69,432 research outputs found

    Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond

    Full text link
    We present recent results on counting and distribution of circles in a given circle packing invariant under a geometrically finite Kleinian group and discuss how the dynamics of flows on geometrically finite hyperbolic 33 manifolds are related. Our results apply to Apollonian circle packings, Sierpinski curves, Schottky dances, etc.Comment: To appear in the Proceedings of ICM, 201

    Implementing Brouwer's database of strongly regular graphs

    Full text link
    Andries Brouwer maintains a public database of existence results for strongly regular graphs on n1300n\leq 1300 vertices. We implemented most of the infinite families of graphs listed there in the open-source software Sagemath, as well as provided constructions of the "sporadic" cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of nn.Comment: 18 pages, LaTe

    Apollonian circle packings: Dynamics and Number theory

    Full text link
    We give an overview of various counting problems for Apollonian circle packings, which turn out to be related to problems in dynamics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lectures given at RIMS, Kyoto in the fall of 2013.Comment: To appear in Japanese Journal of Mat

    Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    Full text link
    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.Comment: 15 pages, 10 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application

    Dynamics of Shape Memory Alloys Patches with Mechanically Induced Transformations

    Get PDF
    A mathematical model is constructed for the modelling of two di- mensional thermo-mechanical behavior of shape memory alloy patches. The model is constructed on the basis of a modified Landau-Ginzburg theory and includes the coupling effect between thermal and mechanical fields. The free energy functional for the model is exemplified for the square to rectangular transformations. The model, based on nonlinear coupled partial differential equations, is reduced to a system of differential-algebraic equations and the backward differentiation methodology is used for its numerical analysis. Computational experiments with representative distributed mechanical loadings are carried out for patches of different sizes to analyze thermo-mechanical waves, coupling effects, and 2D phase transformations

    More efficient time integration for Fourier pseudo-spectral DNS of incompressible turbulence

    Full text link
    Time integration of Fourier pseudo-spectral DNS is usually performed using the classical fourth-order accurate Runge--Kutta method, or other methods of second or third order, with a fixed step size. We investigate the use of higher-order Runge-Kutta pairs and automatic step size control based on local error estimation. We find that the fifth-order accurate Runge--Kutta pair of Bogacki \& Shampine gives much greater accuracy at a significantly reduced computational cost. Specifically, we demonstrate speedups of 2x-10x for the same accuracy. Numerical tests (including the Taylor-Green vortex, Rayleigh-Taylor instability, and homogeneous isotropic turbulence) confirm the reliability and efficiency of the method. We also show that adaptive time stepping provides a significant computational advantage for some problems (like the development of a Rayleigh-Taylor instability) without compromising accuracy
    corecore