant. Subsequently, information which can be
vital to the recognition of a context can get lost. On the other
hand, making the codebook size considerably large implies the
need for a large amount of training data, since only code vectors
that appear often in the HMMs during the training phase can be
correctly classified. Moreover, the duration of the recognition
time will increase significantly. Table VIII summarizes the
effect the codebook size on the context-recognition accuracy.

D. Implementing the Adaptation Components

The platform-performance monitoring component stores the
resource profile of the device in which a context recognition is
performed. Moreover, it periodically or randomly (depending
on the configuration) samples the CPU workload and considers
the past n samples to estimate device capability. Likewise,
the application that binds the recognition system specifies the
minimum desired accuracy and processing time, which is the
basis for parameter tuning. The complexity control periodically
queries the platform-monitoring component to determine how
much resource is available and whether the required accuracy
and processing time can be achieved. Once again benchmark-
ing is used for the estimation. If the desired accuracy and
processing time cannot be achieved, the control component
prompts the user to stop some running processes in favor of the
context-recognition task or to accept a reduced accuracy or an
increased processing time. Accordingly, the complexity control
component selects a complexity profile (Class High, Class
Medium, or Class Low) or adjust the preprocessing parameters.

VII. DISCUSSION

We evaluated the context-recognition accuracies of the three
complexity classes by establishing a confusion matrix for each
class. Table IX displays a confusion matrix for the complexity
Class High. Table X summarizes the result of two confusion
matrices for Classes Middle and Low. In Table IX, the rows
represent the actual context types while the columns represent
the recognized context types. At the end of each row is given
the context-recognition accuracy for each context type. The last

5Including spectral centroid, which is the balancing point of the spectral
power distribution, and a zero crossing, which is the number of times a time-
domain signal crosses the zero reference [20].
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TABLE IX
PERFORMANCE OF PROFILE CLASS HIGH

TABLE X
PERFORMANCE OF PROFILE CLASSES MIDDLE AND LOW

TABLE XI
AVERAGE RECOGNITION TIME FOR THE THREE PROFILE CLASSES

row provides the average overall accuracy that can be achieved.
The average computation time for the three classes of profiles
is summarized in Table XI.

Tables IX and X demonstrate that, while some context
types (such as “loudness”) can be recognized by all-complexity
classes with appreciable accuracy, others are not. Similarly,
other context types (such as “party,” which is starkly mistaken
for “loudness”) is recognized poorly, regardless of the class
types. Of all the parameters we tuned, the sampling rate has
a significant impact on the accuracy and time of context recog-
nition. This is not unexpected. Due to the difference in sam-
pling rate, each MFCC represents a different spectral domain.
Therefore, for each complexity class, a different codebook is
generated in which the code vectors are distributed in different
vector spaces.

The profile Class Low performs very poorly for all context
types containing predominantly spectral components above
4 kHz. One may be led to conclude that Class Low devices may
not be useful for auditory-based context recognition. However,
this is not the case. As can be seen from the tables, even Class
Low performs well in recognizing “train,” “tram,” “loudness,”
and “aggression.” This implies that the suitability of a device
for a context recognition is partly decided by the type of
contexts.

A. Comparison

The preceding sections demonstrate that the time for context
recognition and the associated accuracy depend on several
factors. While it is essential to make quantitative comparisons
between our result and the results of previous work, some
reports conceal a wealth of information, making justifiable
comparisons a difficult task.

Eronen et al. extensively experimented with different types
of recognition schemes, changing the topology of HMMs and
varying the test-sequence length of audio signals. In summary,

they are able to recognize 24 everyday context types with
an average recognition accuracy of 58% and 6 higher level
contexts with an average recognition accuracy of 82%. With
the profile Class High, ours is better by 1.24%, but this is a
rather negligible figure. Moreover, we consider eight context
types while they recognize nine.

Similarly, Korpipää et al. achieve a context-recognition ac-
curacy of 96% true positives and 100% true negatives under
controlled conditions—nine higher level contexts are consid-
ered which are in many respects similar to ours. They offer ad-
ditional insight regarding uncontrolled environments, in which
context transitions are not known beforehand and there are
disturbances and undefined phenomena. Their result shows that
the overall recognition accuracy falls to 87% true positives and
95% true negatives.

We employed ordinary microphones embedded in ordinary
laptop computers, both during the training and the test phases.
Furthermore, we recorded the audio signals without much
preparation, to imitate the way users handle their mobile
devices while moving or carrying out other more important
activities. In contrast, Eronen at al. considered various con-
figurations for their experiment: a binaural setup (Brüel &
Kjaer 4128 head and torso simulator), a stereo setup (AKG
C460B microphones), and a B-format setup (SoundField MkV
microphone). The acoustic material was recorded into a digital
multitask recorder in 16-bit and 48-kHz sampling-rate format
and a Sony (TCD-D10) digital audio tape recorder in 16-bit
and 48-kHz sampling-rate format. Likewise, the measurement
system hardware of Korpipää et al. consists of an extra small
sensor box attached to a shoulder strap of a backpack containing
a laptop. When collecting scenario data, the backpack was
carried around. The measurement system was controlled with
a cordless mouse to mark the scenario phases. The microphone
was a small omnidirectional AKG C 417/B.

