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Simulating large-scale microscopic traffic data 

Abstract 

Traffic situations are continuous, uncertain, highly dynamic and partially observable, and they 

affect the day-to-day lives of people in a society. A worthwhile endeavor is to develop 

algorithms that can predict abnormal traffic situations by exploiting data from the myriad of 

sensors on the streets, in vehicles and in smartphones, leading to smoother flow of traffic. 

Unfortunately, the large volumes of microscopic (i.e. individual vehicle-level) data required for 

developing statistical/machine learning algorithms cannot be collected from the field by the 

public. The data collected by transportation agencies is either macroscopic or not widely 

available. 

In this thesis, a framework is developed for simulating large-scale traffic data using a 

microscopic simulation model and limited real-world data. Five kinds of sensors are simulated: 

inductor loop detector, lane area detector, multi-entry multi-exit detector, Bluetooth, and edge-

based traffic measure. Data is simulated using this framework from multiple sensors over an area 

covering Montgomery County and Prince George County in Washington DC for 720 hours (30 

days). The synthesized data is validated with respect to real-world data for volume and speed. 

Widely-used classifiers are used to recognize eight traffic events, namely Collision, Disabled 

Vehicle, Emergency Roadwork, Injuries Involved, Obstructions, Road Maintenance Operations, 

Traffic Signal Not Working and with no events in the synthesized dataset with high accuracy. 

Given limited real-world microscopic traffic data from a particular area, this framework is the 

first of its kind that can simulate data from multiple kinds of sensors over a very long duration 

with high-fidelity to the given data. 
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Introduction 

The purpose of traffic model development, calibration and validation have raised the issue of 

data requirements. The flexibility and scalability of interactive simulations on road networks are 

of increasing interest, and it helps to demonstrate the applications of complex traffic scenarios. 

Road networks in urban environments can be complicated and extensive, and traffic flows on 

these roads can be enormous, making it a daunting task to model, simulate, and visualize at 

interactive rates. This thesis introduces a hybrid simulation technique that combines the strength 

of real-world data and synthetic data generated by the Simulation. There are conventional 

technologies to measure traffic data. The development of Intelligent Transportation Systems 

(ITS) requires high quality traffic information in real-time. For improving traffic management, 

collecting traffic data methods have been evolving considerably.  

The use of traditional on-road sensors like Inductive loops, Lane area detectors for collecting 

data is necessary but not sufficient because of their limited coverage and expensive costs of 

implementation and maintenance. In the last few years, we have been noticing the emergence of 

various data sources. The effective method of data collection based on the vehicle location is 

Floating Car Data. This solution copes with some limitations from the fixed detectors. This 

method would not only improve traffic management but also helps the drivers to have access to 

the relevant real-time information. 

This requires traffic data to be accurate, reliable and as complete as possible. 

1.1 Why simulate traffic data?  

The increasing traffic levels and developing transportation infrastructure has prompted 

research towards Intelligent Transportation Systems (ITS). The lack of widely available data 

from public sources from various modalities and the need for coordinated and adaptive road 
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systems has expanded the capabilities of Simulation systems to model such challenges.  Current 

road infrastructure needs to be used to its maximum capacity before making changes. This can be 

done only by thoroughly understanding the traffic mobility of an urban city. The best method is 

to build a monitoring infrastructure that will track the versatility of the entire vehicle population 

and then analyze that data. This can either be done by monitoring individuals, or by monitoring 

the movement of vehicles through cameras/sensors on roads. These methods have many 

roadblocks. Tracking an individual’s progress has high privacy and security risks associated with 

it, and hence most citizens would not opt-in to this program. Furthermore, building the 

infrastructure to monitor the movement will be very expensive. This is where the synthetic 

generation of traffic data is useful. 

The broad objective of traffic management systems is to improve the safety, efficiency, capacity 

and system reliability. Building an infrastructure to generate traffic data is very expensive and is 

not an option. Several software applications support these initiatives. Methodologies used for 

creating traffic simulations need examination in the context of real-world big traffic data. Such 

systems simulate road network performance at various levels of detail, estimate and predict real-

time conditions and generate extensive scale data for microscopic analysis [1, 2, 3, 4]. This data 

can be used to create models for predicting the state of traffic flow, vehicle arrivals and driver 

behavior, and traffic flow. Simulation models also have a significant contribution to modeling 

the system for self-driving cars.  

Our work focuses mainly on generating models for these concepts and using them to drive 

microscopic traffic simulations built upon real-world data. The large-scale deployment of traffic 

surveillance technologies has motivated advanced traffic optimization software. There is an 

increase in the installation of sophisticated sensor networks that widely collect time-varying 
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traffic data. These sensors vary in their operating principles resulting in substantial potential 

data. Traffic management applications may exploit the strengths associated with each sensor. 

The idea of this research is to classify the various traffic patterns/events with each sensor. The 

classification based on the type of data each sensor collects. The focus is not only limited to the 

technologies and simulation systems used but also on the use of widely collected data from 

Sensors for traffic management purposes. 

1.2 Literature Review 

The emergence of traffic system optimizations has a significant role in the development of sensor 

technologies and traffic simulation tools. In the literature, vast research has done on generating 

real-world traffic data based on the two methods.  

Urban traffic congestion and control is a big challenge in Intelligent Transportation Systems 

(ITS). It also has a significant impact on society, and it increases the travel times for citizens. 

Additionally, it affects various environmental factors as it is directly associated with air pollution 

and on economic factors like fuel consumption. It has proved that a significant rate of 

congestions produced due to unusual events taking place on the roads. These events interrupt the 

smooth traffic flow. Examples of such incidents include congestion caused by disabled vehicles 

on the road, emergency road work construction, and some obstruction or car accidents. The 

discomfort and financial cost caused by incidents are so significant that urge the need for traffic 

flow detection and immediate report of events.  

In the literature, there have been many efforts at creating models and simulations of traffic 

systems for macroscopic and microscopic methods paradigms. Generally, macroscopic models 

assume a continuous flow of traffic from nodes and do not consider individual vehicle behavior. 

This approach has a lesser amount of details than other methods in the results of the simulation. 
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A traffic model was created using applied dynamic network loading by Tamp`ere et al. [5]. They 

used the simple merge and diverged models to represent the different types of connections roads 

can make inside a traffic system. The overall goal was to optimize the network flow over the 

entire network system. These models consider a network of nodes and edges, with vehicle 

volumes equating to network flow. Their focus was mainly on deriving constraints and generic 

requirements that such models must fulfill. This work was extended by Fl¨otter¨od et al. [6] to 

build a more robust model for representing traffic flow. In the first step, their model based on an 

incremental node model for road intersections. 

A few of the limitations of this model are that it was not able to capture situations where the 

increase of one flow decreases another flow. Their new model augmented with the capability to 

describe such conditions. Car-following models have been used widely to model traffic flow and 

the behavior of vehicles for a long time. Gipps (1989) proposed a model that computes velocities 

and accelerations based on the differences between successive vehicle locations. He updated his 

models for his work on the MULTSIM traffic simulation system [7]. Other car-following models 

include the Optimal Velocity Model [8], the Generalized Force Model [9] and the Intelligent 

Driver Model [10]. Somewhat recently Li et al. [11] formulated a car-following model based on 

the headways, velocities, and accelerations of multiple preceding vehicles.   

Microscopic simulation models provide a much more considerable amount of detail than 

macroscopic models since individual cars and their behavior are represented with much more 

sophisticated algorithms to control their movement and decisions. The obvious trade-off is that 

this requires a much higher computational cost, as simulations will usually contain hundreds or 

even thousands of vehicles in the system at the same time. The open-source traffic simulation 

platform SUMO-Simulation of Urban Mobility introduced in 2011 by Behrisch et al. [12], which 
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has been used by many researchers to validate their models, and to optimize characteristics of 

traffic systems. Another microscopic simulation platform is VISSIM, which is time step based 

and was used by researchers at the Georgia Institute of Technology by Hunter et al. [13] to create 

traffic simulations based on real-world data. They generate vehicles using a Poisson counting 

process to produce random inter-arrival times. Many simulation systems, including SUMO and 

VISSIM, are capable of using Open Street Maps to generate road networks. This feature makes 

modeling real-world traffic systems much more comfortable, and it lends more credibility to the 

traffic simulations themselves. Traffic flow modeling and forecasting is an essential paradigm of 

transportation research. Lippi et al. [14] used time series analysis and support vector regression 

to forecast traffic flows for short-term periods. There has been an effort to optimize traffic light 

timings. Ezzat et al. [15] used the third party simulation software ExtendSim to create, execute, 

and optimize their traffic models. The software uses an evolutionary approach to optimization. 

