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Abstract

Concept Lattices have been proved to be a valuable tool to represent the knowlegde in a
database. In this paper we show how functional dependencies in databases can be extracted
using Concept Lattices, not preprocessing the original database, but providing a new closure
operator. We also prove that this method generalizes the previous methods and closure
operators that are being used to find association rules in binary databases.

1 Introduction

Concept Lattices are a useful tool to represent logical implications in datasets, to find frequent
itemsets, and in general, to analyze the underground knowledge that lies behind large amounts
of data. Concept lattices are formed by concepts that, broadly speaking, are groups of objects
classified together having common attributes. Apart from seeming to be close to the human
representation of knowledge, the importance of this model relies on the fact that it is supported
by a consistent mathematical theory, which is originally based on Birkhoff’s lattice theory [3],
later developed by Ganter and Wille [11], as well as providing a comprehensive graphical interface,
that can show structural relations in a given set of data just at a glance. This model has been
successfully applied to the ”market basket analysis”, which, in data mining terminology, means
the finding of sets that appear together in a large database [2]. The goal is to provide information
on when the buying of an item determines that another item is likely to be bought too.

Currently the main issues concerning concept lattices have been focused on finding optimal
algorithmic solutions in order to compute closures [12]. Some other authors have been dealing with
the incremental update of the concept lattice when the set of tuples is dynamically incremented,
in order to find an optimal method to create the concept lattice in an incremental way, as well as
to provide a conceptual framework [19], [16], [17]. Relating concept lattices to other theoretical
frameworks has been proposed in [1], in which an equivalence between rules formed in a concept
lattice out of a set of binary tuples, and Horn clauses formed out of a set of models (which is in
fact the set of binary tuples seen as a set of models) has been proved.

On the other hand, functional dependencies are a key factor in database design. Large amounts
of literature have been devoted to this topic, starting with Codd’s pioneer work ([5]), and a
complete axiomatization by Fagin, Beeri and Howard [10]. The most well known handbooks on
database design also deepen into the underlying theory but from a more practical point of view
([18], [6], [7]). Although being a classical topic, functional dependencies in databases is still an
active research topic, mainly in its algorithmic and complexity aspect ([14], [15], [4]), and strongly
connected to learning theory [13]. A functional dependency describes the relationship between
two sets of attributes with a rule X → Y , that states that the values of the set of attributes X
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determine the value of the set of attributes Y . These dependencies are extremely helpful to a
database designer in order to know if a database is in third Normal Form.

Moreover, the authors of [8] and [9], discovered an equivalence between functional dependencies
and a fragment of propositional logic. In fact, the main issue was the equivalence between the
inference rules that are to be used in order to derive more functional dependencies out of a given set
of functional dependencies, and the axioms that are used to form new implications in propositional
calculus.

In the first section of this paper, a formal description of a concept lattice will be provided, as
well as a formalization of a functional dependency, just in order to standarize the notation that
will be used along the paper. In the second section, a new closure operator will be presented,
and some of its properties will be reviewed. In the third section, it will be proved that, given a
concrete, specific closure operator, concept lattices can determine the functional dependencies in
a database. In the fourth section, it will be proved that this operator generalizes the operator
that has been used to find association rules in a database.

2 Definitions

2.1 Concept Lattices

Let 〈O, I,R〉 be a formal context. This means that O is a set of objects, I is a set of attributes,
and R ⊆ O × I is a binary relation between sets O and I. This formal context can be viewed as
a database, as a set of observations, or as a set of models of a logical formula, among many other
forms. From now on, we will use the letters X,Y, Z to denote sets of attributes, x, y, z to denote
single attributes, A,B,C to denote sets of objects, and a, b, c to denote single objects. Let φ, ψ be
two operators such that:

• φ : P(I) → P(O). This operator returns the objects that have a relation with all the
attributes of the given set of attributes, it is, φ(X) = {a ∈ O|〈a, x〉 ∈ R, ∀x ∈ X}.