Unlike Eronen et al. and Korpipää et al., our evaluation goes
beyond recognition accuracy and addresses the relationship and
the tradeoff between recognition accuracy and processing time.
We defined also three complexity classes to support adaptive
context recognition. Moreover, the adaptation aspect of our
system enables a user (or an application) to define quality
metrics for a context-recognition task. When the specified
quality metrics are not achievable because there are not enough
resources for the task, the system prompts the user to stop
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some running processes. Otherwise, it offers the user a reduced
accuracy or an increased processing time.

B. Future Work

In this paper, we used laptop computers for context recog-
nition. While we have tested and demonstrated that three
different complexity classes can be emulated with a single
device, all the three complexity classes satisfy the minimum
resource requirements to process acoustic signals that are below
10 kHz. For example, the minimum sampling rate was 8 kHz.
In the future, our aim is to deploy resource-efficient signal-
processing algorithms on wireless sensor nodes, which are
resource-constrained. The networks that can be established by
these nodes promise several applications, but the scope and
usefulness of the applications are defined and limited by the
energy consumption of the networks. At present, extracting raw
sensor data claims a large portion of the energy consumption
of wireless sensor networks. Compact and efficient signal-
processing algorithms can significantly reduce the data traffic
in the networks, either by enabling efficient sampling and data
compression or by supporting the extraction of higher level
features locally.
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Recognition  
of Complex Settings 
by Aggregating 
Atomic Scenes
Waltenegus Dargie and Tobias Tersch, Technical University of Dresden

This approach imitates 

human reasoning 

to enable flexible 

context recognition. 

Its usefulness is 

demonstrated by 

employing audio-

signal processing 

to recognize several 

everyday situations.

One important aspect of ubiquitous computing is context awareness, which aims 

to establish a shared understanding of the user’s social and conceptual settings 

(contexts). Establishing such a shared understanding can be simple or complex. By sim-

ple, we mean that you can easily obtain the necessary sensors and can map the sensed

data to a meaningful setting. In most cases, how-
ever, the process is complex and the end result is 
uncertain. In the latter situation, context acquisi-
tion involves modeling and reasoning about the 
characteristics of and relationships between sev-
eral entities.

Most approaches to context reasoning model 
complex settings (higher-level contexts) as mono-
lithic scenes rather than aggregations of distinct 
scenes. For example, recognition of a street setting 
on the basis of features extracted from an audio sig-
nal requires an existing model of a street. To pro-
duce the model, such approaches will take audio 
signals from various streets, analyze these signals’ 
stochastic properties, and extract the most represen-
tative (and independent) features. However, these 
approaches don’t separate the signals according to 
the scenes that make up the complex setting (cars, 
pedestrians, street bands, and so forth).

In reality, a street setting isn’t a result of a sta-
tionary mix of different events but rather a com-
plex mix of time-variant events. For example, the 
frequency and types of cars passing by change con-
tinuously. A recognition scheme can deal with this 
type of dynamic only if it can separate the street’s 
stationary scenes from the transient scenes. More-

over, by modeling the scenes independently and es-
tablishing a relationship between them, we can de-
fine a higher-level context declaratively.

We model complex settings as an aggregation 
of distinct atomic scenes. To support declarative 
context aggregation, we provide a conceptual ar-
chitecture that enables a systematic modeling and 
gradual reasoning of complex settings. Applying 
our architecture to auditory-based context recog-
nition, we’ve modeled seven everyday situations 
with more than 20 atomic scenes, achieving high 
recognition rates for both the atomic scenes and 
complex settings.

A conceptual architecture  
for context recognition
Humans recognize complex settings by perceiving 
individual settings and examining the relationships 
between them. Their certainty of the perceived set-
ting depends on how well they have gathered and 
interpreted data from their surroundings. It also 
depends on the presence or absence of some vital 
scenes that constitute the setting. A complex setting 
consists of individual settings unfolding in a cer-
tain order. Moreover, by combining individual set-
tings from their memory, humans can imagine set-
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tings they have never experienced. For example, a person who never 
watched a symphony orchestra playing Beethoven can imagine it by 
combining pictures of individual scenes of an orchestra from his or 
her experience.

Our aim is to imitate human-like reasoning. Proper imitation 
will lead us to

improve context recognition accuracy and
declaratively define an entirely new setting by aggregating known 
individual scenes.

To this end, we propose the four-layered conceptual architecture in 
Figure 1.

The architecture’s bottom layer (the raw-sensor-data layer) con-
sists of an array of physical sensors embedded in mobile devices or 
carefully placed in physical environments.

The second layer extracts primitive features (contexts). A primi-
tive context represents a single, indivisible aspect of a certain phe-
nomenon or physical entity (device, place, person, and so forth). It’s 
a meaningful interpretation of raw sensed data. Because it’s primi-
tive, it’s extracted either from a single sensor or from multiple sen-
sors representing the same aspect. Unlike a higher-level context, 
whose meaning is application-specific, a primitive context can be 
useful for recognizing several higher-level contexts.

