4,483 research outputs found

    Numerical Methods in Shape Spaces and Optimal Branching Patterns

    Get PDF
    The contribution of this thesis is twofold. The main part deals with numerical methods in the context of shape space analysis, where the shape space at hand is considered as a Riemannian manifold. In detail, we apply and extend the time-discrete geodesic calculus (established by Rumpf and Wirth [WBRS11, RW15]) to the space of discrete shells, i.e. triangular meshes with fixed connectivity. The essential building block is a variational time-discretization of geodesic curves, which is based on a local approximation of the squared Riemannian distance on the manifold. On physical shape spaces this approximation can be derived e.g. from a dissimilarity measure. The dissimilarity measure between two shell surfaces can naturally be defined as an elastic deformation energy capturing both membrane and bending distortions. Combined with a non-conforming discretization of a physically sound thin shell model the time-discrete geodesic calculus applied to the space of discrete shells is shown to be suitable to solve important problems in computer graphics and animation. To extend the existing calculus, we introduce a generalized spline functional based on the covariant derivative along a curve in shape space whose minimizers can be considered as Riemannian splines. We establish a corresponding time-discrete functional that fits perfectly into the framework of Rumpf and Wirth, and prove this discretization to be consistent. Several numerical simulations reveal that the optimization of the spline functional—subject to appropriate constraints—can be used to solve the multiple interpolation problem in shape space, e.g. to realize keyframe animation. Based on the spline functional, we further develop a simple regression model which generalizes linear regression to nonlinear shape spaces. Numerical examples based on real data from anatomy and botany show the capability of the model. Finally, we apply the statistical analysis of elastic shape spaces presented by Rumpf and Wirth [RW09, RW11] to the space of discrete shells. To this end, we compute a Fréchet mean within a class of shapes bearing highly nonlinear variations and perform a principal component analysis with respect to the metric induced by the Hessian of an elastic shell energy. The last part of this thesis deals with the optimization of microstructures arising e.g. at austenite-martensite interfaces in shape memory alloys. For a corresponding scalar problem, Kohn and Müller [KM92, KM94] proved existence of a minimizer and provided a lower and an upper bound for the optimal energy. To establish the upper bound, they studied a particular branching pattern generated by mixing two different martensite phases. We perform a finite element simulation based on subdivision surfaces that suggests a topologically different class of branching patterns to represent an optimal microstructure. Based on these observations we derive a novel, low dimensional family of patterns and show—numerically and analytically—that our new branching pattern results in a significantly better upper energy bound

    Geodesic shape regression in the framework of currents

    Get PDF
    pre-printShape regression is emerging as an important tool for the statistical analysis of time dependent shapes. In this paper, we develop a new generative model which describes shape change over time, by extending simple linear regression to the space of shapes represented as currents in the large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear regression, we estimate a baseline shape (intercept) and initial momenta (slope) which fully parameterize the geodesic shape evolution. This is in contrast to previous shape regression methods which assume the baseline shape is fixed. We further leverage a control point formulation, which provides a discrete and low di- mensional parameterization of large diffeomorphic transformations. This flexible system decouples the parameterization of deformations from the specific shape representation, allowing the user to define the dimensionality of the deformation parameters. We present an optimization scheme that estimates the baseline shape, location of the control points, and initial momenta simultaneously via a single gradient descent algorithm. Finally, we demonstrate our proposed method on synthetic data as well as real anatomical shape complexes

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure

    Representation and Characterization of Non-Stationary Processes by Dilation Operators and Induced Shape Space Manifolds

    Full text link
    We have introduce a new vision of stochastic processes through the geometry induced by the dilation. The dilation matrices of a given processes are obtained by a composition of rotations matrices, contain the measure information in a condensed way. Particularly interesting is the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying process. When the process is stationary, it coincides with the Naimark Dilation and only one rotation matrix is computed, when the process is non-stationary, a set of rotation matrices are computed. In particular, the periodicity of the correlation function that may appear in some classes of signal is transmitted to the set of dilation matrices. These rotation matrices, which can be arbitrarily close to each other depending on the sampling or the rescaling of the signal are seen as a distinctive feature of the signal. In order to study this sequence of matrices, and guided by the possibility to rescale the signal, the correct geometrical framework to use with the dilation's theoretic results is the space of curves on manifolds, that is the set of all curve that lies on a base manifold. To give a complete sight about the space of curve, a metric and the derived geodesic equation are provided. The general results are adapted to the more specific case where the base manifold is the Lie group of rotation matrices. The notion of the shape of a curve can be formalized as the set of equivalence classes of curves given by the quotient space of the space of curves and the increasing diffeomorphisms. The metric in the space of curve naturally extent to the space of shapes and enable comparison between shapes.Comment: 19 pages, draft pape

    Supervised Learning with Indefinite Topological Kernels

    Full text link
    Topological Data Analysis (TDA) is a recent and growing branch of statistics devoted to the study of the shape of the data. In this work we investigate the predictive power of TDA in the context of supervised learning. Since topological summaries, most noticeably the Persistence Diagram, are typically defined in complex spaces, we adopt a kernel approach to translate them into more familiar vector spaces. We define a topological exponential kernel, we characterize it, and we show that, despite not being positive semi-definite, it can be successfully used in regression and classification tasks
    • …
    corecore