They based their system performance on both queue lengths and vehicle waiting times. Osorio 

and Chong [16] used metamodels to optimize simulations of transportation systems. Their 

metamodel is based on a system of linear and nonlinear equations, which they test for suitability 

in reducing traffic congestion in a large-scale traffic system.  

Institute of Transportation Systems at the German Aerospace Center created the TAPASCologne 

dataset and used by Uppoor S. et al. [17] in their research. The dataset describes the car traffic 

movement in the greater urban area of Koln, Germany. They presented the model based on 

vehicular mobility trace. Some of the features include compassing vast regions, focusing on the 

integrity of the road traffic, high time granularity, and realistic representation of microscopic 

behavior and also from a macroscopic point of view.  Xia F. et al. [18] use a dataset available on 

the Shanghai Open Data Innovation Application Contest platform provided by Shanghai Qiang 
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Sheng Holding Co., Ltd. in their work. Their dataset describes detailed routes of 13750 taxis in 

the Shanghai region for one month. The data is highly accurate as it came from a sound source. 

They focus on small details such as the status of the taxi (occupied/empty), pick up time etc. 

which makes the data highly valuable with high dimensionality. The vehicular mobility trace 

described previously, is seen to hold good for the Shanghai dataset as well. Luca Bedogni et al. 

[19] introduced an original Bologna Ringway dataset. Their dataset describes the movement of 

more than 22000 vehicles in a 25-km area that covers the center and outskirts of Bologna, Italy. 

To generate the Bologna Ringway dataset, they employed an original version of the OSM-to-

SUMO road network conversion tool. 

The previous research on data generation has utilized some real world information to simulate 

synthetic data. One such practical world travel time information is provided by INRIX [20]. 

INRIX is a private party that collects information about roadway conditions. It accomplishes this 

mission with its smart drive network that aggregates nearly 400 sources of data. Sources of data 

with regards to flow and traffic incidents include: road sensors, traffic cameras, commercial 

vehicle GPS probes, consumer vehicle GPS probes, cellular network probes, road crashes, and 

road construction. Once the source-aggregated traffic data is collected, it then gets processed 

using a proprietary data fusion engine.  

1.3 Contributions 

The significant contributions of this thesis are: 

 A new model for traffic data simulated using real-world traffic data with information 

from five different sensors Aggregated mobile data, Inductor Loop, Lane area detectors, 

Multi-Entry Multi-Exit detectors, and Bluetooth. 



 7 
 

 A hybrid traffic generation model is simulated using sampled travel time data from 

INRIX and O.D. trips, which are based on six different purposes of passenger trips as 

well as on their income levels. 

 Machine learning models are studied and developed which can differentiate between 

normal and abnormal events. Abnormal events include Collision, Disabled Vehicle, 

Emergency Roadwork, Injuries Involved, Obstruction, Road Maintenance Operation, and 

Traffic Signal Not Working. Department of Transportation Traffic Operations collected 

these anomalous traffic events data and was simulated using the Simulation Tool SUMO.  

 The traffic data is collected at each traffic light of the area to get information about most 

of the abnormal events. 

 Performance comparison carried between Decision Tree, Ensemble Boosted Tree, 

Ensemble Bagged Tree, KNN and Random Forest. 

2. Models and Methods for Traffic Data Simulation  

2.1 Sensors 

1. Aggregated Mobile GPS data 

This data is collected based on Floating Car Data (FCD). The fundamental 

principle of FCD is to gather information about all vehicles throughout the entire road 

network using mobile phones or GPS. This accounts that every car that acts as a 

sensor with GPS equipped in it. As stated in [23]:  FCD is an alternative or rather 

complement source of high-quality data to existing technologies. They will help 

improve the safety, efficiency, and reliability of the transportation system. They are 

becoming crucial in the development of new Intelligent Transportation Systems (ITS) 
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and are involved in multiple applications worldwide dealing with real-time traffic 

information and traffic management. Data collected from this sensor includes vehicle 

location, speed, and direction of travel in the form of angle and position of the vehicle 

at every timestamp [24]. The FCD output analyzed as an aggregated edge-based 

traffic measure for this research. The number of vehicles that are present on the 

edge/lane in each second summed up over the measurement interval is termed as 

sampledSeconds [25]. The aggregation period is the time taken by the user to 

aggregate the data. It is taken as 60 seconds meaning it will aggregate the values from 

1-60 sec, 61-120 sec and so on. 

Features derived from this sensor : 

Feature Description  

Begin The first time step  the values were collected in. 

End The last time step + DELTA_T in which the reported values 

were collected. 

sampledSeconds The number of vehicles that are present on the edge/lane in 

each second summed up over the measurement interval (may 

be subseconds if a vehicle enters/leaves the edge/lane). 

Traveltime Time needed to pass the edge/lane, note that this is just an 

estimation based on the mean speed, not the exact time the 

vehicles needed. The value is based on the time needed for 

the front of the vehicle to pass the edge. 

Density Vehicle density on the lane/edge 

Speed The mean speed on the edge/lane within the reported interval. 
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This is an average over time and space (space-mean-speed), 

rather than a local average over the vehicles (time-mean-

speed). Since slow vehicles spend more time on the edge they 

will have a proportionally bigger influence on average speed. 

Departed The number of vehicles that have been emitted onto the 

edge/lane within the described interval. 

Arrived The number of vehicles that have finished their route on the 

edge lane. 

Entered The number of vehicles that have entered the edge/lane by 

moving from upstream. 

Left The number of vehicles that have left the edge/lane by 

moving downstream. 

 

Average number of vehicles on the edge (#) = sampledSeconds / period 

Average traffic volume (#/h) = speed * 3.6 * density 

Traffic volume at the begin of the lane / edge (#/h) = 3600 * entered / period 

Traffic volume at the end of the lane / edge (#/h) = 3600 * left / period 

Total distance travelled (m) = speed * sampledSeconds. 

The total number of vehicles is the sum of the number of vehicles departed 

and number of vehicles entered on that edge.  

2. Bluetooth 

SUMO supports simulation of wireless services to facilitate radio signals 

emitted by the vehicle. Bluetooth is a short range and low power standard for wireless 
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networks. Bluetooth devices are available in a number of vehicles and depict an easy 

way of detecting motions of persons. It is also easy to equip small devices such as 

smart phones to act as a detector making Bluetooth a universally accessible data 

source [26]. The detection parameters can be configured and the detected events can 

be retrieved. The functionality of Bluetooth can be enabled using two devices- 

Bluetooth sender and Bluetooth receiver [27]. Since every Bluetooth device is 

uniquely identifiable due to its MAC address, new applications regarding traffic 

monitoring arose during the last 10 years. Bluetooth devices are available in several 

vehicles (e.g. in terms of mobile devices such as smartphones and headsets as well as 

in-vehicle systems like satnav or car radio) and thus allows detecting motions of 

persons and goods [28]. The device discovery process is modelled as an exponential 

distribution, that is the number of detections based on Bluetooth is a sequence of 

independent respectively seen or not seen trials, each of which occurs with a certain 

probability. This follows from the assumption that the number of vehicles equipped 

with Bluetooth devices (10% – 15%) and the number of observer vehicles (< 3%) 

within the network is small, so that the chances to encounter are stochastically 

independent events [29]. The monitoring process can be described as a Poisson 

process with λ being the average amount of these stochastical incidents and t being 

the time on the interval [0, t]: 

                 
     

  
 

 

In our research, we have assigned 10% of the vehicles with Bluetooth and it 

will collect the information whenever it gets a Bluetooth vehicle within its range. 
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Data collected from Bluetooth includes the speed, location and Bluetooth id carried in 

travelling vehicles for both sender and receiver. 