The third layer constructs atomic scenes. The premise for this 
layer is that most everyday settings consist of distinct scenes, and 
multiple settings can have several scenes in common. If the sys-
tem recognizes these scenes and stores their models separately in a 
knowledge base, it can reuse them to declaratively define complex 
settings for which it hasn’t previously been trained.

For example, we can describe a meeting setting by the flipping 
of papers, conversations, and occasional whispers. We can describe 
a lecture by a monotonous oration, flipping of papers, occasional 
coughs, sporadic whispers, the sound of writing with chalk on a 
blackboard, and so forth. These two settings share the flipping of 
papers and whispering. A context-recognition system can therefore 
exploit this knowledge to accommodate the definition of a meeting 
or a lecture even though it has never been trained to recognize ei-
ther of these two contexts.

The fourth layer handles context recognition. It employs a de-
terministic or probabilistic reasoning scheme or a combination of 
both (for more on these approaches, see the “Related Work in Con-
text Recognition” sidebar on p. 60). It aggregates evidence from 
the third layer, establishes logical or probabilistic relations be-
tween the atomic scenes the system has already recognized, and 
computes a higher-level context. The layer takes into account do-
main knowledge of the mutual occurrence of the atomic scenes.

Common to all layers except the raw-sensor-data layer is the 
knowledge base. It comprises facts that constitute an applica-
tion domain’s vocabulary and a list of assertions about individ-
ual named entities in terms of this vocabulary. The vocabulary 
consists of concepts, which denote sets of entities, and relations, 
which denote binary relationships between these entities. The 
knowledge base also allows the building of complex descriptions 
of concepts and relations. The system uses this knowledge to ex-
tract meaningful features from sensors, classify atomic scenes, 
and model relationships between the atomic scenes to recognize 
higher-level contexts.

•
•

Auditory-based context recognition
We chose auditory signals for three reasons. First, among the hu-
man senses, hearing is second only to vision in recognizing social 
and conceptual settings; this is due partly to the richness in infor-
mation of audio signals. Second, you can embed cheap but practi-
cal microphones in almost all types of places or mobile devices, 
including PDAs and mobile phones. Finally, auditory-based con-
text recognition consumes significantly fewer computing resources 
than camera-based context recognition.

To better explain the implementation of our architecture for audi-
tory-based context recognition, we offer here a summary of digital 
audio-signal processing.

Even though auditory-based context recognition is similar to 
speech recognition, there are several differences. For example, in 
speech recognition, knowledge of human perception (tone, pitch, 
loudness, and so forth) is useful to disambiguate an uttered speech. 
This is possible because

the speaker isn’t far from the microphone and speaks sufficiently 
loud, and
no significant hindrance exists between the speaker and the 
microphone.

This isn’t the case with auditory-based context recognition. 
First, the audio-signal amplitude representing a user’s surrounding 
isn’t appreciably large because the audio sources might be farther 
from the user (the microphone). Moreover, the device with the em-
bedded microphone might be hidden in a suitcase or pocket. So, 
auditory-based context recognition can’t achieve the same accu-
racy as speech recognition.

Extracting audio features
The statistical properties of audio signals representing most every-
day settings aren’t stationary. To extract features that represent tem-
poral and spectral aspects, audio-based recognition systems divide 
the audio data stream into small time frames that can then be con-
sidered quasi-stationary. Some overlap between the frames is desir-
able; typically, the overlap is between 25 and 50 percent. A frame’s 
duration is usually between 10 and 50 milliseconds, depending on 
the desired recognition accuracy and computation time. Further pro-
cessing isn’t necessary to extract temporal features, but at least two 
additional steps are necessary to extract spectral properties.

•

•

Context
recognition

Atomic-scene
recognition

Primitive features
(context)

Raw sensor
data

Knowledge
base

Figure 1. A 
conceptual 
architecture for 
recognition of 
complex settings. 
This architecture 
allows a 
recognition 
system to mimic 
human reasoning.
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Owing to the abrupt separation of neighboring frames, high- 
frequency components will emerge at both edges of each frame. 
This frequency leakage should be removed (or at least its effect 
should be minimized) through a windowing operation, a filtering 
process that multiplies each frame with a window function that 
decays rapidly toward the edges. Before this process, however, 
we want to smooth the spectrum and enhance the high-frequency 
components by passing the frames through a first-order, finite- 
impulse-response preemphasis high-pass filter:

ssp(n) = s(n) − s(n − 1)

In this equation, ssp(n) is the improved nth sample of a frame, s(n) 
is the original nth sample, s(n − 1) is the original n − 1th sample, 

and µ is a unitless quantity, which normally ranges between 0.90 
and 0.98. For the windowing operation, we use a standard Hem-
ming window, which we can describe as

sw(n) = {0.54 − 0.46 × cos(2π(n − 1)/(N − 1))} × ssp(n)

where sw(n) refers to the nth sample of a frame that has passed 
through a Hemming window and N is the number of samples in a 
frame.

Mel-frequency cepstral coefficients (MFCCs) are the most fre-
quently used features for classifying auditory data. They represent 
frequency bands that are Mel-scaled to approximate the human 
auditory system’s response more accurately than linearly spaced 
frequency bands obtained directly from a fast Fourier transform 

trolled conditions was 96 percent (true positive) and 100 per-
cent (true negative).

