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DYNAMICS OF SHAPE MEMORY ALLOYS PATCHES WITH

MECHANICALLY INDUCED TRANSFORMATIONS

Linxiang Wang

MCI, Faculty of Science and Engineering,
University of Southern Denmark, Sonderborg, DK-6400, Denmark

Roderick Melnik

Mathematical Modelling and Computational Sciences,
Wilfrid Laurier University, Waterloo,

75 University Avenue West,, Waterloo, ON, Canada N2L 3C5

Abstract. A mathematical model is constructed for the modelling of two di-
mensional thermo-mechanical behavior of shape memory alloy patches. The
model is constructed on the basis of a modified Landau-Ginzburg theory and
includes the coupling effect between thermal and mechanical fields. The free
energy functional for the model is exemplified for the square to rectangular
transformations. The model, based on nonlinear coupled partial differential
equations, is reduced to a system of differential-algebraic equations and the

backward differentiation methodology is used for its numerical analysis. Com-
putational experiments with representative distributed mechanical loadings are
carried out for patches of different sizes to analyze thermo-mechanical waves,
coupling effects, and 2D phase transformations.

1. Introduction. The Shape Memory Effect (SME) in certain metallic systems,
known as Shape Memory Alloys (SMA), has been the subject of considerable the-
oretical and experimental research efforts. Upon the action of thermal, magnetic,
electrical, hydrostatic and other fields, the SMAs can recover their original shape
after being permanently deformed [19]. These materials are an intrinsic part of
the smart material and structure technology. They can directly transduce thermal
energy into mechanical and vice versa, making them very attractive in micro-sensor
and actuator applications. Their application areas include also biomedicine, com-
munication industries, robotics to name just a few.

New promising engineering applications of SMAs and their ongoing proliferation
out paced, at least initially, the development of adequate mathematical models and
physical theories. At the same time, it is clear that a better understanding of the
dynamic behavior of SMA structures is paramount for further advances in engineer-
ing applications of SMAs. Such an understanding can be gained with mathematical
modelling based on physically plausible theories and experimental observations, and
increasing research efforts are directed to this area [2]. At present, the unique prop-
erties of the SMA are viewed to be a consequence of its unique ability to undergo
reversible phase transformations and reversible martensitic reorientations when it
is subjected to appropriate loadings. Hence, a series of concerted efforts have been
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1238 LINXIANG WANG AND RODERICK MELNIK

directed to the analysis of such phase transformations and reorientations in order
to bridge the gap between engineering applications and our ability to predict the
response of the material under various loadings.

However, even for the one dimensional case, the analysis of the dynamics of SMA
structures is quite involved due to multivariant martensitic phase transformations,
strong nonlinearity in the mechanical field, and a strongly coupled nonlinear pattern
of interaction between mechanical and thermal fields (e.g., [2, 18] and references
therein). To analyze thermo-mechanical interactions numerically is a highly non-
trivial task even in the case where the phase transformations are not included into
the model due to the fact that strong nonlinearity and thermo-mechanical coupling
have still to be dealt with. For many practical applications, one dimensional models
are able to satisfactory approximate the dynamics of the SMA rods and wires.
However, for many other applications a better understanding of the dynamics of
SMA structures in dimensions higher than one is required. For instance, a number
of practical applications lead to the usage of SMA membranes embedded in a micro-
valve, SMAs thin film, and so on. In such cases, it is essential to develop new models
that are applicable for the description of nonlinear thermo-mechanical waves and
phase transformations in higher dimensions.

Up to date, many instructive investigations have been carried out to under-
stand the dynamics during the process of martensitic phase transitions. They
provide a firm background for the application development, in particular in the
one-dimensional cases where the modelling of shape memory alloys can be based on
the Landau-Ginzburg free energy functional (e.g., [3, 7, 17] and references therein).
Although considerable efforts have been devoted to the development of a general
theory for the dynamics of SMAs, most of the results are applicable to the one
dimensional case only ([7, 21] and references therein), while the results concerning
two or three-dimensional cases are rarely available in the literature in the context
of modelling thermo-mechanical waves and phase transformations in SMAs. Sev-
eral theoretical contributions to the development of free energy functionals that
play an essential role in the modelling of SMA dynamics have been reported in the
literature (e.g., [5, 21]. Such results were reported for the three dimensional case
and were developed on the basis of a modified Landau-Ginzburg theory, but their
numerical implementation was not reported. Recently, for the simulation of 2D
microstructures in ferro-elastic materials, several models were proposed by reduc-
tion procedures applied to the general 3D model [10, 11]. No numerical analysis
of thermo-mechanical coupling was offered and only static mesoscale simulations of
microstructures with fixed temperature were presented.