Features derived from this sensor: 

Features Description 

id@seen The id of the detected vehicle (sender) 

tBeg The time the sender entered the detection range. 

seenPosBeg Cartesian coordinates of the sender when it entered the 

range. 

seenSpeedBeg Speed of the sender when it entered the range 

 

3. Inductor loop detector 

Inductor Loop is a detection system which uses electromagnetic 

communication. These acts as a vehicle presence indicator. Inductor loops are placed 

at a point when approaching the traffic light. The functioning of these detectors is 

based on induction of eddy currents in the wire loops. When a vehicle comes within 

the radius of the loop, inductance of wire loops is decreased and it actuates the 

electronic unit output relay which will detect the presence of a vehicle by sending a 

pulse to the traffic signal controller [30]. It provides a common standard for obtaining 

accurate occupancy measurements. The major strength of inductor loop detector is for 

high frequency excitation models, it provides a good classification data . This sensor 

is insensitive to inclement weather such as rain, fog, and snow. SUMO provides a 

way to define Inductor loop using additional files. In large scale simulation, 

installation of inductor loops can be cumbersome. Hence, SUMO tool 
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“generateTLSE1Detectors.py” can detect all the traffic lights and install the inductor 

loops at each lane where the traffic lights are located [31]. It also provides the 

information about the number of vehicles that are passed within the integrated 

interval and mean velocity of the vehicles that are collected during that interval. In 

our research, the data is collected at every 60 seconds. Inductor loop sensor provides 

basic traffic parameters e.g., volume, presence of the vehicles, occupancy, speed and 

gap. Features derived from this sensor : 

Features Description 

Begin The first time step the values were 

collected in 

End The last time step + DELTA_T the 

values were collected in 

Id The id of the detector 

nVehContrib The number of vehicles that have 

completely passed the detector within the 

interval 

Occupancy The percentage (0-100%) of the time a 

vehicle was at the detector. 

Speed The arithmetic mean of the velocities of 

all completely collected vehicles (-1 

indicates that no vehicles were collected). 

This gives the time mean speed. 
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4. Lane area detectors 

Lane area detectors are quite similar to inductor loop detectors. They cover an 

area instead of a cross section. In real-world scenario, it will be similar to looking at a 

section of road using cameras. This sensor is customized for measuring queued 

vehicles. They are less specific as compared to inductor loop in regard of temporal 

precision at the entering and leaving. Data from this sensor is helpful when finding 

how much time, speed and jam has to pass until a vehicle is recognized as halting 

[32]. The mean speed given by this detector is rather the length divided by the mean 

travel time, so even if all vehicles drive with constant speed the result will differ from 

the measurements of an inductor loop detector. Features from this sensor : 

Features Description 

nVehEntered The number of vehicles that entered the detector in the 

corresponding interval. 

nVehLeft The number of vehicles that left the detector in the 

corresponding interval. 

nVehSeen The number of vehicles that were on the detector in the 

corresponding interval (were "seen" by the detector). 

meanSpeed The mean velocity over all collected data samples. 

meanOccupancy The percentage (0-100%) of the detector's place that was 

occupied by vehicles, summed up for each time step and 

averaged by the interval duration. 

 

5. Multi-Entry Multi-Exit detectors 
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It is basically an extension of an Inductor loop which is used to count the 

number of vehicles entering or exiting a closed area. This detector can be used to get 

the average time spent by vehicles on an edge [33]. This detector is placed for 

evaluation of Level of Service (LOS) at signalized intersection. LOS is a performance 

metric for qualitative measures used to analyze the quality of the traffic flow. The 

Level of Service can be evaluated on the basis of density of traffic flow at highways 

using volume of flow per speed [34]. This sensor is placed at the start and end of the 

freeways as well as at the intersections. Along with it, in order to map the simulation 

output with real-world traffic events data, we have also placed these detectors at 

every location of occurred events. Features from this sensor: 

Features Description 

meanTravelTime The time vehicles needed to pass the area (the crossing 

of the vehicle front counts). Averaged over all vehicles 

which left the detector completely during the interval 

duration. 

meanSpeed The mean speed of vehicles that have passed the area. 

Averaged over the interval and vehicles. 

vehicleSum The number of vehicles that have left the area during 

the interval. 

meanSpeedWithin The mean speed of those vehicles that have entered, but 

not yet left the area. Averaged over the time each 

vehicle was in the area and vehicles. 

vehicleSumWithin The number of vehicles that have entered but not yet 
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left the area. 

 

2.2 Tools 

SUMO  

SUMO [12] is an open-source tool for traffic simulation, mainly used for network import, 

demand-based modeling, and supports dynamic user assignment routing. It is a microscopic, 

multi-modal to support the research community to implement their algorithms. It is widely used 

traffic surveillance and a new approach for traffic guidance. An external interface called Traci 

introduced for external communication. The simulation uses car-following models for vehicle 

modeling, where the driver's behavior depends on the distance between the vehicle leading him. 

SUMO follows an extension of the stochastic car following the model developed by Krauss. It 

tells about each vehicle's speed, and the simulated routes for a large number of vehicles like cars, 

trucks, bicycles, and pedestrians. It can import many network formats like VISUM, 

OpenStreetMap (OSM), VISSIM, shapefiles, and XML-files. It also includes several applications 

that require simulation like a Net convert, Polyconvert, OD2trips, and Duarouter. It also supports 

command-usage as most of the application tools in SUMO can be run through the command line. 

ArcGIS 

ArcGIS Geostatistical Analyst is an extension for advanced surface modeling using deterministic 

and geostatistical methods. 

ArcGIS is a geographic information system (GIS) for working with maps and geographic 

information. It is used for creating and using maps, compiling geographic data, analyzing 

mapped information, sharing and discovering geographic information, using maps and 
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geographic information in a range of applications, and managing geographic information in a 

database. 

Openstreetmap 

OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world. The 

creation and growth of OSM have motivated by restrictions on the use or availability of map 

information across much of the world, and the advent of inexpensive portable satellite navigation 

devices. 

2.3 Data  

A number of data sources are collected including - 

(1) Household travel survey by The Maryland Statewide Transportation Model 

(2) INRIX path travel times 

(3) Traffic events data by Department of traffic Operations.  

Each of these data sets explained below. 

(1) Household travel survey 

This survey contains four types of information, which include individual characteristics, 

household characteristics, trip characteristics, and vehicle characteristics. The socio-economic 

and demographic characteristics obtained from the person, household, and vehicle characteristics 

of the household travel survey. In a conventional transport modeling exercise, the study area is 

divided into zones that are considered the generators and attractors of trips. The modeling 

process usually proceeds in a sequence of four sub-models:  
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- The trip generation which uses zonal data to model the number of trips generated from and 

attracted to each zone.  

- The trip distribution, which synthesizes the origin-destination matrix that is the number of trips 

from each zone to each zone. 

- The modal split in which the choice of mode made by each traveler is simulated. 

- An assignment in which the route followed by each trip is modelled. The output from this stage 

includes link flows and a revised measure of the costs of traveling between each pair of zones. 

At the Statewide Level, there are The 1588 Statewide Model-level Zones (SMZs) that 

cover Maryland, Delaware, Washington DC, and parts of New Jersey, Pennsylvania, Virginia, 

and West Virginia (Figure 1-2). The 151 Regional Model Zones (RMZs) cover the full US, 

Canada, and Mexico. RMZs are used for the multi-state commodity flow model and the long-

distance passenger model only and are eventually translated into flows assigned to networks and 

zones at the Maryland-focused (SMZ) level. Travel demand is derived from economic and 

demographic activities—primarily households by type and employment by industry. 

Socioeconomic data by SMZ were developed for the entire statewide model area with consistent 

categories and definitions to the extent practical given the availability of source data. 

In the traffic assignment, Origin and Destination for each mode assigned to the traffic 

network. For most kinds of analysis, there is always a need for Origin-Destination (O.D.) 

matrices, which specify the travel demands between Origin and Destination nodes of the 

network. The volume of the traffic determined by O.D. matrices and provided to the simulation 

system for the generation of trips. 

The following trip purposes are identified :  
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 HBW = Home Based Work 

  HBS=Home Based Shop  

 HBO=Home Based Other  

 HBSCH = Home-Based School  

 NHBW = Non-Home Based Work  

 NHBO = Non-Home Based Other  

Trip productions for work-related purposes are based on trip rates cross-classified by income and 

number of workers.  Each passenger trip from Home is sub-categorized into five income levels. 

Each income level has three categories- Single Occupancy Vehicles, Heavy Occupancy Vehicles 

with two passengers and Heavy Occupancy Vehicles with three passengers. Similarly, Non-

Home based Workers and Others are also sub-divided according to Vehicle Occupancy. Travel 

Demand has categorized into Regional trips, which include Commercial Vehicles, long-distance 

Autos, long-distance trucks, short distance multi-unit trucks, and short distance single-unit 

trucks. These Origin-Destination Matrices are combined to get a single matrix that has the total 

travel demand from one traffic assignment zone to another. 