Filip Bonnevier employed Bayesian networks to recognize 
25 different contexts from 21 MPEG-7 features with a 69 per-
cent recognition rate.9 Interestingly, the context recognition 
ran on a pocket PC.

Table A summarizes the audio-based context-recognition 
schemes, their recognized contexts, and their recognition 
accuracies.
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A context recognition (reasoning) process can be determin-
istic, probabilistic, or both. Deterministic context reason-
ing classifies sensed data into distinct states and produces a 
distinct output that can’t be uncertain or disputable. Prob-
abilistic reasoning, on the other hand, considers sensed 
data to be uncertain input and thus outputs multiple con-
textual states with associated degrees of truthfulness.

Several researchers have proposed probabilistic-reason-
ing techniques for context reasoning. These techniques dif-
fer according to the type of context they recognize and the 
types of sensors they employ.

Nicolas Moeënne-Loccoz, François Brémond, and Mo-
nique Thonnat proposed Bayesian networks to recognize 
various human activities on a street (aggressive behavior, 
casual talk, and play); they obtained sensed data from a 
camera.1 Huadong Wu employed a camera and several mi-
crophones to reason about the attention of people during 
a meeting session.2 He applied the Dempster-Shafer theory 
of evidence to combine data from microphones with data 
from an omnidirectional camera.

Jani Mäntyjärvi, Johan Himberg, and Pertti Huuskonen 
proposed k-means clustering and minimum-variance seg-
mentation algorithms to process data from a skin conduc-
tance sensor, a microphone, a light sensor, an accelerometer, 
and a temperature sensor, to recognize a mobile device’s 
status and its user’s activity.3 Device status refers to whether 
the device is in the user’s hands, on a table, or inside a suit-
case; user activity refers to walking, running, or going up or 
down a staircase.

Some researchers have focused particularly on process-
ing audio signals to recognize various everyday human 
situations. Vesa Peltonen and his colleagues classified 
auditory scenes into predefined classes by employing two 
classification schemes: a 1-NN (1-nearest neighbor) classi-
fier and Mel-frequency cepstral coefficients (MFCCs) with 
Gaussian mixture models.4 The auditory scenes comprised 
several everyday outdoor and indoor situations (streets, 
restaurants, offices, homes, cars, and so forth). The fea-
tures extracted from audio signals for classification were 
time and frequency domain features and linear prediction 
coefficients. Altogether, the classification systems clas-
sified 17 indoor and outdoor scenes with an accuracy of 
68.4 percent.

For their experiment, Peltonen and his colleagues con-

sidered various configurations: a binaural setup (a Brüel & 
Kjaer 4128 head and torso simulator), a stereo setup (AKG 
C460B microphones), and a B-format setup, which contains 
3D information of the audio event being recorded (Sound-
Field MkV microphone). They recorded the sounds on a digi-
tal multitask recorder with a 16-bit, 48-kHz sampling rate 
and on a Sony (TCD-D10) digital audio tape recorder with a 
16-bit, 48-kHz sampling rate.

Antti Eronen replaced the two classifiers that Peltonen 
and his colleagues used with hidden Markov models (HMMs) 
to imitate human hearing sensitivity and to increase recogni-
tion accuracy up to 88 percent.5

Ling Ma, Dan Smith, and Ben Milner also employed HMMs 
and MFCCs to recognize 10 auditory scenes.6 By varying the 
hidden states of the Markov models, they achieved different 
recognition rates. With only three hidden states, the classi-
fier achieved 78 percent context recognition; with 15 hidden 
states, it achieved 91.5 percent recognition. Remarkably, 
context recognition declined for more than 15 hidden states. 
Dan Smith, Ling Ma, and Nick Ryan extended this research by 
introducing a belief revision mechanism that increased the 
recognition rate to 92.27 percent and the number of recog-
nized contexts to 12.7

Panu Korpipää and his colleagues employed a naive Bayes-
ian classifier and an extensive set of audio features derived 
partly from the algorithms of the MPEG-7 standard.8 They 
based the classification mainly on audio features measured 
in a home scenario. To collect the data, Korpipää and his col-
leagues used an extra-small sensor box attached to a shoul-
der strap of a backpack containing a laptop. When collect-
ing scenario data, researchers wore the backpack. A cordless 
mouse controlled the measurement system to mark the sce-
nario phases. The microphone was a small, omnidirectional 
AKG C 417/B.

With a resolution of 1 second in segments of 5–30 seconds 
and using leave-one-out cross-validation, Korpipää and his 
colleagues achieved a recognition rate of 87 percent of true 
positives and 95 percent of true negatives, averaged over 
nine 8-minute scenarios containing 17 segments of different 
lengths and nine different contexts. The reference accura-
cies measured by testing with training data were 88 percent 
(true positive) and 95 percent (true negative), suggesting 
that the model can cover the variability introduced in the 
data on purpose. Reference recognition accuracy in con-

Related Work in Context Recognition

Table A. Audio-based context-recognition schemes.