In this paper, we propose a two-dimensional macroscopic dynamical model for
the description of thermo-mechanical behavior of SMA structures. Our free energy
function, constructed for 2D dynamical models that are applicable at the mesoscopic
level, is similar to those previously discussed in [1, 13, 14]. We apply this new model
to the numerical analysis of thermo-mechanical behavior of 2D SMA structures
under various mechanical loadings. We demonstrate that phase transformations in
SMAs can be successfully predicted with the proposed model.

2. Square to Rectangular Transformations. The main purpose of the numer-
ical analysis of SMAs is to gain a better understanding of the dynamics of SMA
structures. Since phase transformations are responsible for SMA unique properties,
this implies that the developed mathematical models should be capable to capture
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three-dimensional cases. Examples of the alloys exhibiting such transformations
include Nb3Sn, InT l, FePd, some copper based SMAs and many others (e.g.,
[11, 22, 14] and reference therein). Hence, studies of the specific transformation
chosen here are often regarded as a prerequisite for a better understanding of the
cubic to tetragonal and tetragonal to orthorhombic transformations. Up to this
point, a number of numerical studies of the dynamics of phase transformations
have been carried out, including those concerned with the formation and growth
of microstructures. They explained various phenomena such as the formation of
tweed microstructures observed by a variety of techniques ([12, 22, 11, 10, 14] and
references therein). These studies concentrated primarily on mesoscale pattern for-
mation and microstructures evolution.

According to Landau’s theory of phase transformations, the basis of any nonlinear
continuum-thermodynamics model for phase transformations is a non-convex free

energy functional. This idea has been used by many authors (e.g., [5, 1, 14] among
others). The global and local minima of the free energy potential with respect to the
strain tensor (or deformation gradients) correspond to the stable and mesostable
states at a given temperature. In the context of SMAs, in particular when we
are concerned with 1D simulations, we can use the Helmholtz free energy Ψ and
its related strain energy W , as it has been demonstrated by a number of authors
([6, 7, 18, 16, 3] and references therein):

Ψ(θ, ǫ) = ψ0(θ) + ψ1(θ)ψ2(ǫ) + ψ3(ǫ) (2.1)

where ψ0(θ) models thermal field contributions, ψ1(θ)ψ2(ǫ) models shape memory
contributions, and ψ3(ǫ) models mechanical field contributions. The last two con-
tributions can be simulated by one free elastic energy function which is dependent
on the temperature. Recall that ǫ = ∂u/∂x (with u being the displacement)is
the strain in this case and it is chosen as the only order parameter for the phase
transformations. The functions ψ0 could take the following form:

ψ0 = −cvθ ln θ (2.2)

where cv is the specific heat constant, θ0 is the reference temperature for the trans-
formation.

To characterize the austenite at high temperature and the martensite variants
at low temperature in the SMAs, a free elastic energy functional F was established
earlier for the square to rectangular transformations, in which the Landau free
energy function Fl [10, 11] was modified. Note that for the square to rectangular
transformation, there is only one order parameter needed [7, 7, 14] to characterize
the martensite variants in a 2D space, as shown by Fig. 1(a). As it has been
discussed in detail before (e.g., [14, 10, 11, 22, 12] and references therein), a simple
free elastic energy functional could be chosen as a function of the order parameter
in the following form:

F = Fs + Fg,

Fs =
a1

2
e21 +

a3

2
e23 + Fl

Fl =
A2

2
e22 +

a4

4
e42 +

a6

6
e62,

Fg =
d2

2

3
∑

i=1

(∇ei)
2 +

d3

4

3
∑

i=1

(∇2ei)
2.