(2) INRIX travel time data 

Travel time data for various paths obtained from INRIX. Traffic Message Channels (TMCs) are 

the spatial units of INRIX data. In this study, INRIX historical data is gathered for four months 

in five-minute increments, for specific paths and aggregated for every hour. The particular ways 

provide geographical information at each associated waypoint data with trip provider details. It 

also includes information about the driving class represented by the provider and vehicle weight 
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class. INRIX is a global firm that collects data for car services and detailed transportation 

analysis. It is leading in the transportation industry to provide the best solution for urban 

mobility. The current studies of INRIX show that it has analyzed over 100,000 traffic spots in 

North America. INRIX does not cover all the functional classes of roadways, but it contains most 

of the major and minor arterials, along with a full representation of freeways, interstates, and 

expressways. 

 

 

 

 

 

 

 

 

 

Data Generation 

Traffic Data Simulation in SUMO involves building the network, generating traffic demand, and 

running the simulation. The complete framework for Data Generation Process is as shown in Fig. 

1. 
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Figure. 1 Framework for Data Generation Process 

 

Network Generation: 

The road network is a system of interconnected links that are designed to carry different modes 

of transportation. Generally, it consists of roads, intersections (controlled/uncontrolled), 

roundabouts, traffic lights, junctions, pathways, etc. For microscopic simulation, simulated 

network should be an exact replica of the real world network, such as its geometry, lanes, ramps, 

number of vehicles passing through each lane, exact locations of sensors, etc. Some urban road 

networks also contain detectors, variable message signs, and dynamic road information panels. 

There are many options to generate this network which can be used in SUMO. One option is by 

using the OSM Web Wizard provided by SUMO. Based on the area displayed in the wizard, an 

entire road network can be imported, which can be loaded in SUMO. It also provides options to 

generate demand by giving several vehicles entering the system. The required map can also be 
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created by importing areas from other sources like VISUM, OpenStreetMap and shapefiles and 

convert it using the NETCONVERT tool. The network importer NETCONVERT is an in-built 

application tool to make the network (from other sources) compatible with SUMO.  

 

In this research, we are using OpenStreetMap (OSM) to generate a network topology. 

This is a valuable source for real-world map data. The benefit of using a map from OSM is that 

we can modify the map data. The network file imported from OSM needs to be converted to the 

SUMO network file. It is a directed graph that contains network coordinates, edges (roads), 

traffic light logics, intersections (junctions), including right-of-way definitions, connections, and 

roundabouts. This was done using NETCONVERT. It extracts the map information from the 

OSM file and converts it into SUMO network file. Figure 2a and 2b shows network map from 

OSM and SUMO. 

 

 

Figure. 2a) Network from 

OpenStreetMap 

 

Figure. 2b) Network converted using 

NETCONVERT 

Figure 2. Maps from OpenStreetMap and NETCONVERT 
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Converted map data has deviations compared with the actual data due to its open 

attributes and isolated links. To construct a precise road network for simulation, we have to 

correct the road topology so that it can match to the real world. The generated network can be 

edited using the graphical network editor NETEDIT provided by SUMO. It can be used to 

modify certain aspects of a network like broken and isolated links, loops, intersection, junctions, 

etc. In our functional area of Washington DC, we have removed a few edges at the periphery, 

removed some isolated links, and corrected junctions at some traffic lights. The reference was 

taken from Google Maps to alter the network.  This edited network is used further to run the 

simulation. The network in SUMO GUI before and after using NETEDIT is shown in Figure. 3a 

and 3b. The road topology information is summarized in below Table 1. This map covers an area 

of approximately 2140 miles of road network, which includes interstate, freeways, arterials, and 

collectors. 

 

 

Figure.3a) Network before editing 

 

Figure. 3b) Network after editing 

Figure 3. Road Network before and after editing 

Table 1. Network Information 
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Network Information 

Total Edges 23,498 

Total Nodes 10,003 

Total length Edges 2140.33 mi 

Total length lanes 2659.46 mi 

 

Demand Generation: 

Microsimulation tools have become progressively crucial in traffic demand modeling. The 

numerous advantage over traditional assignment models lies within the fact that data is 

simulated/generated at the individual vehicle level. The main challenge is to create this demand 

for a large variety of inputs. These inputs can differ in quality, spatial resolution, and purpose. 

Traffic demand can be generated either by specifying individual vehicle routes, using flow 

definition and turning ratios, importing existing roads, and importing OD matrices. In our 

research, we are getting the inputs to generate Demand using shapefile. Population OD matrices 

and real-world INRIX data are defining Traffic Assignment Zones (TAZ) and trip distribution 

percentage at every half hour. In this section, we have discussed the process of generating a 

significant demand generation using the above three sources.  

A shapefile is a simple set of related files, data storage format for storing the geometric 

location and attribute information of geographic features. Geographic features in a shapefile can 

be represented by points, lines, or polygons (areas). The idea is to use the network file and 

shapefile to get the polygons for our desired functional area using the inbuilt SUMO tool 

POLYCONVERT, which imports points of interest and polygons from different formats and 

translates them into a description to be visualized in SUMO-GUI. The generated polygon file is 
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divided into numerous traffic assignment zones (TAZ) / districts in the network map. Using 

spatial join, we have mapped the edges in the network to these traffic assignment zones. This 

creates a plan between available boundaries and their corresponding traffic assignment zone. 

This entire process of converting shapefile to relevant zones is shown in above Figure 1 under 

the blue dotted circle. 

The generated network needs traffic load and trips for traffic simulation. In our research, 

we have created trip information using the inbuilt SUMO tool OD2TRIPS. This tool primarily 

requires three inputs – a) OD Matrices (FMA files), b) traffic assignment zone details from 

INRIX and c) trip distribution percentage with respect to particular time of the day from INRIX. 

All three inputs are discussed in detail below. 

 

a) OD Matrix obtained by Maryland Statewide Transportation Model is Population 

matrix which gives regular traffic information for all vehicle types from one zone to another. 

INRIX provides travel time data for each location and time stamp. As in this research, we need 

to generate continuous 30 days of simulated data, we would need demand (trip information) for 

30 separate days. So, in order to achieve this, we have fused INRIX and population matrix data 

to generate different OD Matrix for separate days. This would serve our purpose of replicating 

real world demand for generating simulated data.  

For each individual trip from INRIX data, geographical coordinates for start and end 

location stamps. This information is then converted to point shapefile in order to map with urban 

infrastructure data, such as road networks and Traffic Assignment zones, to better understand 

vehicle mobility patterns and subsequently, improve urban planning, traffic control, and 

infrastructure maintenance. 



 25 
 

INRIX provides travel time data at aggregate Level at each waypoint. This information is used to 

generate a sample O.D. matrix. For each day and at every hour, we need to locate the Start and 

end locations of the Trips generated by GPS data corresponding to the desired area. The Start 

and End locations containing information about Longitude and Latitude are converted to point 

shapefile using the ArcMAP tool. This data needs to be joined with Traffic Assignment zones 

(polygon file created earlier) using spatial join in order to identify origin and destination zones 

for each trip id. Geographical Coordinate Systems (GCS) of both the shapefiles should be the 

same to avoid any error. Below Figure 4a & 4b shows the traffic assignment zone file (polygon) 

and INRIX OD file joined with TAZ file from ArcMap. 

  

 

Figure. 4a) Polygon Shapefile.    Figure. 4b) Spatial Join of Point and Polygon file 

Figure 4. Polygon Shapefile and Spatial join 
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The population O.D. matrix and the sample O.D. matrix generated from INRIX data 

provide an Expansion Matrix. Then this expansion matrix is used to generate full demand (OD 

Matrices) for any given day from INRIX. This data is used to create an FMA file for each day.  

 

 

 

b) Using the geographical location stamps for each individual trip from INRIX, 

information about each zone and its corresponding edges are retrieved. This has defined the 

INRIX traffic assignment zones. The Pseudo Code is as shown in the below-  
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c) Further trip distribution percentage is also retrieved from INRIX for every 30 minutes. 

This information is then given to the OD2TRIPS tool to generate traffic demand. This process is 

iterated to create demand data for all 30 days. 

Detector setup: In order to collect the trip/road information after running the simulations, we 

have placed inductive loops, lane area and multi-entry-multi-exit detectors at various points in 

network map. Details such as detector type, id, location and sampling frequency are defined in 

additional configuration file. In network map, these detectors are positioned at each junction with 

traffic light and entry and exit ramps. We have also placed these detectors at those locations 

extracted from Department of traffic Operations. This would result in collecting data for further 

research purpose. We fixed the location of each inductive loop close to the intersection to allow 

dynamic adjustments of the traffic light system using the information provided by the detectors 

as a feasible extension of the simulation. In case of the inductive loops situated on the highway, 

one of the possible usage is the monitoring of traffic flows on the peripheral roads [35]. All these 

are static detectors. We have also simulated dynamic detector Bluetooth. SUMO enables the 

simulation of wireless devices on vehicles. Every vehicle can be configured to either send or 
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receive the radio signals. We can control the percentage of Bluetooth enable vehicles in 

simulation. In this research, we have limited the percentage of such vehicles to 5%. 