Authors
Primitive features 
(contexts) Classifier

Recognition 
accuracy (%) Context

Peltonen  
et al.4

Temporal, spectral,  
Mel-frequency cepstral  
coefficient (MFCC)

k-nearest neighbor  
(k-NN) and Gaussian  
mixture model (GMM)

68.4  
(17 of 26 contexts)

Bathroom, street, church,  
car, supermarket, office

Eronen 
et al.5

MFCC Hidden Markov  
model (HMM)

Between 61 and 85 
(18 contexts)

Library, office, lecture,  
train, bus

Ma, Smith, 
and Milner6

MFCC HMM 91.5  
(10 contexts)

Bar, beach, bus, lecture,  
office, street, launderette

Smith, Ma, 
and Ryan7

MFCC HMM 92.27  
(12 contexts)

Bus, car, presentation,  
supermarket, train, office

Korpipää 
et al.8

MPEG-7 Naïve Bayesian  
classifier

88 
(9 contexts)

Running, walking, music, 
speech, elevator, tap water, car

Bonnevier9 Spectral, temporal,  
MPEG-7

Bayesian network 69  
(25 contexts)

Street, car, bus, cooking,  
TV, kitchen, living room
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(FFT) or a discrete cosine transformation (DCT). Such represen-
tations allow context-recognition schemes to “perceive” their sur-
roundings as humans would perceive theirs.

To obtain MFCCs, we perform an FFT; the result passes through 
a bank of triangular filters called Mel-filters (see Figure 2 on p. 62) 
to produce the Mel-spectrum. The number of filters can vary, but 
as a rule, speech recognition uses 23 filters. These filters are equi-
distant in the Mel-frequency domain, with a 50 percent overlap be-
tween adjacent filters. The following equation computes the center 
of each triangular filter:
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where c(x) is the center of a triangular filter (in the frequency do-
main) that has taken the amplitude spectrum, x, of the FFT as its 
input.
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where ci is the ith cepstral coefficient, fi is the ith frequency 
component, N is the number of the triangular filters, and M is 

trolled conditions was 96 percent (true positive) and 100 per-
cent (true negative).

Filip Bonnevier employed Bayesian networks to recognize 
25 different contexts from 21 MPEG-7 features with a 69 per-
cent recognition rate.9 Interestingly, the context recognition 
ran on a pocket PC.

Table A summarizes the audio-based context-recognition 
schemes, their recognized contexts, and their recognition 
accuracies.
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A context recognition (reasoning) process can be determin-
istic, probabilistic, or both. Deterministic context reason-
ing classifies sensed data into distinct states and produces a 
distinct output that can’t be uncertain or disputable. Prob-
abilistic reasoning, on the other hand, considers sensed 
data to be uncertain input and thus outputs multiple con-
textual states with associated degrees of truthfulness.

Several researchers have proposed probabilistic-reason-
ing techniques for context reasoning. These techniques dif-
fer according to the type of context they recognize and the 
types of sensors they employ.

Nicolas Moeënne-Loccoz, François Brémond, and Mo-
nique Thonnat proposed Bayesian networks to recognize 
various human activities on a street (aggressive behavior, 
casual talk, and play); they obtained sensed data from a 
camera.1 Huadong Wu employed a camera and several mi-
crophones to reason about the attention of people during 
a meeting session.2 He applied the Dempster-Shafer theory 
of evidence to combine data from microphones with data 
from an omnidirectional camera.

Jani Mäntyjärvi, Johan Himberg, and Pertti Huuskonen 
proposed k-means clustering and minimum-variance seg-
mentation algorithms to process data from a skin conduc-
tance sensor, a microphone, a light sensor, an accelerometer, 
and a temperature sensor, to recognize a mobile device’s 
status and its user’s activity.3 Device status refers to whether 
the device is in the user’s hands, on a table, or inside a suit-
case; user activity refers to walking, running, or going up or 
down a staircase.

Some researchers have focused particularly on process-
ing audio signals to recognize various everyday human 
situations. Vesa Peltonen and his colleagues classified 
auditory scenes into predefined classes by employing two 
classification schemes: a 1-NN (1-nearest neighbor) classi-
fier and Mel-frequency cepstral coefficients (MFCCs) with 
Gaussian mixture models.4 The auditory scenes comprised 
several everyday outdoor and indoor situations (streets, 
restaurants, offices, homes, cars, and so forth). The fea-
tures extracted from audio signals for classification were 
time and frequency domain features and linear prediction 
coefficients. Altogether, the classification systems clas-
sified 17 indoor and outdoor scenes with an accuracy of 
68.4 percent.

For their experiment, Peltonen and his colleagues con-

sidered various configurations: a binaural setup (a Brüel & 
Kjaer 4128 head and torso simulator), a stereo setup (AKG 
C460B microphones), and a B-format setup, which contains 
3D information of the audio event being recorded (Sound-
Field MkV microphone). They recorded the sounds on a digi-
tal multitask recorder with a 16-bit, 48-kHz sampling rate 
and on a Sony (TCD-D10) digital audio tape recorder with a 
16-bit, 48-kHz sampling rate.