(2.3)
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where ∇ = ∂/∂x, ∇2 = ∂2/∂x2, A2, ai i = 1, . . . , 6, d2, and d3 are the material-
specific coefficients, and e1, e2, e3 are dilatational, deviatoric, and shear components
of the strains, respectively, which are defined as follows:

e1 = (η11 + η22) /
√

2,

e2 = (η11 − η22) /
√

2,
e3 = (η12 + η21) /2.

(2.4)

The Cauchy-Lagrangian strain tensor η is given by its components in the standard
manner with the repeated-index convention used:

ηij (x, t) =

(

∂ui (x, t)

∂xj
+
∂uj (x, t)

∂xi

)

/2, (2.5)

where ui is the displacement in the ith direction in the coordinate system, and x

is the coordinates of a material point in the domain of interest. In this free energy
functional, the deviatoric strain e2 is chosen as the order parameter.

In the above elastic free energy function F , the Ginzburg term Fg is the term
proportional to the square of the strain gradients. It produces an energy cost
for deviations from spatial uniformity such as in the presence of domain walls.
This term is necessary for the simulation of microstructures and phase growth ([11,
14]and references there in), but here we are interested in the macroscopic behavior
of the SMAs. Since only the dynamical properties of the material before and after
the phase transformation are of interest, the simulation scale does need to be as fine
as being able to reproduce the domain wall movement, and therefore the Ginzburg
term can be ignored in this case.

At the same time, the Landau free energy function Fl should be able to be con-
verted into a triple well, double well, or convex potential, depending on the specific
temperature and the material-specific constants. To include the temperature de-
pendency of the free energy functional, the material parameter A2 is assumed to
be linearly dependent on the material temperature A2 = a2(θ − θ0). Now, if we
assume that the shape memory contributions and mechanical field contributions
ψ1(θ)ψ2(ǫ) + ψ3(ei) are represented by the above mentioned Landau free elastic
energy functional, and take the thermal contribution ψ0 the same as in the 1D case,
the final form of the Helmholtz free energy function for the square to rectangular
transformations will take the following form:

Ψ(θ, ǫ) = −cvθ ln θ+
a1

2
e21 +

a3

2
e23 +FL, FL =

a2

2
(θ − θ0) e

2
2−

a4

4
e42 +

a6

6
e62. (2.6)

This representation can be easily interpreted in a standard way. In Fig.1 (b), we
plotted the Landau free energy function for a SMA sample based on the mater-
ial Au23Cu30Zn47 as a function of the deviatoric strain e2 for different values of
temperatures. It is easy to see that the function has two local minima at lower tem-
peratures (210oK), which correspond to two rectangular martensite variants, while
only one minimum at the center corresponds to the square austenite phase when the
temperature is high (270oK). When the temperature is in between (e.g., around
245oK in Fig. 1b), there are three local minima, which indicates the existence of
metastable phases.

In the next section, the above free energy functional will be used to derive gov-
erning equations for the dynamics of SMA patches with square to rectangular trans-
formations.
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3. A 2D Model for SMA Dynamics. To obtain the governing equations describ-
ing the dynamical behavior of SMA patches, we start our discussion from physical
conservation laws. Due to coupling between mechanical and thermal fields, we have
to take into account the mass, momentum, and energy balances simultaneously.
In its general form, the system describing coupled thermo-mechanical interactions
for the first order phase transformations in a 2D SMA structure can be written as
follows [21, 19]:

ρ
∂2ui

∂t2
= ∇x · σ + fi, i, j = 1, 2,

ρ
∂e

∂t
− σ

T : (∇v) + ∇ · q = g,
(3.7)

where ρ is the density of the material, u = {ui}|i=1,2 is the displacement vector,
v = ∂u/∂t is the velocity vector, σ = {σij} is the stress tensor, q is the heat flux,
e is the internal energy, f = (f1, f2)

T and g are mechanical and thermal loadings,
respectively.