Table 2. Number of Static Detectors 

Detector Total Number 

 Inductive Loop (E1)  1914 

Lane Area (E2)  1914 

Multi-entry-multi-exit (E3)  2030 

 

Event Data Setup: Along with real world demand, we have also simulated historic traffic 

event for our network map. These traffic events data is provided by Department of traffic 

operations which contains information as event type, event location and time stamp and duration 

of each event. In order to simulate each of these events in our model some assumptions have 

been made.  These events are triggered by mainly changing 3 parameters – lane capacity, driver 

behaviour and duration of event. Below table 3.1 and 3.2 shows different event scenarios and 

assumptions. Based on event types, corresponding actions are taken in simulation. For e.g. if 

event type is road maintenance operations, then Variable speed sign is placed as per the location 

and guidelines defined in [4] and particular section of road/lane is closed for entire duration of 

events. In the model, this scenario was implemented by stopping the vehicles at event location 

and duration. 

Table 3.1 Different Event Scenarios 

Serial 

# 

Event 

Length of 

Lane 

Blocked(in 

meters) 

Warning 

Signs/Obstruction 

Variable 

Speed 

Sign 

Required 

Buffer 

distance 

Cars 

involved 

to block 

the lane 

Roadway 

Acessible 
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1 Collision 12 30 Yes 12 4 Yes 

2 Disabled Vehicle 6 0 No 12 3 Yes 

3 

Emergency 

Roadwork 122 460 Yes 0 20 Yes 

6 Incident 18 30   12 5 Yes 

4 Injuries involved 24 30 Yes 12 6 Yes 

5 Obstruction 30 0 No 12 7 Yes 

6 

Road 

Maintenance 

Operations 122 300 Yes 0 21 Yes 

7 

Traffic signal not 

working 0 0 No 0 0 No 

 

Table 3.2 Event Scenarios Assumptions 

Assumptions 

1 

Number of cars 

involved in collision 2 passenger cars 

2 

Number of cars 

involved in collision with 

injuries involved 4 passenger cars 

2 Average Car length 20 feet (6 meters) 
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3 

Road Maintenance 

Operations (lane closures are 

considered) 

Maximum length for activity area for one way 

traffic is determined by the capacity required to handle 

peak hour demand. Practical maximum length is 400 feet 

(122 meters) 

Advance warning sign at 1000 feet (300m) 

total = 122+300 = 422 m 

4 

Emergency road work  

Maximum length for activity area for one way 

traffic is determined by the capacity required to handle 

peak hour demand. Practical maximum length is 400 feet 

(122 meters) 

Advance warning sign at 1500 feet (460 m) 

total = 122+460 = 582 m 

5 Lane section length  1000 meter 

6 

% of vehicle drive 

below or at maximum speed 80% 

Table 3.2 Continued 

 % of vehicle drive above 

maximum speed 

20% 

 

Obstruction length 

30 meters (100 feet) 

Reference from CHAPTER 2C. WARNING SIGNS AND 

OBJECT MARKERS - Table 2C-4. Guidelines for 

Advance Placement of Warning Signs 

(https://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm) 
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 Number of cars 

involved in Incident 3 passenger cars 

 Incident + Collision   Incident is considered more severe than collision 

 Ignore Flood, vehicle 

on fire, Alert  These are ignored because of less data points 

 

 

Figure 5a. Placement of Inductive loop on intersection 
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Figure 5b. Placement of Lane area detector 

 

 

Figure 5c(a) Multi entry-multi-exit 

detector 

 

Figure 5 c(b) Multi entry-multi 

exit detector 

 

Figure 5c. Placement of Multi-Entry Multi-Exit detector 

 

 

2.3 Data Simulation: 

Once network, demand and other configuration files (detector, variable speed signs etc.) are 

corrected, simulation was run for continuous 30 days of INRIX data from June 1 to June 30 

2015. We have provided demand in form of trip details which has origin and destination location 

and depart time for each vehicle. For completing the trips, SUMO [37] needs to have the entire 

route information which will be travelled by each vehicle. To accomplish this, SUMO provides 

various ways to generate route given the trip information. One approach is to generate the 

routing information beforehand using  SUMO DUAROUTER tool. Network map and trip details 
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are required in order to generate routes. DUAROUTER computes vehicle routes using fastest 

possible route computation using Dijkstra algorithm. However, the main disadvantage in using 

this approach is that route for each vehicle is generated in a network separately which leads to 

traffic congestion when all the vehicles are inserted. Another option is to assign travel time for 

each road which is unknown before running the simulations as it is directly dependent on number 

of vehicles. This problem can be overcome by running the simulation and DUAROUTER 

iteratively which computes the dynamic user assignment formulated by C. Gawron [5]. 

However, in our research as simulation is required to run for 30 days of source data, we cannot 

generate routes beforehand as it would be time consuming. So, we decided to use this approach 

at run time while running the simulation. To accomplish this, we have enabled all the vehicles 

with embedded routing device whose function is to recalculate travel time for each road after 

every given interval and provide it to DUAROUTER for computing new routes. This interval is 

set to 2 minutes in our model. For triggering the historic events, we have used SUMO inbuilt 

TraCI (Traffic Control Interface) tool which gives network access during simulation and allows 

to alter the roads/vehicle behaviour at run-time. For e.g. for triggering the disabled vehicle event, 

we are forcibly stopping the vehicle at desired location and time stamp for a given duration for 

corresponding event. For computing routes and running simulation at run time for this amount of 

huge demand is time consuming. In our research, to minimize this time, we have ran all the 

simulations on HPC systems. Configuration for HPC: 
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SUMO provides number of output for simulation runs. All the outputs are aggregated for each 

road in the network and for sampling frequency of 60 seconds. We have mainly focused on 

floating car data, inductive loop, lane, multi-entry-multi-exit and Bluetooth detector data.  

 

Figure 6a. Passenger vehicles on uncontrolled intersection  

 

Figure 6b.  Passenger vehicles on traffic lights 
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Figure 6c.  Passenger vehicles queued on intersection 

 

3. Data Validation  

To study the accuracy of the simulated data, actual data was collected from Traffic Management 

Centers (TMCs) in Washington D.C area for a typical weekday. A typical weekday includes 

Tuesday, Wednesday & Thursday. The geographic location of various locations for validation 

and roadways are as shown in Figure 4. 
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Figure 7. Location of station IDs for validation 

For Validation purpose, each individual Station ID is observed and its volume count is 

validated with SUMO simulated validation count data. Both the datasets are aggregated for each 

hour of the day for all Station IDs. The Validation results are evaluated based on Volume and 

Speed for all station id's. 

 

3.1 Volume based Validation 

Traffic volume (the number of vehicles departing from the traffic region) and traffic 

absorptive volume (the number of vehicles arriving at the traffic region) of each region plays an 

important role to compare our results with the observed validation count at each Station ID. For 

our functional area, Annual average daily traffic (AADT) for a particular weekday at frequency 

of 60 minutes is available at various Station IDs across different roadways. Refer to details for 

the same in below Table no 4.  



 37 
 

Simulated data from SUMO is generated at every minute for all the station id's. This data 

was aggregated for every 60 minute and averaged out for a timespan of 3 typical weekdays.  

 

 

For all t=1 to 24,          

 

   
 

 

    represent the total number of vehicles in functional area which is divided into "N" 

Station IDs.     represent the total number of vehicles at Station ID j. 

Machine learning algorithms perform better or converge faster when features are on a 

relatively similar scale and/or close to normally distributed. Scaling and standardizing can help 

features arrive in more digestible form for these algorithms. SKLEARN.preprocessing.scale() 

method is helpful in standardization of data points. It divides the data points by the standard 

deviation and subtract the mean for each data point. 

Table No. 4. Station IDs corresponding to roadways 

Roadways # Station Ids 

Interstate 32 

Major Collector 16 

Minor Arterial 55 

Minor Collector 2 

Principal Arterial Other 14 

Principal Arterial Other Freeway & 

Expressways 14 

 



 38 
 

Table No. 5 (68 Station IDs) 

Roadways Station Ids 

Interstate 5 

Major Collector 15 

Minor Arterial 34 

Minor Collector 2 

Principal Arterial Other 3 

Principal Arterial Other Freeways and 

Expressways 9 

Total 68 

 

Simulation and actual data volume count was evaluated using 3 performance measures - 

correlation coefficient (R), r-square and Root mean square (RMSE). We have observed that as 

more number of station id's are included in evaluation, RMSE value was decreased. 