• ψ : P(O) → P(I). Given a set of objects, this operator returns the largest set of attributes
such that all the objects have a relationship with all the attributes, it is, ψ(A) = {x ∈
I|〈a, x〉 ∈ R, ∀a ∈ A}.

Both operators follow a set of properties (for a proof for each property, please refer to [11]):

• X ⊆ Y ⇒ φ(Y ) ⊆ φ(X)

• X ⊆ ψ(φ(X))

• φ(X) = φ(ψ(φ(X)))

• A ⊆ B ⇒ ψ(B) ⊆ ψ(A)

• A ⊆ φ(ψ(A))

• ψ(A) = ψ(φ(ψ(A)))

• X ⊆ ψ(A) ⇔ A ⊆ φ(X)

The pair (φ, ψ) forms what is called a Galois connection, which is a set of two operators having
the following property:

• A ≤ φ(X) ⇔ X ≤ ψ(A). (different sets of equivalent properties can be found in [11]).

The fact that these two operators form a Galois connection, implies that their composition
(ψ.φ and φ.ψ) forms a closure operator (for a proof, please refer to [11]). A closure operator (ϕ)
has the following properties:
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• X ⊆ ϕ(X)

• X ⊆ Y → ϕ(X) ⊆ ϕ(Y )

• ϕ(X) = ϕ(ϕ(X))

The operator ϕ = ψ.φ will be used to induce a partition of all the possible sets of attributes
in a relation in classes. The closure of a set of attributes X will be ϕ(X). A formal concept of
(O, I,R) is a pair 〈X,A〉 such that A ∈ O and X ∈ I, and φ(X) = A and ψ(A) = X , and let T be
the set of all formal concepts. A precise definition of a concept lattice can now be given: let O be
a set of objects, I a set of attributes, and R ⊆ O × I a binary relation, let ϕ = ψ.φ be a closure
operator as previously defined, and let B the set of all concepts of (O, I,R), a concept lattice is
the the set B plus an infimum and a supremum given by

∧
t∈T

(Xi, Ai) =
( ⋂

t∈T

Xt, φ(ψ(
⋃
t∈T

At))
)
,
∨
t∈T

(Xi, Ai) =
(
ψ(φ(

⋂
t∈T

Xt)),
⋂
t∈T

At

)

where X ∈ P(I) and A ∈ P(O). In practice, the graphical concept lattice is represented as
follows: the nodes (concepts) are the sets of attributes {X |X = ϕ(X)}, and the infimum is the set
of attributes that has a relation with all the objects, it is, the set of attributes that appear in all the
tuples (which can be eventualy empty), and the supremum is the set of all the attributes. A node
X will be connected by a line to another node Y if it immediately includes or it is immediately
included by Y . For practical reasons, the sets of objects have been erased from the concepts.

The set of generators of a closure X is Γ(X) = {Y |ϕ(Y ) = X, �Y ′ ⊂ Y : ϕ(Y ′) = X}, which,
together with its closure can form inference rules, of the kind Y → X \Y where Y ∈ Γ(X). These
rules have mainly been used to find relations of the kind ”if X appears, then Y also appears”. The
concept lattice thus formed explains what attributes depend on other attributes ([17]).

The main limitation of this model is the fact that the tuples are binary, and not multivalued,
and so, it covers a broad yet limited set of possible cases. In this paper this limitation will be
overcome, since we will be dealing with multivalued databases, it is, databases in which the set of
values that a relation can take is not limited to a binary domain.

2.2 Functional Dependencies

Many literature has been devoted to functional dependencies. The reader can refer to [10] to find
a complete and formal explanation. For the purposes of this paper, we will define the following
elements: let I be a finite set of attributes, let O be a finite set of objects (tuples), and let V be
a finite set of possible values an attribute can take, and relation R (informaly, a database) is a
subset of I ×O × V . For a given a ∈ O, a[X ] is the ordered set of values that the object a takes
for each x ∈ X (the order in the values will be according to an order induced in the set I).