Having constructed the free energy functional Ψ as in Eq.2.6 in section 2, we
note that the internal energy e is connected with the free energy function Ψ by the
following relationship:

e = Ψ − θ
∂Ψ

∂θ
. (3.8)

This gives the internal energy as function of ei and θ:

e = cvθ +
a1

2
e21 +

a3

2
e23 −

a2

2
θ0e

2
2 −

a4

4
e42 +

a6

6
e62. (3.9)

Finally, we have to specify the constitutive relationships that couple stresses, strains
(deformation gradients), temperature and heat fluxes. We follow [19] in doing so:

Φ1(σ,η) = 0, Φ2(q, θ) = 0, (3.10)

where it is implicitly assumed that these relations may involve spatial and temporal
derivatives of the functions. For the constitutive relationship Φ2, the Cattaneo-
Vernotte model can be used to capture a finite speed of the thermal wave propaga-
tion:

q + τ0
∂q

∂t
= −k(θ, η)∇θ (3.11)

An approximation to this general case is provided by the generalized form of the
Fourier law, but all simulations reported in this paper has been performed for the
classical case of

q = −k∇θ (3.12)

with constant heat conductivity k. Further we assume that the constitutive rela-
tionship Φ1 between stresses and strains are given by the following equation [7, 21]:

σ = ρ
∂Ψ

∂η
. (3.13)

By substituting the free energy functional defined by Eq.(2.6) into the above
equation, all the entries in the stress tensor can be obtained as follows:

σ11 =

√
2

2
ρ(a1e1 + a2(θ − θ0)e2 − a4e

3
2 + a6e

5
2),

σ12 =
1

2
ρa3e3 = σ21,

σ22 =

√
2

2
ρ(a1e1 − a2(θ − θ0)e2 + a4e

3
2 − a6e

5
2).

(3.14)
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By assembling all the equations discussed above together, the governing equations
for the dynamics of the shape memory alloys patches with square to rectangular
transformation can be written as:

∂2u1

∂t2
=

√
2

2

∂

∂x
(a1e1 + a2(θ − θ0)e2 − a4e

3
2 + a6e

5
2) +

1

2

∂

∂y
(a3e3) + f1,

∂2u2

∂t2
=

1

2

∂

∂x
(a3e3) +

√
2

2

∂

∂x
(a1e1 − a2(θ − θ0)e2 + a4e

3
2 − a6e

5
2) + f2,

cv
∂θ

∂t
= k(

∂2θ

∂x2
+
∂2θ

∂y2
) +

√
2

2
a2θe2

∂e2
∂t

+ g.

(3.15)

It is expected that this 2D mathematical model should be capable to capture
thermo-mechanical interactions and phase transformations in the 2D SMA struc-
tures. This is verified in Section 5 by a series of computational experiments. Model
(3.15) is supplemented by appropriate boundary and initial conditions which are
problem-specific and will be discussed in the next sections.

4. Numerical Methodology. Since the SMA can be in a high temperature phase
(austenite) as well as in a low temperature phase (martensite), at the computational
level one faces a fairly complex task of dealing with different equilibrium configura-
tions of the metallic lattice simultaneously. Therefore, it is important to preserve
intrinsic properties of model (3.15). As it is shown in [16] for the 1D model, a con-
servative scheme can be constructed and rigorous a priori estimates for the solution
of such a scheme can be derived. A similar numerical approximation can be derived
by applying formally the Finite Volume Method (FVM) which is easier generaliz-
able to a higher dimensional case. For convenience, two velocity components are
introduced into the model, and then the displacement components are replaced by
the dilatational and deviatoric strains as follows:

v1 =
∂u1

∂t
, v2 =

∂u2

∂t
,

∂e1
∂t

= (
∂v1
∂x

+
∂v2
∂y

)/
√

2,

∂e2
∂t

= (
∂v1
∂x

− ∂v2
∂y

)/
√

2.

(4.16)

In the 2D model, there are three strain components e1, e2, e3, which are dependent
on the two displacements u1, u2. So, after the replacement, we need one more
equation to close the model. This is given by the compatibility relation in terms of
the strains [11, 14]:

∂2e1
∂x2

1

+
∂2e1
∂x2

2

−
√

8
∂2e3
∂x1∂x2

− ∂2e2
∂x2

1

+
∂2e2
∂x2

2

= 0. (4.17)
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After simple transformations, the model (3.15) can be written as follows:

∂e1
∂t

= (
∂v1
∂x

+
∂v2
∂y

)/
√

2,
∂e2
∂t

= (
∂v1
∂x

− ∂v2
∂y

)/
√

2,

∂v1
∂t

=
∂σ11

∂x
+
∂σ12

∂y
+ f1,

∂v2
∂t

=
∂σ12

∂x
+
∂σ22

∂y
+ f2,

cv
∂θ

∂t
= k(

∂2θ

∂x2
+
∂2θ

∂y2
) +

√
2

2
a2θe2

∂e2
∂t

+ g,

σ11 =

√
2

2
(a1e1 + a2(θ − θ0)e2 − a4e

3
2 + a6e

5
2),

σ12 = σ21 =
1

2
(a3e3),

σ22 =

√
2

2
(a1e1 − a2(θ − θ0)e2 + a4e

3
2 − a6e

5
2).

