57 research outputs found

    Analysis of AML genes in dysregulated molecular networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying disease causing genes and understanding their molecular mechanisms are essential to developing effective therapeutics. Thus, several computational methods have been proposed to prioritize candidate disease genes by integrating different data types, including sequence information, biomedical literature, and pathway information. Recently, molecular interaction networks have been incorporated to predict disease genes, but most of those methods do not utilize invaluable disease-specific information available in mRNA expression profiles of patient samples.</p> <p>Results</p> <p>Through the integration of protein-protein interaction networks and gene expression profiles of acute myeloid leukemia (AML) patients, we identified subnetworks of interacting proteins dysregulated in AML and characterized known mutation genes causally implicated to AML embedded in the subnetworks. The analysis shows that the set of extracted subnetworks is a reservoir rich in AML genes reflecting key leukemogenic processes such as myeloid differentiation.</p> <p>Conclusion</p> <p>We showed that the integrative approach both utilizing gene expression profiles and molecular networks could identify AML causing genes most of which were not detectable with gene expression analysis alone due to the minor changes in mRNA level.</p

    ToppGene Suite for gene list enrichment analysis and candidate gene prioritization

    Get PDF
    ToppGene Suite (http://toppgene.cchmc.org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis. A P-value of each annotation of a test gene is derived by random sampling of the whole genome. The protein–protein interaction network (PPIN)-based disease candidate gene prioritization uses social and Web networks analysis algorithms (extended versions of the PageRank and HITS algorithms, and the K-Step Markov method). We demonstrate the utility of ToppGene Suite using 20 recently reported GWAS-based gene–disease associations (including novel disease genes) representing five diseases. ToppGene ranked 19 of 20 (95%) candidate genes within the top 20%, while ToppNet ranked 12 of 16 (75%) candidate genes among the top 20%

    Gene–disease relationship discovery based on model-driven data integration and database view definition

    Get PDF
    Motivation: Computational methods are widely used to discover gene–disease relationships hidden in vast masses of available genomic and post-genomic data. In most current methods, a similarity measure is calculated between gene annotations and known disease genes or disease descriptions. However, more explicit gene–disease relationships are required for better insights into the molecular bases of diseases, especially for complex multi-gene diseases

    Shortest-Path Network Analysis Is a Useful Approach toward Identifying Genetic Determinants of Longevity

    Get PDF
    Background Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. Methodology/Principal Findings We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein–protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. Conclusions/Significance This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of network analysis of aging to be extensively validated in a biological system. The novel longevity genes identified in this study are likely to yield further insight into the molecular mechanisms of aging and age-associated disease

    Functional Context Network of T2DM

    Get PDF

    Identification of Novel Cancer-Related Genes with a Prognostic Role Using Gene Expression and Protein-Protein Interaction Network Data

    Get PDF
    Early cancer diagnosis and prognosis prediction are necessary for cancer patients. Effective identification of cancer-related genes and biomarkers and survival prediction for cancer patients would facilitate personalized treatment of cancer patients. This study aimed to investigate a method for integrating data regarding gene expression and protein-protein interaction networks to identify cancer-related prognostic genes via random walk with restart algorithm and survival analysis. Known cancer-related genes in protein-protein interaction networks were considered seed genes, and the random walk algorithm was used to identify candidate cancer-related genes. Thereafter, using the univariant Cox regression model, gene expression data were screened to identify survival-related genes. Furthermore, candidate genes and survival-related genes were screened to identify cancer-related prognostic genes. Finally, the effectiveness of the method was verified through gene function analysis and survival prediction. The results indicate that the cancer-related genes can be considered prognostic cancer biomarkers and provide a basis for cancer diagnosis

    Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation

    Get PDF
    We have previously established a first whole genome transcriptomic profile of sporadic Parkinson’s disease (PD). After extensive brain tissue-based validation combined with cycles of iterative data analysis and by focusing on the most comparable cases of the cohort, we have refined our analysis and established a list of 892 highly dysregulated priority genes that are considered to form the core of the diseased Parkinsonian metabolic network. The substantia nigra pathways, now under scrutiny, contain more than 100 genes whose association with PD is known from the literature. Of those, more than 40 genes belong to the highly significantly dysregulated group identified in our dataset. Apart from the complete list of 892 priority genes, we present pathways revealing PD ‘hub’ as well as ‘peripheral’ network genes. The latter include Lewy body components or interact with known PD genes. Biological associations of PD with cancer, diabetes and inflammation are discussed and interactions of the priority genes with several drugs are provided. Our study illustrates the value of rigorous clinico-pathological correlation when analysing high-throughput data to make optimal use of the histopathological phenome, or morphonome which currently serves as the key diagnostic reference for most human diseases. The need for systematic human tissue banking, following the highest possible professional and ethical standard to enable sustainability, becomes evident
    corecore