317 research outputs found

    Discrete Event Simulation of Driver's Routing Behavior Rule at a Road Intersection

    Full text link
    Several factors influence traffic congestion and overall traffic dynamics. Simulation modeling has been utilized to understand the traffic performance parameters during traffic congestions. This paper focuses on driver behavior of route selection by differentiating three distinguishable decisions, which are shortest distance routing, shortest time routing and less crowded road routing. This research generated 864 different scenarios to capture various traffic dynamics under collective driving behavior of route selection. Factors such as vehicle arrival rate, behaviors at system boundary and traffic light phasing were considered. The simulation results revealed that shortest time routing scenario offered the best solution considering all forms of interactions among the factors. Overall, this routing behavior reduces traffic wait time and total time (by 69.5% and 65.72%) compared to shortest distance routing

    ENHANCED SCHEDULING TRAFFIC LIGHT MODEL USING DISCRETE EVENT SIMULATION FOR IMPROVED SIGNAL TIMING ANALYSIS

    Get PDF
    Most traffic light today used pre-timed traffic light, traffic light using sensors and traffic light which displaying a countdown timer. However, the existing methods consume a long time of vehicle queuing and waiting the traffic light signals to change, which created congestion at intersection of roads. In this paper, the proposed model enhanced the scheduling traffic light, which simulates the vehicle behaviour based on discrete event simulation and queue theory. Therefore, the simulation becomes more realistic and contributes to accurate outcome. This work focuses on the analysis of the average waiting time for the vehicle in three cases: heavy, medium and low traffic volume. The most optimum traffic signal timing is the one with minimum waiting time for the vehicles. Moreover, the new model solves the critical traffic congestion problem not only in simulation but also in real environment, which drivers take the longest average waiting time is 86 seconds while the shortest average waiting time is 64 seconds at the junction although in heavy traffic congestion. An extensive simulations have been conducted in this work in which a green interval as a control parameter is selected

    SURVEY STUDY FOR VEHICULAR AD HOC NETWORKS PERFORMANCE IN CITY AND URBAN RESIDENTIAL AREAS

    Get PDF
    This thesis it survey study for VANET (Vehicular Ad-Hoc Networks) and it performance in city and urban residential areas, when the the number of vehicles on roads is increasing annually, due to the higher amount of traffic, there are more accidents associated with road traffic complexity. VANET can be used to detect dangerous situations which are forwarded to the driver assistant system by monitoring the traffic status.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios

    Full text link
    La convergencia de las telecomunicaciones, la informática, la tecnología inalámbrica y los sistemas de transporte, va a facilitar que nuestras carreteras y autopistas nos sirvan tanto como plataforma de transporte, como de comunicaciones. Estos cambios van a revolucionar completamente cómo y cuándo vamos a acceder a determinados servicios, comunicarnos, viajar, entretenernos, y navegar, en un futuro muy cercano. Las redes vehiculares ad hoc (vehicular ad hoc networks VANETs) son redes de comunicación inalámbricas que no requieren de ningún tipo de infraestructura, y que permiten la comunicación y conducción cooperativa entre los vehículos en la carretera. Los vehículos actúan como nodos de comunicación y transmisores, formando redes dinámicas junto a otros vehículos cercanos en entornos urbanos y autopistas. Las características especiales de las redes vehiculares favorecen el desarrollo de servicios y aplicaciones atractivas y desafiantes. En esta tesis nos centramos en las aplicaciones relacionadas con la seguridad. Específicamente, desarrollamos y evaluamos un novedoso protocol que mejora la seguridad en las carreteras. Nuestra propuesta combina el uso de información de la localización de los vehículos y las características del mapa del escenario, para mejorar la diseminación de los mensajes de alerta. En las aplicaciones de seguridad para redes vehiculares, nuestra propuesta permite reducir el problema de las tormentas de difusión, mientras que se mantiene una alta efectividad en la diseminación de los mensajes hacia los vehículos cercanos. Debido a que desplegar y evaluar redes VANET supone un gran coste y una tarea dura, la metodología basada en la simulación se muestra como una metodología alternativa a la implementación real. A diferencia de otros trabajos previos, con el fin de evaluar nuestra propuesta en un entorno realista, en nuestras simulaciones tenemos muy en cuenta tanto la movilidad de los vehículos, como la transmisión de radio en entornos urbanos, especialmente cuando los edificios interfieren en la propagación de la señal de radio. Con este propósito, desarrollamos herramientas para la simulación de VANETs más precisas y realistas, mejorando tanto la modelización de la propagación de radio, como la movilidad de los vehículos, obteniendo una solución que permite integrar mapas reales en el entorno de simulación. Finalmente, evaluamos las prestaciones de nuestro protocolo propuesto haciendo uso de nuestra plataforma de simulación mejorada, evidenciando la importancia del uso de un entorno de simulación adecuado para conseguir resultados más realistas y poder obtener conclusiones más significativas.Martínez Domínguez, FJ. (2010). Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9195Palanci