Out of total 133 stations, for 68 station id's, when simulated and actual data is compared, value 

of correlation coefficient is ~ 0.93, R-square is ~ 87.5% and RMSE is ~ 0.22. Whereas when 

data is evaluated at 97 different stations id's , value of correlation coefficient is ~ 0.88, R-square 

is ~77.5%  and RMSE is ~ 0.35.Table No. 2 & 4 shows details for these measures for 24 hours. 

Table No. 3 & 5  shows the no. of station id's for each of the roadways respectively. Main reason 

for this increase in RMSE value when more number of station id's are included is routing of 

vechiles which can be improved by running multiple iterations for identifying road capacity at 

run time which would require more time for running simulations.  
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Table No. 6. Validation metricswith 68 station IDs 

Ho

ur 

Correla

tion 

R_Squ

are 

Root_Mean_

Square 

Mean_Sim

ulated 

Std_Dev_Sim

ulated 

Mean_

Val 

Std_Dev

_Val 

1 0.96 92.27 0.05 72.31 117.46 151.36 269.57 

2 0.92 84.84 0.04 65.18 92.83 60.99 105.50 

3 0.91 82.10 0.04 52.38 69.14 45.08 71.19 

4 0.95 89.52 0.05 40.73 64.89 58.55 122.49 

5 0.94 87.50 0.05 33.98 51.77 116.11 238.34 

6 0.96 92.31 0.04 33.02 53.39 427.29 876.20 

7 0.96 92.30 0.04 53.30 80.04 712.41 1118.12 

8 0.95 90.01 0.05 157.81 218.52 1021.0 1248.15 

9 0.94 87.96 0.05 266.45 385.71 890.37 1030.81 

10 0.90 80.64 0.05 238.16 352.70 594.80 728.06 

11 0.88 77.27 0.05 525.69 651.21 573.48 717.90 

12 0.92 85.18 0.05 702.03 1034.30 615.96 802.82 

13 0.95 90.25 0.05 741.31 1171.86 725.66 1002.80 

14 0.92 85.06 0.04 588.15 832.38 635.44 820.89 

15 0.93 86.68 0.04 552.25 827.58 737.78 998.53 

16 0.95 90.87 0.04 465.73 767.84 885.93 1175.10 

17 0.97 93.21 0.05 745.97 1229.71 1032.8 1444.04 

18 0.96 91.82 0.05 709.30 1141.66 

1019.1

5 1248.05 
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Table No. 6 Continued 

19 0.96 91.55 0.05 323.27 478.34 1001.68 1308.76 

20 0.94 88.89 0.04 320.11 520.95 673.02 864.07 

21 0.89 79.10 0.04 224.41 306.04 453.83 525.48 

22 0.89 79.26 0.04 198.53 260.17 401.44 494.07 

23 0.90 80.45 0.04 157.01 208.47 287.52 379.62 

24 0.96 91.57 0.04 87.18 150.62 197.43 331.18 

  

Table No. 7 (97 station Id's) 

Ho

ur 

Correla

tion 

R_Squ

are 

Root_Mean_

Square 

Mean_Sim

ulated 

Std_Dev_Sim

ulated 

Mean_

Val 

Std_Dev

_Val 

1 0.91 83.27 0.34 85.80 117.99 151.14 257.38 

2 0.89 78.53 0.34 103.06 135.28 86.63 163.08 

3 0.89 79.91 0.35 87.77 111.77 71.90 140.18 

4 0.87 76.13 0.38 63.21 81.42 80.54 172.65 

5 0.85 72.39 0.39 49.74 63.20 148.41 314.93 

6 0.86 74.78 0.38 44.94 58.30 457.65 907.61 

7 0.91 82.05 0.36 79.92 97.96 985.88 1636.63 

8 0.90 81.73 0.35 190.18 242.32 1256.2 1588.33 

9 0.89 78.49 0.39 329.30 430.39 1214.8 1541.79 

10 0.91 83.38 0.31 344.80 534.15 979.01 1342.67 

11 0.89 79.50 0.33 770.60 1131.72 792.41 1085.08 

12 0.87 76.45 0.34 817.99 1148.68 780.54 1038.26 
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Table No. 7 Continued. 

13 0.87 74.88 0.35 825.63 1057.99 855.53 1121.09 

14 0.87 75.96 0.32 771.75 1012.53 836.38 1090.64 

15 0.86 73.45 0.33 707.19 926.15 923.76 1218.27 

16 0.82 67.89 0.33 445.94 572.54 992.61 1155.82 

17 0.90 81.80 0.34 845.01 1228.64 1222.97 1523.83 

18 0.89 79.58 0.35 798.60 1163.45 1301.05 1566.84 

19 0.89 79.57 0.37 384.26 513.53 1225.10 1599.64 

20 0.85 72.46 0.36 371.13 507.06 904.74 1113.69 

21 0.87 76.22 0.37 319.75 435.97 735.58 1026.48 

22 0.87 76.19 0.37 287.54 378.29 617.00 886.90 

23 0.87 75.74 0.37 231.01 305.70 428.94 654.81 

24 0.89 79.26 0.36 116.82 160.03 281.37 440.57 

 

Table No. 8. Station IDs corresponding to roadways 

Roadways Station Ids 

Interstate 10 

Major Collector 16 

Minor Arterial 49 

Minor Collector 2 

Principal Arterial Other 10 

Principal Arterial Other Freeways and 

Expressways 10 
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Figure 8 (a & b) shows the linear relation between simulated and actual datapoints for volume 

based validations for a complete day. 

 

 

Figure 8 (a) Volume Validation for 68 Station Ids 
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Figure 8(b)  Volume based Validation for 68 Station Id's 

 

3.2 Speed based Validation 

INRIX data gives the information at individual trip level with intermediate waypoints for 

each timestamp and  location stamp. Many real-time traffic-monitoring applications only require 

speed or travel time. In recent years INRIX Traffic has started collecting and selling real-time 

speed data collected from ‘‘a  variety of sources''. In order to compare INRIX speed feeds with 

the simulated output for every station id,  average speed  is determined  by using difference 

between 2 geographical  locations and corrosponding timestamps between 2 waypoints. At first, 

for each trip, speed is calculated at every waypoint. 
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∀t ∊ {1, 2 . . . n}  

           

This uses the ‘haversine’ formula to calculate the great-circle distance between two points - that 

is, the shortest distance over the earth’s surface. 

a = sin²(Δφ/2) + cos φ1 * cos φ2 * sin²(Δλ/2) 

where, 

R = 6371; // metres  

 φ1 = lat1.toRadians(); 

 φ2 = lat2.toRadians(); 

 Δφ = (lat2-lat1).toRadians(); 

 Δλ = (lon2-lon1).toRadians(); 

 c=2 arcsin(sqrt(a)) 

 d = R * c * 1000 (in meters) 

where n is total number of  trips, φ is latitude, λ is longitude, R is earth’s radius (mean radius = 

6,371km); note that angles need to be in radians to pass to trig functions! 

T  is calculated by subtracting 2 timestamp for respective waypoints. 

Once speed and time is obtained for each trip id at everytime stamp,  data is averaged for each 

station id and an hour of the day in INRIX data.  

∀a ∊ {1, 2 . . . n}  

where,  a = station ID 

   n = total number of Station IDs. 

 ∀t ∊ {1, 2 . . . 24}  
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          =       
    /n                         

………………………………………………………………………………………………….(1) 

Similarly, average speed  is calculated from simulated output by taking mean of speed data for 

each station id and an hour of the day. 

∀date ∊ {1, 2 . . . 30} 

 ∀Station ID ∊ {1, 2 . . . s} 

  ∀a ∊ {1, 2 . . . n}  

           =       
    /n       

……………………………………………………………(2) 

 

Similar to volume validation, simulation and actual data for average road speed was evaluated 

using 3 performance measures - correlation coefficient (R), r-square and Root mean square 

(RMSE). Below table shows the all 3 performance measures for 24 hours for a typical weekday 

with value of correlation coefficient is ~ 0.96, R-square is ~ 93.0% and RMSE is ~ 0.25. 

Table No 9. Speed valdation metrics  

Ho

ur 

Correla

tion 

R_Squ

are 

Root_Mean_

Square 

Mean_Sim

ulated 

Std_Dev_Sim

ulated 

Mean_

Val 

Std_Dev

_Val 

1 0.94 0.88 0.35 23.21 3.03 24.07 2.96 

2 0.96 0.92 0.28 22.00 4.29 22.47 4.54 

3 0.98 0.96 0.20 20.71 4.70 21.50 4.75 

4 0.98 0.96 0.19 20.14 5.02 20.38 5.00 
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Table No 9. Continued. 