Antti Eronen replaced the two classifiers that Peltonen 
and his colleagues used with hidden Markov models (HMMs) 
to imitate human hearing sensitivity and to increase recogni-
tion accuracy up to 88 percent.5

Ling Ma, Dan Smith, and Ben Milner also employed HMMs 
and MFCCs to recognize 10 auditory scenes.6 By varying the 
hidden states of the Markov models, they achieved different 
recognition rates. With only three hidden states, the classi-
fier achieved 78 percent context recognition; with 15 hidden 
states, it achieved 91.5 percent recognition. Remarkably, 
context recognition declined for more than 15 hidden states. 
Dan Smith, Ling Ma, and Nick Ryan extended this research by 
introducing a belief revision mechanism that increased the 
recognition rate to 92.27 percent and the number of recog-
nized contexts to 12.7

Panu Korpipää and his colleagues employed a naive Bayes-
ian classifier and an extensive set of audio features derived 
partly from the algorithms of the MPEG-7 standard.8 They 
based the classification mainly on audio features measured 
in a home scenario. To collect the data, Korpipää and his col-
leagues used an extra-small sensor box attached to a shoul-
der strap of a backpack containing a laptop. When collect-
ing scenario data, researchers wore the backpack. A cordless 
mouse controlled the measurement system to mark the sce-
nario phases. The microphone was a small, omnidirectional 
AKG C 417/B.

With a resolution of 1 second in segments of 5–30 seconds 
and using leave-one-out cross-validation, Korpipää and his 
colleagues achieved a recognition rate of 87 percent of true 
positives and 95 percent of true negatives, averaged over 
nine 8-minute scenarios containing 17 segments of different 
lengths and nine different contexts. The reference accura-
cies measured by testing with training data were 88 percent 
(true positive) and 95 percent (true negative), suggesting 
that the model can cover the variability introduced in the 
data on purpose. Reference recognition accuracy in con-

Related Work in Context Recognition

Table A. Audio-based context-recognition schemes.

Authors
Primitive features 
(contexts) Classifier

Recognition 
accuracy (%) Context
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et al.4
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(k-NN) and Gaussian  
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68.4  
(17 of 26 contexts)

Bathroom, street, church,  
car, supermarket, office

Eronen 
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MFCC Hidden Markov  
model (HMM)

Between 61 and 85 
(18 contexts)

Library, office, lecture,  
train, bus

Ma, Smith, 
and Milner6

MFCC HMM 91.5  
(10 contexts)

Bar, beach, bus, lecture,  
office, street, launderette

Smith, Ma, 
and Ryan7

MFCC HMM 92.27  
(12 contexts)

Bus, car, presentation,  
supermarket, train, office

Korpipää 
et al.8

MPEG-7 Naïve Bayesian  
classifier

88 
(9 contexts)

Running, walking, music, 
speech, elevator, tap water, car

Bonnevier9 Spectral, temporal,  
MPEG-7

Bayesian network 69  
(25 contexts)

Street, car, bus, cooking,  
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the number of the extracted MFCCs. In this way, we set the 
dimension of the feature vectors; the typical dimension is 13.

To weaken the effect of very low and high orders of the cep-
stral coefficients, we need to subject the MFCCs to a “band-
pass filtering” process called liftering. The following equation 

displays a typical liftering function:
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where ci is the corrected cepstral coeffi-
cient, c is the ith uncorrected cepstral coef-
ficient, and L is a liftering factor.

recognition
Feature extraction quantizes the audio sig-
nal and transforms it into various char-
acteristic features. This results in an n- 
dimensional feature vector representing 
each audio frame. A classifier then takes 
this feature vector and determines what it 
represents—that is, it determines an audi-
tory scene.

Several recognition techniques are read-
ily available, most of which we mention in 
the sidebar. The three most common are 
k-nearest neighbor (k-NN) classifiers, hid-
den Markov models (HMMs), and Bayesian 
networks.

Implementation
We selected these seven higher-level con-
texts: office, cafeteria, library, tram, street, 
lecture, and train. Table 1 lists these set-
tings along with the associated atomic 
scenes.

We chose the atomic scenes on the ba-
sis of how well they represented the higher-
level settings and how accurately they could 
be recognized.

The raw-sensor-data layer consisted of 
commonplace microphones embedded in 
ordinary laptop PCs during the training and 
test phases. Moreover, we recorded the au-
dio signals without much preparation to im-
itate how users handle their mobile devices 
while moving or carrying out other more 
important activities.

We implemented the second layer by 
adopting the OC-volume framework (http://
ocvolume.sourceforge.net). Even though the 
framework was initially intended for speech 
recognition, we could reuse it for extract-
ing MFCCs and for vector quantization, 
using the LBG (Linde, Buzo, and Gray) al-
gorithm.1 However, we had to modify the 
algorithm to

model time dependency in the audio signals and
increase the signals’ bandwidth to accommodate the surrounding 
noise’s dominant frequencies.

As a result, we could consider ranges of frequencies between 30 and 

•
•

Figure 2. A triangular filter bank. The filters’ response has a linear frequency 
spacing below 1,000 Hz and a logarithmic spacing above 1,000 Hz. HMel(f) denotes a 
normalized magnitude spectrum.
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Table 1. Higher-level contexts defined declaratively  
as aggregations of atomic scenes.