A functional dependency X → y, (where X is a set of attributes, and y is a single attribute)
holds in a relation R if for all pair of tuples (objects) ai, aj : ai[X ] = aj [X ] → ai[y] = aj [y], it
is, the set of attributes X determines the value of the attribute y. A functional dependency is
minimal if no dependency with a proper subset of X as antecedent and the same consequent holds.

In [14] the following notation has been presented: a set of attributes can induce a partition
of the tuples in classes, according to the values of the attributes, in which each class or subset in
this partition will contain those tuples that have the same value for a given set of attributes X . A
more formal definition of a partition ΠX is: ΠX = {Pi|∀ai, aj ∈ Pi, ai[X ] = aj [X ]}, It follows that
∀Pi, Pj ∈ ΠX , Pi ∩ Pj = ∅ and that

⋃
Pi = O, it is, all the sets in a given partition are disjoint,

and complete. The number of classes in ΠX is |ΠX |.
A partition ΠY refines a partition ΠX iif ∀Pi ∈ ΠY ∃Pj ∈ ΠXPi ⊆ Pj . It then follows that

if ΠY refines ΠX , then |ΠX | ≤ |ΠY |. Following the partition induced by a set of attributes, the
following theorem relates functional dependencies and partitions:

Theorem 2.1 A functional dependency X → A holds iif |ΠX | = |ΠX∪A|
(See [14] for a proof).

3



3 Concept lattices as a framework to find functional depen-

dencies

Our goal will be to provide a framework based on concept lattices that will enable us to find
all minimal functional dependencies. To do so, we will provide a new Galois connection, whose
composition will form a new closure operator. Using this operator, a concept lattice will be
created, and then, it will be proved that the set of rules that will be extracted out of this concept
lattice will be equivalent to the set of minimal functional dependencies in that database. The new
operator will be able to deal with multivalued databases.

It should be noted that Ganter and Wille [11] developed a method to extract the functional
dependencies out of a multivalued database. The method transformed the original databaseDB in
a new binary databaseDB′, and then, the current analysis proceeded. The transformation basicaly
consisted in intersecting all tuples with each other, and for each pair of records ri, rj ∈ DB , a
new record si ∈ DB′ is created in the new database, and for each single attribute x, si[x] = 1 if
ri[x] = rj [x], zero otherwise. It is then proved that applying the current analysis to this newly
created database, the resulting association rules are functional dependencies in DB. Instead of
transforming the database, our aim will be to create a new closure operator.

3.1 A new closure operator

ΠP(I) is the class of all possible partitions that can be induced by any set of attributes. We define
the following operators:

• Φ: P(I) → ΠP(I). Given a set of attributes X ⊆ I, it returns the partition induced by X :
ΠX , it is, a set of classes.

• Ψ: ΠP(I) → P(I). Given a partition ΠX , it returns a set of attributes X ′ such that
ΠX = ΠX′ and �X ′′ : X ′ ⊂ X ′′,ΠX′ = ΠX′′ . It is: it returns the largest set of attributes
that can induce the given partition. It is worth mentioning two facts: first, this operator
can eventualy be undefined, since there can be no way to partition a given set of tuples
according to any set of attributes. For instance, it is not possible to partition a set of tuples
into only one class, if there are no attributes that have the same value for all the tuples in
the database. It follows that this operator should be carefully used in order to avoid this
possibility. Second, if this set exists and is the largest one, it is unique. It can be easily
proved that if two different sets X,Y have these properties (induce the partition and are the
largest), then X ∪ Y also has the same property, and it is larger than any of both of them.

We also define an order for attributes and an order for partitions.

1. (P(I),≤), where X,Y ⊆ I: X ≤ Y iif X ⊆ Y .

