129 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Intercloud Resource Discovery: A Future Perspective using Blockchain Technology

    Get PDF
    Intercloud is a single logical entity orchestrating resources from different individual clouds providing on-demand resource provisioning in a seamless manner. However, achieving efficient resource discovery in the intercloud environment remains a challenging task owing to the heterogeneity of resources and diversity of cloud platforms. The paper briefs about intercloud resource discovery, outlines the current work done using existing approaches and examines the challenges involved. Finally, the paper explains the concept of blockchain and presents an innovative conceptual model for efficient resource discovery in intercloud

    A cooperative approach for distributed task execution in autonomic clouds

    Get PDF
    Virtualization and distributed computing are two key pillars that guarantee scalability of applications deployed in the Cloud. In Autonomous Cooperative Cloud-based Platforms, autonomous computing nodes cooperate to offer a PaaS Cloud for the deployment of user applications. Each node must allocate the necessary resources for customer applications to be executed with certain QoS guarantees. If the QoS of an application cannot be guaranteed a node has mainly two options: to allocate more resources (if it is possible) or to rely on the collaboration of other nodes. Making a decision is not trivial since it involves many factors (e.g. the cost of setting up virtual machines, migrating applications, discovering collaborators). In this paper we present a model of such scenarios and experimental results validating the convenience of cooperative strategies over selfish ones, where nodes do not help each other. We describe the architecture of the platform of autonomous clouds and the main features of the model, which has been implemented and evaluated in the DEUS discrete-event simulator. From the experimental evaluation, based on workload data from the Google Cloud Backend, we can conclude that (modulo our assumptions and simplifications) the performance of a volunteer cloud can be compared to that of a Google Cluster

    A new MDA-SOA based framework for intercloud interoperability

    Get PDF
    Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.Fundação para a Ciência e a Tecnologia (FCT) - (Referencia da bolsa: SFRH SFRH / BD / 33965 / 2009) and EC 7th Framework Programme under grant agreement n° FITMAN 604674 (http://www.fitman-fi.eu

    Using the NIST reference model for refining logical architectures

    Get PDF
    The emergence of the Internet as a ubiquitous means of communication fostered the growth of new business and service models based on Cloud Computing. Information and Communication Technology companies use reference models to define their Cloud Computing strategies. NIST Cloud Computing Reference Architecture is one of these reference models that assist in the design of business, services, and architecture models. This paper aims to present the use of NIST reference architecture in the design of Cloud Computing architectures by employing a method that enables the application of the reference architecture to the refinement of logical architectures. © 2014 Springer International Publishing

    Smart Cloud Engine and Solution Based on Knowledge Base

    Get PDF
    AbstractComplexity of cloud infrastructures needs models and tools for process management, configuration, scaling, elastic computing and healthiness control. This paper presents a Smart Cloud solution based on a Knowledge Base, KB, with the aim of modeling cloud resources, Service Level Agreements and their evolution, and enabling the reasoning on structures by implementing strategies of efficient smart cloud management and intelligence. The solution proposed provides formal verification tools and intelligence for cloud control. It can be easily integrated with any cloud configuration manager, cloud orchestrator, and monitoring tool, since the connections with these tools are performed by using REST calls and XML files. It has been validated in the large ICARO Cloud project with a national cloud service provider
    • …
    corecore