Higher-level context Individual scenes

Office Clacking of keyboard
Conversation
Mouse clicking
Telephone conversation
Telephone ringing

Cafeteria Background noise
Chair movement
Clacking of cash register keys
Clattering dishes
Conversation

Library Chair movement
Clacking of keyboard
Coughing
Door opening and closing
Flipping pages
Mouse clicking
Whispering

Tram Station announcement signal
Background noise
Door-closing warning
People getting on and off

Street Moving cars
People walking and talking
Background noise

Lecture Background noise
Chair movement
Coughing
Flipping pages
Oration
Whispering
Writing on a chalkboard

Train Background noise
People getting on and off
Conversation
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10,000 Hz. For speech recognition, the frequency of interest is be-
low 3,400 Hz.

To realize the atomic-scene layer, we chose a k-NN classifier be-
cause of its simplicity. It also classifies a large number of scenes in 
an acceptable recognition time. The classifier performs a class vote 
among the k-nearest neighbors on a point to be classified. A Euclid-
ean distance, d, between the points determines which atomic scenes 
are represented by the extracted MFCCs. We set k = 1. Vesa Peltonen 
and his colleagues demonstrated that classification with k greater 
than 1 yields no significant improvement in recognition accuracy.2

Table 2 displays the atomic scenes we could recognize, the rec-
ognition accuracy, and the deviation, with the atomic scenes that 

were wrongly recognized. The quality of the recognized atomic 
scenes depended on how distinct they were from other atomic 
scenes. It also depended on the recorded audio signal’s quality.

We chose a Bayesian network to model relationships between 
the higher-level contexts and the atomic scenes and to recognize 
a higher-level context. We used the JavaBayes framework (www.
cs.cmu.edu/~javabayes/index.html) to implement the knowledge 
base and the context-recognition layer. The knowledge base stores 
models of the Bayesian network structure as well as conditional-
probability distributions.

The Bayesian classifier establishes a network based on the 
atomic scenes recognized in the lower layer. We applied heuristic  

Table 2. Recognition accuracy of atomic scenes.

Atomic scene Recognition rate (%) Deviation (%), with incorrect classifications

Car 100 0

Flipping pages 100 0

Door opening and closing 91 Background noise, Tram: 9

Chair movement 80 Background noise, Tram: 20

Door-closing warning 100 0

Clattering dishes 50 Coughing: 50

Coughing 100 0

Background noise, Tram 87.5 Oration: 12.5

Writing on a chalkboard 80 Whispering: 20

Whispering 56 Background noise, Lecture: 44

Oration 75 Background noise, Cafeteria: 10
Conversation, Office: 5
Background noise, Lecture: 5

Conversation 72 Oration: 18
Background noise, Train: 10

Background noise, Street 58 Writing on a chalkboard: 23
Background noise, Cafeteria: 19

Background noise, Lecture 40 Whispering: 60

Mouse clicking 94 Flipping pages: 4
Clacking of keyboard: 2

Background noise, Train 100 0

Station announcement signal 0 Poorly captured audio signal

Clacking of keyboard 79 Mouse clicking: 10
Background noise, Library: 6
Door opening and closing: 3
Coughing: 1
Background noise, Train: 1

Conversation, Telephone 100 0

Background noise, Cafeteria 65 Conversation: 25
Station announcement signal: 5
Chair movement: 5

Background noise, Library 62 Clacking of keyboard: 32
Mouse clicking: 6

Overall recognition rate 69.92
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observations for establishing the conditional dependencies between 
the atomic scenes and the higher-level contexts. Figure 3 shows our 
Bayesian network.

Bayesian networks apply Bayes’s theorem to model probabilistic 
relationships among distinctions of interest in uncertain reasoning. 
The networks are directed acyclic graphs (DAGs) in which nodes 
represent random variables and a directed arrow represents a con-
ditional dependency between the variables. A particular configura-
tion of a Bayesian network refers to an instantiation of the random 
variables with values from a 2D value vector. A particular configu-
ration’s likelihood is determined by the sum of the products of the 
associated conditional probabilities.

A Bayesian network obeys the Markov condition for mathemati-
cal and computational tractability. So, a node is conditionally inde-
pendent of its nondescendants given its parent in G, the network’s 
graph topology. Mathematically, we express this as

 
 p n n n p n parent nj j j

j

N

1 2
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where n1, n2, …, nj are the possible values of the network’s random 
variables, and p refers to probability.

Once we establish a Bayesian network and define the degree 

of independence between random variables, 
even partially, it’s possible to carry out three 
essential tasks.3 First, because the model 
encodes dependencies among all variables, 
it can readily reason about situations where 
some data entries are missing. Second, we 
can train the network to learn causal rela-
tionships and hence use it to understand a 
problem domain and to predict the conse-
quences of intervention. Finally, because 
the model has both causal and probabilis-
tic semantics, it’s ideal for combining prior 
knowledge (which often comes in causal 
form) and data.