    Simulating Large-Scale Microscopic Traffic Data

    Get PDF
    Traffic situations are continuous, uncertain, highly dynamic and partially observable, and they affect the day-to-day lives of people in a society. A worthwhile endeavor is to develop algorithms that can predict abnormal traffic situations by exploiting data from the myriad of sensors on the streets, in vehicles and in smartphones, leading to smoother flow of traffic. Unfortunately, the large volumes of microscopic (i.e. individual vehicle-level) data required for developing statistical/machine learning algorithms cannot be collected from the field by the public. The data collected by transportation agencies is either macroscopic or not widely available. In this thesis, a framework is developed for simulating large-scale traffic data using a microscopic simulation model and limited real-world data. Five kinds of sensors are simulated: inductor loop detector, lane area detector, multi-entry multi-exit detector, Bluetooth, and edgebased traffic measure. Data is simulated using this framework from multiple sensors over an area covering Montgomery County and Prince George County in Washington DC for 720 hours (30 days). The synthesized data is validated with respect to real-world data for volume and speed. Widely-used classifiers are used to recognize eight traffic events, namely Collision, Disabled Vehicle, Emergency Roadwork, Injuries Involved, Obstructions, Road Maintenance Operations, Traffic Signal Not Working and with no events in the synthesized dataset with high accuracy. Given limited real-world microscopic traffic data from a particular area, this framework is the first of its kind that can simulate data from multiple kinds of sensors over a very long duration with high-fidelity to the given data

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    A content dissemination framework for vehicular networking

    Get PDF
    Vehicular Networks are a peculiar class of wireless mobile networks in which vehicles are equipped with radio interfaces and are, therefore, able to communicate with fixed infrastructure (if available) or other vehicles. Content dissemination has a potential number of applications in vehicular networking, including advertising, traffic warnings, parking notifications and emergency announcements. This thesis addresses two possible dissemination strategies: i) Push-based that is aiming to proactively deliver information to a group of vehicles based on their interests and the level of matching content, and ii) Pull-based that is allowing vehicles to explicitly request custom information. Our dissemination framework is taking into consideration very specific information only available in vehicular networks: the geographical data produced by the navigation system. With its aid, a vehicle's mobility patterns become predictable. This information is exploited to efficiently deliver the content where it is needed. Furthermore, we use the navigation system to automatically filter information which might be relevant to the vehicles. Our framework has been designed and implemented in .NET C# and Microsoft MapPoint. It was tested using a small number of vehicles in the area of Cambridge, UK. Moreover, to prove the correctness of our protocols, we further evaluated it in a large-scale network simulation over a number of realistic vehicular trace-based scenarios. Finally, we built a test-case application aiming to prove that vehicles can gain from such a framework. In this application every vehicle collects and disseminates road traffic information. Vehicles that receive this information can individually evaluate the traffic conditions and take an alternative route, if needed. To evaluate this approach, we collaborated with UCLA's Network Research Lab (NRL), to build a simulator that combines network and dynamic mobility emulation simultaneously. When our dissemination framework is used, the drivers can considerably reduce their trip-times

    Regional Evacuation Modeling: A State of the Art Reviewing

    Full text link

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented
    corecore