5,291 research outputs found

    Efficient Discovery of Ontology Functional Dependencies

    Full text link
    Poor data quality has become a pervasive issue due to the increasing complexity and size of modern datasets. Constraint based data cleaning techniques rely on integrity constraints as a benchmark to identify and correct errors. Data values that do not satisfy the given set of constraints are flagged as dirty, and data updates are made to re-align the data and the constraints. However, many errors often require user input to resolve due to domain expertise defining specific terminology and relationships. For example, in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be captured in a pharmaceutical ontology. While functional dependencies (FDs) have traditionally been used in existing data cleaning solutions to model syntactic equivalence, they are not able to model broader relationships (e.g., is-a) defined by an ontology. In this paper, we take a first step towards extending the set of data quality constraints used in data cleaning by defining and discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out theoretical and practical foundations for OFDs, including a set of sound and complete axioms, and a linear inference procedure. We then develop effective algorithms for discovering OFDs, and a set of optimizations that efficiently prune the search space. Our experimental evaluation using real data show the scalability and accuracy of our algorithms.Comment: 12 page

    Characterization of order-like dependencies with formal concept analysis

    Get PDF
    Functional Dependencies (FDs) play a key role in many fields of the relational database model, one of the most widely used database systems. FDs have also been applied in data analysis, data quality, knowl- edge discovery and the like, but in a very limited scope, because of their fixed semantics. To overcome this limitation, many generalizations have been defined to relax the crisp definition of FDs. FDs and a few of their generalizations have been characterized with Formal Concept Analysis which reveals itself to be an interesting unified framework for charac- terizing dependencies, that is, understanding and computing them in a formal way. In this paper, we extend this work by taking into account order-like dependencies. Such dependencies, well defined in the database field, consider an ordering on the domain of each attribute, and not sim- ply an equality relation as with standard FDs.Peer ReviewedPostprint (published version

    Using concept lattices to mine functional dependencies

    Get PDF
    Concept Lattices have been proved to be a valuable tool to represent the knowlegde in a database. In this paper we show how functional dependencies in databases can be extracted using Concept Lattices, not preprocessing the original database, but providing a new closure operator. We also prove that this method generalizes the previous methods and closure operators that are being used to find association rules in binary databases.Postprint (published version

    Profiling relational data: a survey

    Get PDF
    Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Get PDF
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Get PDF
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Approximation Measures for Conditional Functional Dependencies Using Stripped Conditional Partitions

    Get PDF
    Conditional functional dependencies (CFDs) have been used to improve the quality of data, including detecting and repairing data inconsistencies. Approximation measures have significant importance for data dependencies in data mining. To adapt to exceptions in real data, the measures are used to relax the strictness of CFDs for more generalized dependencies, called approximate conditional functional dependencies (ACFDs). This paper analyzes the weaknesses of dependency degree, confidence and conviction measures for general CFDs (constant and variable CFDs). A new measure for general CFDs based on incomplete knowledge granularity is proposed to measure the approximation of these dependencies as well as the distribution of data tuples into the conditional equivalence classes. Finally, the effectiveness of stripped conditional partitions and this new measure are evaluated on synthetic and real data sets. These results are important to the study of theory of approximation dependencies and improvement of discovery algorithms of CFDs and ACFDs
    • …
    corecore