Discussion
Table 3 lists our higher-level contexts and the 
corresponding atomic scenes that contribute 
to their recognition. The last column lists the 
normalized percentage of each atomic scene’s 
contribution. The percentage doesn’t add up 
to 100 percent because the list doesn’t include 
erroneous atomic scenes.

The higher-level context with the lowest 
recognition rate is a street (37 percent). In 
fact, the spurious cafeteria context had higher 
recognition accuracy—47 percent. Interest-
ingly, the Bayesian classifier could recognize 
a cafeteria with 100 percent accuracy without 
mistaking it for a street or another contending 
setting. This implies that context recognition 
is asymmetric—a context’s recognition accu-
racy depends on not only how well it’s repre-
sented by the atomic scenes but also whether 
the captured auditory test signal typically 
represents the setting. For our case, for exam-

ple, the test signal came twice from a street with little activity, and 
the activities at a nearby cafeteria dominated the recording. Predict-
ably, this led to a wrong conclusion.

On the other hand, page flipping might seem difficult to rec-
ognize because it isn’t loud. We could, however, recognize it with 
100 percent accuracy. This is because the atomic scene was associ-
ated with a lecture and a library, where the background noise and 
other atomic scenes could be distinctly discerned. Moreover, as 
we trained and tested our system, we placed a laptop with a micro-
phone near the user who was reading and flipping pages.

The least-recognized scene—in fact, the system didn’t recognize 
it at all—was chair movement in a library. The system sometimes 
mistook an oration in a lecture room for a conversation in an office 
or cafeteria, which is understandable.

We were interested in comparing our results with others’, but this 
wasn’t easy. Some research reports conceal a wealth of information. 
Maybe this is because recognition accuracy depends on not only the 
particular schemes or features employed but also many other fac-
tors. To begin with, it depends on the types of contexts to be recog-
nized. The larger and more similar the context types, the harder it 
is to distinguish between them. Recognition accuracy also depends 
on the test signal’s length, the audio signal’s sampling rate, the  

Driving car

Flipping pages

Whisper

Background

Conversation

Door-closing warning

Chair movement

Writing on a chalkboard

Clattering dishes

Mouse clicking

CoughingTelephone ringing

Clacking of cash register keys

Context

Station announcement signal

Clacking of keyboard

Oration

Figure 3. A Bayesian network for establishing conditional dependencies between 
higher-level settings and atomic scenes. The child nodes represent the atomic 
scenes, and the parent node represents the higher-level contexts. Altogether, 
the parent node can have seven different values depending on the network 
configuration.
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MFCCs’ size, and the size of the code book of the vector quantiza-
tion process. Subsequently, a trade-off always exists between recog-
nition time and recognition accuracy.

More important, the recording devices used and the audio signal’s 
length and duration influence context-recognition accuracy. Using ex-
pensive, bulky, and power-hungry audio devices might yield remark-
able accuracy, but using them in everyday situations, particularly in 
mobile environments, isn’t feasible.

The research that comes closest to ours is that of Peltonen and his 
colleagues and Antti Eronen (see the sidebar). Our atomic-scene-
recognition accuracy is similar to theirs, but we achieved recog-
nition accuracy through commonplace microphones and ordinary 
laptop computers as compared to the sophisticated devices they 
used to record audio signals. Moreover, our approach can be gener-
alized to accommodate sensors other than microphones, while their 
approaches are limited to audio-based context recognition.

Our experience demonstrates the difficulty of context rec-
ognition using a single context source—namely, an audio 

signal. Humans aptly apply other faculties besides hearing to ap-
propriately perceive their surroundings. This justifies the need for 
heterogeneous sensing.

We’re interested in investigating the possibility of deploying—at 
least in part—audio-signal-processing algorithms on wireless sen-

sor nodes. This will enable us to gather and process surrounding 
acoustic information and to better interface the physical world with 
the virtual world.
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Table 3. Recognition of complex settings by aggregating atomic scenes.

Higher-level context
Correctly and incorrectly  
recognized contexts (%)

Distribution of the correctly  
recognized atomic scenes (%)

Library Library: 67
Office: 33

Clacking of keyboard: 25.17
Mouse clicking: 23.87
Door opening and closing: 20.86
Chair movement: 7

Office Office: 90
Train: 10

Conversation, Telephone: 70.7
Clacking of keyboard: 25.17
Mouse clicking: 3.7

Cafeteria Cafeteria: 100 Background noise, Cafeteria: 51.86
Conversation: 32.8
Clattering dishes: 7.4

Street Street: 37
Cafeteria: 47
Lecture: 10
Train: 5

Moving cars: 51.49
Chair movement: 10.89
Background noise, Street: 10
Conversation: 8.49
Background noise, Cafeteria: 7.4

Tram Tram: 75
Cafeteria: 25

Background noise, Tram: 70
Station announcement signal: 7

Train Train: 40
Library: 40
Lecture: 15
Office: 5

Background noise, Train: 87.67
Conversation: 9.4

Lecture Lecture: 100 Oration: 36.53
Chair movement, Lecture: 26.03
Background noise, Lecture: 15.19
Writing on chalkboard: 8.22
Whispering: 6.4

Overall recognition rate 72.71
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