66 research outputs found

    C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder

    Full text link
    Representation learning assumes that real-world data is generated by a few semantically meaningful generative factors (i.e., sources of variation) and aims to discover them in the latent space. These factors are expected to be causally disentangled, meaning that distinct factors are encoded into separate latent variables, and changes in one factor will not affect the values of the others. Compared to statistical independence, causal disentanglement allows more controllable data generation, improved robustness, and better generalization. However, most existing work assumes unconfoundedness in the discovery process, that there are no common causes to the generative factors and thus obtain only statistical independence. In this paper, we recognize the importance of modeling confounders in discovering causal generative factors. Unfortunately, such factors are not identifiable without proper inductive bias. We fill the gap by introducing a framework entitled Confounded-Disentanglement (C-Disentanglement), the first framework that explicitly introduces the inductive bias of confounder via labels from domain expertise. In addition, we accordingly propose an approach to sufficiently identify the causally disentangled factors under any inductive bias of the confounder. We conduct extensive experiments on both synthetic and real-world datasets. Our method demonstrates competitive results compared to various SOTA baselines in obtaining causally disentangled features and downstream tasks under domain shifts.Comment: accepted to Neurips 202

    Identification and Estimation of Causal Effects Using non-Gaussianity and Auxiliary Covariates

    Full text link
    Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the n\sqrt{n}-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.Comment: 16 papges, 7 Figure

    Sample-Specific Root Causal Inference with Latent Variables

    Full text link
    Root causal analysis seeks to identify the set of initial perturbations that induce an unwanted outcome. In prior work, we defined sample-specific root causes of disease using exogenous error terms that predict a diagnosis in a structural equation model. We rigorously quantified predictivity using Shapley values. However, the associated algorithms for inferring root causes assume no latent confounding. We relax this assumption by permitting confounding among the predictors. We then introduce a corresponding procedure called Extract Errors with Latents (EEL) for recovering the error terms up to contamination by vertices on certain paths under the linear non-Gaussian acyclic model. EEL also identifies the smallest sets of dependent errors for fast computation of the Shapley values. The algorithm bypasses the hard problem of estimating the underlying causal graph in both cases. Experiments highlight the superior accuracy and robustness of EEL relative to its predecessors

    Computational causal discovery: Advantages and assumptions

    Get PDF
    I would like to congratulate James Woodward for another landmark accomplishment, after publishing his Making things happen: A theory of causal explanation (Woodward, 2003). Making things happen gives an elegant interventionist theory for understanding explanation and causation. The new contribution (Woodward, 2022) relies on that theory and further makes a big step towards empirical inference of causal relations from non-experimental data. In this paper, I will focus on some of the emerging computational methods for finding causal relations from non-experimental data and attempt to complement Woodward's contribution with discussions on 1) how these methods are connected to the interventionist theory of causality, 2) how informative the output of the methods is, including whether they output directed causal graphs and how they deal with confounders (unmeasured common causes of two measured variables), and 3) the assumptions underlying the asymptotic correctness of the output of the methods about causal relations. Different causal discovery methods may rely on different aspects of the joint distribution of the data, and this discussion aims to provide a technical account of the assumptions
    • …
    corecore