5 0.97 0.93 0.26 22.63 3.52 23.69 3.46 

6 0.88 0.78 0.49 23.46 2.27 24.00 2.57 

7 0.90 0.80 0.46 23.28 2.26 23.94 2.59 

8 0.94 0.89 0.33 23.27 2.79 23.60 2.87 

9 0.99 0.98 0.16 18.41 6.06 18.53 6.35 

10 0.98 0.96 0.20 15.06 4.80 15.17 4.92 

11 0.99 0.97 0.17 14.13 5.75 14.00 5.74 

12 0.98 0.97 0.18 12.19 6.57 12.57 6.32 

13 0.98 0.97 0.18 13.45 6.83 14.00 6.99 

14 0.99 0.97 0.16 15.90 7.62 16.75 7.79 

15 0.98 0.95 0.22 19.22 5.84 19.67 5.70 

16 0.99 0.97 0.16 16.00 6.62 16.94 6.83 

17 0.99 0.98 0.16 18.90 5.80 19.55 6.44 

18 0.91 0.83 0.42 22.89 2.81 23.50 2.87 

19 0.98 0.96 0.21 20.71 5.11 21.43 5.21 

20 0.99 0.97 0.17 19.45 5.38 19.91 5.68 

21 0.99 0.98 0.15 16.29 7.76 16.79 7.87 

22 0.98 0.97 0.19 18.73 6.01 19.27 6.17 

23 0.85 0.72 0.55 22.89 1.97 23.00 2.00 

24 0.99 0.97 0.16 18.86 5.23 19.79 5.32 
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Figure 9 shows the linear relation between simulated and actual datapoints for volume based 

validations for a complete day. 

 

 

Figure 9. Speed Validation 

4. Recognition of Traffic Events 

4.1 Classification problem  

Let        denoted the data pair (sample, label),   the parameters. 
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A classification algorithm is a decision function            together with a cost/risk function 

                specifying the functional form of  f and C completely specifies the classification 

algorithm.                      defines the classifier. 

 

In order to classify the events in generated simulated data from different sensors, we need to 

have the information for the location stamp and time stamp for the exact events. For this purpose, 

historical events data is provided by Department of Transportation Operations. This data 

contains information for different traffic events and corresponding location and time stamp. 

Below is summary for these events. With respect to our functional area, total 386 events are 

determined with 7 different classes for the month of June 2015. 

Table No. 10.Number of occurrences of events 

Events No. of Occurrences 

Collision 30 

Disabled Vehicle 240 

Emergency Roadwork 5 

Injuries Involved 20 

Obstructions 34 

Road Maintenance 

Operations 45 

Traffic Signal Not Working 12 

Grand Total 386 

4.2  Experimental setup  
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Data Balancing: 

Most of the data in the real-world are imbalance in nature. This situation occurs when the 

distribution of the target class is not uniform among the different class levels. Classification of 

this type of data is one of the most challenging problems in the field of machine learning and has 

recently gained a great deal of interest [38]. This is because most of the known machines 

learning algorithms were developed with an optimal goal of maximizing the overall accuracy, 

which is the percentage of correct predictions made by a classifier. This results in classifiers with 

a high accuracy but very low sensitivity towards the positive class [39]. Therefore, the optimal 

goal needs to be shifted toward maximizing the sensitivity of positive class and negative class 

separately rather than focusing on the overall accuracy. Several methods were developed to 

overcome this problem; these methods include methods based on sampling techniques, cost-

sensitive learning, Ensemble learning, Feature selection and algorithmic modification [40].  

 

Mathematical Definition of Imbalanced class classification- 

Let Y denotes the initial data set , with               
         

            
           s a subset of    positive 

class records denoting 1 while               
         

            
          is a subset of      negative class 

records that denote 0. In case of an imbalanced class dataset, we have           which if left 

unhandled can negatively affect the efficiency of a classifier [41]. 

 

Feature Extraction: 

The features in the data will directly influence the predictive models and the results achieved. 

Feature extraction is a process of automatically reducing the dimensionality of these types of 

observations into a much smaller set that can be modelled. Feature importance and selection can 



 50 
 

inform you about the objective utility of features, but those features have to come from 

somewhere. 

You need to manually create them. This requires spending a lot of time with actual sample data 

(not aggregates) and thinking about the underlying form of the problem, structures in the data 

and how best to expose them to predictive modeling algorithms. 

With tabular data, it often means a mixture of aggregating or combining features to create new 

features, and decomposing or splitting features to create new features. With more features, the 

data becomes high dimensional and decision boundaries can be easily created. 

For all the five different sensors , these features were extracted : 

1. CaptureSecond into Day, Hour, Minute 

2. Day into weekday to weekend 

3. Hour into Peak-NonPeak 

4. Each feature was time shifted by T+1 and T-1  

 

Data Pre-processing : 

The pre-processing involves joining events data with all sensor outputs based on location and 

time stamp.  

Train – Test Split: 

 

Before applying over sampling methods, base dataset was split into training and testing dataset in 

the ratio of  70%:30%. Later on 70% training samples, SMOTE method  is applied to balance the 

entire training dataset. This dataset is used to train the different models as Decision Tree, KNN, 

Ensemble Boosted tress, Ensemble Bagged trees and Random Forest algorithm.  
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Data Balancing: 

The synthesized data from all the five sensors was mapped  to the respective events by referring 

to their location and time stamp.  Like most of the real world datasets, these simulated datasets 

are also highly imbalanced in nature where most of the samples belong to category where no 

events were observed. For our classification problem, we need to build the model which can 

identify the correct events. If model is created using samples without adjustment in class 

distribution, then overall accuracy would be higher but it might not be able to correctly classify 

the events and hence poor traffic forecast. The reason  is very less samples are available for some 

classes of the data.  

In order to deal with  this, under sampling or over sampling methods are used to adjust the class 

distribution of the training data and either one or both methods can be used to deal with class 

imbalance. Under sampling methods will tend to adjust the distribution of the majority class and 

over sampling methods would adjust the distribution of minority class. In some oversampling 

techniques, samples are exactly replicated, thus leading to overfitting. Also, oversampling would 

increase the number of training examples, thus increasing the total learning time. On the other 

hand, some undersampleing techniques could discards potentially useful data. 

 

Re-sampling methods can be classified into basic sampling techniques and advanced sampling 

techniques. Basic sampling techniques include methods such as Random under-sampling (RUS) 

of majority class, Random over-sampling (ROS) of minority class, and a hybrid of both. On the 

other hand, advanced sampling techniques are basically based on the idea of a guided sampling 

approach which has been utilized using special methods. These methods include Tomek Link (T-
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Link) [42],  Synthetic Minority Oversampling Technique (SMOTE) [43], Neighborhood 

Cleaning Rule (NCR) [44],  Edited Nearest Neighbor Rule (ENN) [45] etc.  

Ensemble learning is a machine learning method that uses multiple learners-called base learners-

to learn from multiple bootstrap samples generated from the training data set. It has a strong 

generalizability as compared to machine learners that use a single learner because of its ability to 

boost weak learners in to stronger learners and finally aggregate the results and make the 

predictions based on the majority of votes. Ensemble learning method is based on the work done 

by Breiman [46]. It includes methods such as bagging and boosting. 

In this thesis we have balanced all the datasets using Synthetic Minority Ovesampling Technique 

(SMOTE). SMOTE is an advance method of over-sampling developed by Chawala [43]. It aims 

to enrich the minority class boundaries by  creating artificial examples in the minority class 

rather replicating the existing examples to avoid the problem of 

overfitting.   

The algorithm works as follows: 

SMOTE- 

A matrix defining the distance between corresponding feature values for all feature 

vectors is created. The distance δ between two corresponding feature values is defined as 

follows.         

           
   

  

 
     

   

  

     
                                        (1) 

In the above equation,            are the two corresponding feature values.     is the 

total number of occurrences of feature value   , and     is the number of occurrences of feature 

value    for class i.  A similar convention can also be applied to     and   . k is a constant, 

usually set to 1. This equation is used to compute the matrix of value differences for each 
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nominal feature in the given set of feature vectors. Equation 1 gives a geometric distance on a 

fixed, finite set of values. The distance ∆ between two feature vectors is given by: 

                     

 

   

     
  

r = 1 yields the Manhattan distance, and r = 2 yields the Euclidean distance.      and      

are the exemplar weights.     = 1 for a new example (feature vector), and      is the bias 

towards more reliable examples (feature vectors) and is computed as the ratio of the number of 

uses of a feature vector to the number of correct uses of the feature vector; thus, more accurate 

feature vectors will have      ≈ 1 [43]. 