2. (ΠP(I),�), where ΠX ,ΠY ⊆ ΠP(I): ΠX � ΠY iif ΠX refines ΠY (|ΠX | ≥ |ΠY |).
In order to prove that these operators form a Galois connection, we need the to show different

propositions:

Proposition 3.1 Y ⊆ X → ΠX refines ΠY

Proof: If we suppose that it is not true, then ΠX does not refine ΠY . It means that at least
there will be two objects a1, a2 that will belong to two different classes in ΠY and to the same
class on ΠX . Then, a1[X ] = a2[X ]. And if they belong to different classes in ΠY , it means that
∃Z ⊆ Y such that a1[Z] �= a2[Z]. Therefore, Z ⊆ Y and Z � X , but it contradicts the previous
assumption Y ⊆ X .

Proposition 3.2 If X,Y ⊆ I, are both the maximum sets of attributes that induce the classes
ΠX ,ΠY and if ΠX refines ΠY , then, Y ⊆ X.
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Proof: Let PY be a class in ΠY , and let PX be a class in ΠX such that PX ⊆ PY . Let us suppose
that that X ⊂ Y . It implies that ∃Z ∈ Y such that Z /∈ X . Since PX belongs to a class, it means
that ∀a1, a2 ∈ PX , a1[X ] = a2[X ], and since X is the maximum class that induces ΠX , it follows
that there is no other attribute Z which is not included in X such that a1[X ∪Z] = a2[X ∪Z]. It
contradicts our previous assumption X ⊂ Y and ∀a1, a2 ∈ PY , a1[Y ] = a2[Y ]

Proposition 3.3 Given a set of attributes X and y ∈ I, if |ΠX | = |ΠX∪{y}|, then, ΠX = ΠX∪{y}

Proof: Given a partition ΠX , if we add an attribute y to X , the partition ΠX∪{y} will be a
refinement of ΠX . Since |ΠX | = |ΠX∪{y}|, it follows that all the classes in ΠX must be the same
as in ΠX∪{y}.

Proposition 3.4 |ΠX | ≤ |ΠX∪{y}|.
Proof: Let us suppose that |ΠX | > |ΠX∪{y}|. There will be two elements a1, a2 that are in

two different classes in ΠX , but that will be in the same class in ΠX∪{y}, which means that they
will have the same value for the attributes X ∪{y}. But this contradicts the previous assumption
that they were in different classes in ΠX .

We are now able to prove that the previously defined operators form a Galois connection.

Proposition 3.5 (Φ,≤) and (Ψ,�), form a Galois Connection.

Given X1, X2, Y ⊆ I and A1, A2, B ∈ ΠP(I), the following propositions must be proved:

1. x1 ≤ x2 → Φ(X1) � Φ(X2). Proof: Easily by proposition [3.1].

2. A1 � A2 → Ψ(A1) ≥ Ψ(A2). Proof: Easily by proposition [3.2].

3. Y ≤ Ψ(Φ(Y )). Proof: Φ(Y ) = ΠY ,Ψ(ΠY ) = Z, being Z the greatest set such that ΠZ = ΠY .
Since Z is the greatest, it follows that Z ≥ Y .

4. P � Φ(Ψ(B)). Proof: Ψ(B) = X , being X the greatest set such that ΠX = P , and then,
Φ(X) = ΠX = P .

The fact that these operators form a Galois connection, enables us to prove that their compo-
sition is a closure operator.

Proposition 3.6 Since Φ and Ψ form a Galois Connection, Γ = Ψ.Φ, is a closure operator.

The proof is given in [11] (proposition 8).

4 Concept lattices and functional dependencies

According to the newly created closure operator Γ = Φ.Ψ, we can generate a closure lattice, and
then form the rules out of each closed set and its generators. We claim that:

Theorem 4.1 The set of rules of a concept lattice formed by the closure operator Γ is logically
equivalent to the set of minimal functional dependencies (both sets are logically implied by each
other).