(4.18)

The 2D model given by Eq.(4.18) is a differential-algebraic system. It is obtained
by keeping the constitutive relations as algebraic equations with the stress compo-
nents kept as independent variables to be solved for. The idea of simulating the
thermo-mechanical waves by the differential-algebraic approach is stimulated by
the idea of [17] where the same approach was adopted for the simulation of phase
transformations in SMA rod.

The DAE system (4.18) is solved numerically by the method of lines. First, the
model is spatially discretized, and then a time integrator is employed to the resultant
system. Velocity components v1 and v2 are discretized at (xi+1/2, yj+1/2), xi+1/2 =
(i + 1/2)hx, yj+1/2 = (j + 1/2)hy where hx and hy are the grid sizes along the x
and y directions, respectively, i = 1, 2, ...,mx and j = 1, 2, ...,my with mx and my

being the numbers of discretization points in the x and y directions. Variables e1,
e2, θ, σ11, σ12, σ22 are discretized at (xi, yj). After the discretization in space, the
system can be re-cast in the following form:

de1(i, j)

dt
= (IyDxv1(i+ 1/2, j + 1/2) + IxDyv2(i+ 1/2, j + 1/2))/

√
2,

de2(i, j)

dt
= (IyDxv1(i+ 1/2, j + 1/2)− IxDyv2(i+ 1/2, j + 1/2))/

√
2,

dv1(i+ 1/2, j + 1/2)

dt
= IyDxσ11(i+ 1, j + 1) + IxDyσ12(i+ 1, j + 1) + f1,

dv2(i+ 1/2, j + 1/2)

dt
= IyDxσ12(i+ 1, j + 1) + IxDyσ22(i+ 1, j + 1) + f2,

cv
dθ(i, j)

dt
= k(△θ(i, j)) +

√
a2

2
θ(i, j)e2(i, j)

de2
dt

+ g,

σ11(i, j) =

√
2

2
(a1e1(i, j) + a2(θ(i, j) − θ0)e2(i, j) − a4e2(i, j)

3 + a6e2(i, j)
5,

σ12(i, j) = σ21(i, j) =
1

2
(a3e3(i, j)),

σ22(i, j) =

√
2

2
(a1e1(i, j) − a2(θ(i, j) − θ0)e2(i, j) + a4e2(i, j)

3 − a6e2(i, j)
5.

(4.19)
where Dx and Dy are the first order difference operators in the x and y directions,
respectively, while Ix and Iy are discrete interpolation operators in the x and y
directions, △ is the discrete Laplace operator.

The above DAE system (4.19) can be written in the following operator-matrix
form:

A
dU

dt
+ H (t,X,U) = 0 (4.20)
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with matrix A = diag(a1, a2, ..., aN ) having entries “one” for differential and “zero”
for algebraic equations for stress-strain relationships, and vector-function H defined
by the right hand side parts of (4.19) based on the spatial discretisation of the
original PDE system. This (stiff) system is solved with respect to the vector of
unknowns U having 6 ×mx ×my + 2 × (mx + 1) × (my + 1) components by using
the second order backward differentiation formula (e.g., [8]):

A

(

3

2
Un − 2Un−1 +

1

2
Un−2

)