 

4.3 Performance evaluation 

Classification accuracy was evaluated  using different measures :  Accuracy, Precision, Recall 

and F-statistics. 

Sensitivity (Recall): The True Positive rate (TP) =            

Specificity: The True Negative rate (TN) =            

Precision: Positive predictive value (PPV) =            

Negative Predictive Value (NPV)=            

F1 score (Fi):                                                 

Weighted accuracy = 0.5* Sensitivity + 0.5* Specificity 

 

Classification Algorithms: 

Fine Decision Tree: 
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Decision tree learning is a method for approximating discrete-valued target functions, in which 

the learned function is represented by a decision tree. Learned trees can also be re-represented as 

sets of if-then rules to improve human readability. Decision trees classify instances by sorting 

them down the tree from the root to some leaf node, which provides the classification of the 

instance. Each node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this attribute [46]. An 

instance is classified by starting at the root node of the tree, testing the attribute specified by this 

node, then moving down the tree branch corresponding to the value of the attribute in the given 

example. Basic trees may differ based on their splits that could be controlled to produce diversity 

of results. The performance of each type of tree is assessed on the entire data set. Fine Tree is 

defined by increasing the maximum splits allowed in the generation process.  

Ensemble Methods: Ensemble learning is a concept of combining several decision trees to 

predict better results than single decision tree. Main idea behind ensemble tree is to increase 

accuracy of predictions by grouping week learners to build strong learner. Advantage of using 

this is that it overcomes the problem of overfitting and underfitting. We have used below 3 

ensemble methods. 

 

Bagged Trees: It is a technique to reduce the variance of a decision tree. It creates several subsets 

of data from  training sample chosen  randomly with replacement.  Each collection of subset data 

is used to train their decision trees. As a result, we end up with an ensemble of different models. 

Average of all the predictions from different trees are used which is more robust than a single 

decision tree [47]. 
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Boosted Trees: It is another ensemble technique to create a collection of predictors. In this 

technique, learners are learned sequentially with early learners fitting simple models to the data 

and then analyzing data for errors. In other words, we fit consecutive trees (random sample) and 

at every step, the goal is to solve for net error from the prior tree [47]. 

Random Forest: Random  Forest classification belongs to supervised machine learning 

algorithm. is an extension over bagging. It takes one extra step where in addition to taking the 

random subset of data, it also takes the random selection of features rather than using all features 

to grow trees. Accuracy of model can be improved by tuning hyperparameter using k-fold cross-

validation method along with grid search method. In this, different set of parameter values are 

provided in a grid and model is trained will all possible combinations. Here, for each set of 

parameter values, scores are compared and keeps the best one. Along with K-fold cross 

validation, model is run on different folds for each set of hyperparameter to get more accurate 

performance. In our research, we have tuned model with below grid parameters. Based on these, 

model ran for a set of 500 iterations and which performed best was then used on testing dataset. 

 

Number of trees in forest: [5, 10, 25, 50, 100] 

Maximum depth: [2, 5, 10, 15, 20] 

Criterion: [‘gini’, ‘entropy’] 

Bootstrap: [True, False] 

K-fold: 5 

 

Best hyperparameters:  

Table 11. Best hyperparameters for Random Forest 
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Best Parameters Edge State E1 E2 E3 BT 

Number of trees in forest 100 100 50 10 100 

Maximum Depth 20 20 20 15 20 

Criterion entropy entropy entropy gini entropy 

Bootstrap TRUE TRUE TRUE FALSE TRUE 

Results of Classification models for different sensors : 

Aggregated Mobile GPS data- 

Table 12. Classification Results for Aggregated Mobile GPS Data 

Aggregated 
Mobile GPS data 

Overall 
Accuracy 

Overall 
Precision 

Overall 
Recall  

Overall 
F1 Score 

Average 
Precision  

Average 
Recall 

Average 
F1 Score 

Fine Tree 91.90% 90.68% 84.79% 87.41% 47.41% 79.84% 51.63% 

Fine KNN 99.90% 99.70% 99.70% 99.70% 96.76% 96.71% 96.70% 

Bagged Tree 99.90% 99.70% 99.70% 99.70% 97.44% 97.28% 97.35% 

Boosted Tree 85.10% 83.40% 73.28% 77.69% 32.90% 75.30% 36.45% 

Random Forest 100.00% 99.90% 99.90% 99.90% 97.50% 97.50% 97.62% 

Inductor Loop- 

Table 13. Classification Results for Inductor Loop 

Inductor Loop 
Overall 
Accuracy 

Overall 
Precision 

Overall 
Recall  

Overall 
F1 Score 

Average 
Precision  

Average 
Recall 

Average 
F1 Score 

Fine Tree 98.60% 98.18% 97.47% 97.79% 50.88% 70.92% 54.13% 

Fine KNN 99.40% 98.89% 98.85% 98.87% 73.73% 74.82% 74.19% 

Bagged Tree 99.80% 99.40% 99.40% 99.40% 86.42% 84.56% 85.30% 

Boosted Tree 97.80% 97.20% 96.30% 96.70% 43.06% 65.76% 45.50% 

Random Forest 100.00% 99.78% 99.75% 99.76% 85.50% 82.00% 83.37% 

 

Lane area detector- 

Table 14. Classiication Results for Lane area detector 

Lane Area 
Detector 

Overall 
Accuracy 

Overall 
Precision 

Overall 
Recall  

Overall 
F1 Score 

Average 
Precision  

Average 
Recall 

Average 
F1 Score 

Fine Tree 83.10% 79.17% 69.53% 73.30% 43.15% 79.00% 50.00% 
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Fine KNN 99.30% 98.90% 98.90% 98.90% 93.75% 93.48% 93.61% 

Bagged Tree 99.40% 98.90% 98.80% 98.80% 94.01% 96.80% 95.06% 

Boosted Tree 79.20% 76.02% 65.43% 69.40% 37.68% 78.01% 39.06% 

Random Forest 100.00% 99.70% 99.70% 99.70% 94.25% 97.25% 95.50% 

 

Multi-Entry Multi-Exit detector- 

Table 15. Classification Results for Multi-Entry Multi-Exit detector 

Multi Entry Multi 
Exit Detector 

Overall 
Accuracy 

Overall 
Precision 

Overall 
Recall  

Overall 
F1 Score 

Average 
Precision  

Average 
Recall 

Average 
F1 Score 

Fine Tree 99.80% 99.50% 99.50% 99.50% 90.65% 96.35% 92.98% 

Fine KNN 100.00% 99.80% 99.80% 99.80% 95.83% 95.73% 95.77% 

Bagged Tree 100.00% 99.80% 99.80% 99.80% 99.55% 94.83% 96.94% 

Boosted Tree 100.00% 99.90% 99.90% 99.90% 100.00% 100.00% 100.00% 

Random Forest 100.00% 100.00% 99.90% 99.90% 100.00% 98.50% 99.25% 

 

Bluetooth- 

Table 16. Classification Results for Bluetooth 

Bluetooth 
Overall 
Accuracy 

Overall 
Precision 

Overall 
Recall  

Overall 
F1 Score 

Average 
Precision  

Average 
Recall 

Average 
F1 Score 

Fine Tree 98.20% 97.90% 96.40% 97.15% 41.53% 74.21% 49.14% 

Fine KNN 99.90% 99.70% 99.60% 99.60% 81.59% 81.95% 81.70% 

Bagged Tree 99.50% 99.10% 98.80% 98.90% 80.26% 85.71% 81.22% 

Boosted Tree 97.70% 97.40% 95.40% 96.30% 31.58% 73.60% 37.99% 

Random Forest 100.00% 99.80% 99.90% 99.90% 84.50% 84.38% 84.13% 
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5.  Conclusions and Future Work 

• The classification model was able to predict between  the normal and abnormal traffic 

events.  The abnormal traffic events include 7 different traffic events and  performance 

was analyzed  across Precision, Recall and F1 Score.  

• Large-scale traffic data was simulated for a long duration using real-world data and data 

from household survey based on their incomes. 

• The high fidelity simulated dataset can be further used to predict driver behavior in the 

future work. 

• This dataset can be used for solving traffic problems which can be used by traffic 

management operations. 

• Classification can be done by taking into account the dependencies between spatial and 

temporal neighborhoods, and data from multiple sensors taking them  together. 
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