Assessing causal effects in the presence of unmeasured confounding is a
challenging problem. Although auxiliary variables, such as instrumental
variables, are commonly used to identify causal effects, they are often
unavailable in practice due to stringent and untestable conditions. To address
this issue, previous researches have utilized linear structural equation models
to show that the causal effect can be identifiable when noise variables of the
treatment and outcome are both non-Gaussian. In this paper, we investigate the
problem of identifying the causal effect using auxiliary covariates and
non-Gaussianity from the treatment. Our key idea is to characterize the impact
of unmeasured confounders using an observed covariate, assuming they are all
Gaussian. The auxiliary covariate can be an invalid instrument or an invalid
proxy variable. We demonstrate that the causal effect can be identified using
this measured covariate, even when the only source of non-Gaussianity comes
from the treatment. We then extend the identification results to the
multi-treatment setting and provide sufficient conditions for identification.
Based on our identification results, we propose a simple and efficient
procedure for calculating causal effects and show the n​-consistency of
the proposed estimator. Finally, we evaluate the performance of our estimator
through simulation studies and an application.Comment: 16 papges, 7 Figure