+ ∆tH (tn,X,U
n) = 0 (4.21)

where n denotes the current time layer.
We note that to deal with strong (quintic) nonlinearities in the order parameter,

a smoothing procedure similar to that proposed in [20, 16] has been employed during
the integration process. In particular, we have used the following expansions:

y3 =
1

4

3
∑

i=0

yi
ny

3−i
n−1; y5 =

1

6

5
∑

i=0

yi
ny

5−i
n−1, (4.22)

where yn is the unknown variable on the current time layer n, while yn−1 is the
unknown variable on the previous time layer n−1 (for the 2D case, y = e2, while for
the 1D case y = ǫ = ∂u/∂x). We summarize this smoothing procedure as follows.
Nonlinear terms are averaged here in the Steklov sense, so that for nonlinear function
f(y) (in particular, y3 and y5), averaged in the interval [ǫn−1, ǫn], we have

g(yn−1, yn) =
1

yn − yn−1

∫ yn

yn−1

f(η)dη, yn−1 = y(tn−1), yn = y(tn). (4.23)

Finally, we note that the analysis of mathematical models for the description of
SMAs and numerical methodologies for their solution are the subject of a separate
discussion that goes beyond the present paper. For one dimensional models we
refer the interested reader to recent papers [9, 16] while mathematical models for
the general 3D case have been recently discussed in [15].

5. Computational Experiments on Copper-based SMAs. The above con-
structed mathematical model and the numerical methodology have been applied to
modelling the dynamics of SMAs patches, including the thermo-mechanical interac-
tions, as well as the nonlinear thermo-elastic phase transformations. The capability
of the mathematical model has been demonstrated by the numerical experiments
reported below. First, we report the results of simulations for Au23Cu30Zn47. For
this specific material, its physical parameters for 1D Falk model are available from
the literature [6, 18, 20]:

k1 = 480 g/ms2cmK, k2 = 6 × 106g/ms2cmK, k3 = 4.5 × 108g/ms2cmK,
θ1 = 208K, ρ = 11.1g/cm3, Cv = 3.1274g/ms2cmK, k = 1.9 × 10−2cmg/ms3K.

For the 2D model given by Eq.(4.18), there are no 2D experimental values for the
physical parameters. Here, we take all the parameters in the Landau free energy
function in the 2D model identical to those reported previously in [16, 24], which
gives us: a2 = k2, a4 = k2, a6 = k3. Then, we take the values a1 = 2a2 and a3 = a2,
as suggested in [11, 4]. All thermal parameters are taken the same as in the 1D
case.

The first numerical experiment aims at the numerical analysis of the dynamical
thermo-mechanical response of the SMA patch under varying distributed mechanical
loadings, small enough not to induce phase transformations. The purpose of this
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experiment is to verify the capability of the model to capture the nonlinear thermo-
mechanical behavior. The SMA patch covers an area of 1 × 1cm2.

The initial conditions for this simulation are taken as:

θ0 = 250oK, ǫ0 = v0 = σ0 = 0 (5.24)

and the boundary conditions are

∂θ

∂n
= 0, u2 = u1 = 0 (5.25)

on the four boundaries (n is the unit normal vector). Because the displacement
components were replaced by the strains in Eq.(4.18), the above boundary condi-
tions are enforced in terms of velocities as far as the mechanical boundary conditions
are concerned. Other boundary conditions can also be implemented.

The loadings employed for this experiment are:

f1 = 200 sin(πt/6)g/(ms2cm2), f2 = f1, g = 0.

The time span for this simulation is [0, 24] (two periods of loading), there are 14
nodes in each direction, and the time stepsize is set at 1 × 10−4. The deviatoric
strain e2, temperature θ, and displacements u1, u2 on the central horizontal line
are presented as mesh plots versus time in Fig.2 (the upper four sub-figures). The
numerical results show that both the thermal (temperature) and mechanical (dis-
placements, strains) fields are driven periodically by the distributed mechanical
loading due to the thermo-mechanical coupling. Two snapshots of the distributions
of e2 and θ over the whole patch are also presented in the bottom of Fig.2. From
the e2 distribution at time t = 3 and t = 9, when the loading achieves its positive
and negative absolute maxima, it is shown that e2 has a smooth profile and there
are no phase transformations. This indicates that under such a small loading, the
SMA patch behaves just like a classical nonlinear thermo-elastic material. Due to
the symmetry in the x and y directions, the distributions on the central vertical
line are the same as their counterparts on the horizontal line, which are not plotted
here. Finally, note that only 201 snapshots have been used to plot the results and
we applied a cubic spline filter to present the results.