Proof:
⇒) Any minimal functional dependency will be implied by a rule from the concept lattice

formed by the closure operator Γ: LetX → y be a functional dependency. Then, |ΠX | = |ΠX∪{y}|,
and, by [3.3], ΠX = ΠX∪{y}. Since the partitions induced by both X and X ∪ {y} are the same,
they belong to the same closure (by construction of Γ). Let Z = Γ(X) = Γ(X ∪ {y}). Since
X → y is minimal, �X ′ ⊂ X such that |Π′

X | = |ΠX′∪{y}|, which means that X is a generator of
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Z. By construction of the concept lattice, the following rule will be formed: X → Z \X . Since
y ∈ Z \X , this rule in the concept lattice will imply the functional dependency.

⇐) Any rule in the concept lattice will be implied by a (set of) functional dependency(ies):
Let X be a minimal generator of a concept Γ(X). Then, the rule X → Γ(X) \X will be formed
by construction of the Concept Lattice. Let Γ(X)\X = Z. Since X is a generator, then �X ′ ⊂ X
such that Γ(X ′) = Γ(X). Therefore, if the generated rule is a functional dependency, it will be
minimal.

Let Z = {z1, z2, . . . , zn}, then we need to prove that the functional dependencies X → z1, X →
z2 . . . , X → zn will hold, since X → z1, X → z2 . . . , X → zn |= X → Z. The proof is for a given
X → zi. Let us suppose that X → zi does not hold: it means that |ΠX | < |ΠX∪{zi}|. But we
know that |ΠX | = |ΠZ∪X |, and that since zi ∈ Z, then by [3.1] |ΠX∪{zi}| ≤ |ΠX∪Z |, which is a
contradiction. Analogous reasoning can be stated for all zi ∈ Z.

AC          B
B             C
B             A

dependencies of the BataBase
Set of minimal functional

A   B   C

1    1    2
1    2    5
3    3    7
9    7    7

1
2
3
4

id

Multivalued DataBase

B              AC
AC           B

Set of rules constructed out of
the Concept Lattice

Concept Lattice induced by the DataBase

B C
B

A B

A C

A B C

A C

Example of how the proposed closure operator works

5 Generalization of the finding of association rules

With the next theorem, it will be proved that the closure operator defined in the previous section
generalizes the closure operator ϕ which has been presented in section 2.1, and thus, we will able
to affirm that in fact, the analysis of what has been performed with concept lattices is a subcase
of the finding of functional dependencies in a database. Since in the classical approach we have
been dealing with binary relations (databases), and in the new approach we are dealing with
multivalued relations, we need a function to translate this difference, which is the following:

Definition 5.1 For partitions of objects over the domain V = {0, 1}, let f : ΠP(I) → ΠP(I) be a
function such that given ΠX returns a set Pi ∈ ΠX such that ∀o ∈ Pi, o[X ] = {11 . . .1}, or the
empty set otherwise.

We are now ready to see how our method generalizes the former one:

Theorem 5.2 The operator Γ′ = Ψ.f.Φ creates the same set of rules out of a set of models that
the operator defined in current concept lattice literature (ϕ).

Proof: We only need to prove that ∀X ⊆ I : ϕ(X) = Γ′(X). Let ϕ = ψ.φ. By construction,
φ(X) is the collection of objects such that ∀o ∈ φ(X), o[X ] = {11 . . .1}. And ψ(φ(X)) is the
largest set of objects such that complies with the former condition.

On the other hand, we have that Φ(X) is the partition induced by X = x1, . . . xn. The function
f filters all the sets of objects, and retains the one such that ∀o ∈ xi, xi[X ] = {111 . . .1}. Since
all possible values are {0, 1}, this possibility holds. Then, Ψ(f(Φ(X))) returns the largest set of
attributes that induces a set of objects such that ∀o ∈ φ(X), o[X ] = {111 . . .1}.
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