The second numerical experiment aims at the simulation of square to rectangular
phase transformations under a periodic mechanical loading in the same SMA patch.
The one-period profile of the loading is taken as follows:

f1 = f2 = 6000















sin(πt/3), 0 ≤ t ≤ 4,
0, 4 ≤ t ≤ 6,
sin(π(t− 2))/3), 6 ≤ t ≤ 10,
0, 10 ≤ t ≤ 12.

(5.26)

The computational results in the 1D case have previously shown that the mechanical
loading (5.26) is strong enough to induce martensitic transformations (e.g., [18]).
The initial and boundary conditions for this experiment were taken identical to
(5.24) and (5.25).

Similarly to the analysis of phase transformations in the 1D case, we can calculate
the deviatoric strain that corresponds to austenite and martensite variants in a SMA
patch. In doing so, we have to minimize the Landau free energy functional, and the
condition ∂Fl/∂e2 = 0 yields:

e2 = 0; e22 =
a4 ±

√

a2
4 − 4a2dθa6

2a6
,
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Figure 2. Thermo-mechanical waves in a square SMA patch
caused by varying mechanical loadings in the x and y directions.
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caused by mechanical loadings in the x and y directions.
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Figure 5. Martensitic transformations in a square CuZnAl patch
caused by mechanical loadings in the x and y directions.

where dθ is the difference between the current material temperature and the trans-
formation temperature. We observe that e2 = 0 corresponds to the austenite. Let
us denote (a4 +

√

a2
4 − 4a2dθa6)/2a6 by em, then e2+ = +

√
em or e2− = −√

em

are the strains that correspond to the two martensite variants. Let us call them
martensite plus and martensite minus, respectively. For the material in hand, with
the given initial temperature, we estimate that dθ = 42o, and this, in its turn, gives
e2+ = 0.12 and e2− = −0.12.

The numerical results of this simulation are presented in Fig.3. We present the
strain e2, as well as u1, u2, and θ on the horizontal line as functions of time. We
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provide also two representative snapshots of e2, and θ. From the time variation of
the order parameter e2, we observe a periodic pattern in the phase transformations
induced by periodic loading. Analyzing the e2 plot at t = 2 we note that the
SMA patch is divided into two sub-domains: in the upper-left triangle-like area, the
simulated deviatoric strain is close to e2+ which corresponds to the martensite plus,
while on the opposite side, the deviatoric strain is close to e2− which corresponds to
the martensite minus. Between these two areas there is an interface. At t = 8, the
martensitic transformation occurs again, but the martensite combination is switched
due to reverse pattern of loading.

Our next example concerns a SMA sample of rectangular size 1 × 0.5 with all
conditions identical to the previous experiments. We took only 19 nodes in the x
direction and 9 nodes in the y direction. We expect that after the transformation,
the martensite combination should be similar to its counterpart in the experiment
2, but scaled along the y direction. This is demonstrated in Fig.4. If we apply the
mechanical loading in the x direction only, the symmetry along the diagonal will be
broken, but the symmetry along the middle vertical line x = 0.5 will be preserved.
This has been also confirmed in our computational experiments.

Finally, we apply our methodology to modelling the AlCuZn patches. The phys-
ical parameters for this material are available in the literature for the 1D case (e.g.,
[3]). In the numerical experiment reported here, we enlarged the specific heat by
factor of 10. This material has a small specific heat and the temperature increases
quickly upon mechanical loadings, if the boundary are insulated, which prevents
us from observing a stable martensite otherwise. Our results relate to a 1 × 1cm2

AlCuZn patch with the following initial conditions:

θ0 = 360oK, ǫ0 = v0 = σ0 = 0 (5.27)

and the boundary conditions identical to (5.25). The loading follows the pattern of
(5.26) with factor 6000 replaced by 1200. The time span for this simulation is [0, 24]
which corresponds to two periods of loading. There are 15 nodes in each direction,
and the time stepsize is set to 1 × 10−4. The deviatoric strain e2, temperature θ,
and displacements u1, u2 on the central horizontal line are presented in the upper
four plots of Fig.6. Two snapshots of the distribution of e2 over the whole patch
are also presented in the bottom of Fig.6. Although the material does not exhibit
cubic-to-tetragonal or tetragonal-to-orthorhombic transformations in the 3D case,
in the 2D case conclusions similar to those derived for AuCuZn patches can be
drawn.
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