48 research outputs found

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs

    Get PDF

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

    Full text link
    A bipartite graph is {\em pseudo 2--factor isomorphic} if all its 2--factors have the same parity of number of circuits. In \cite{ADJLS} we proved that the only essentially 4--edge-connected pseudo 2--factor isomorphic cubic bipartite graph of girth 4 is K3,3K_{3,3}, and conjectured \cite[Conjecture 3.6]{ADJLS} that the only essentially 4--edge-connected cubic bipartite graphs are K3,3K_{3,3}, the Heawood graph and the Pappus graph. There exists a characterization of symmetric configurations n3n_3 %{\bf decide notation and how to use it in the rest of the paper} due to Martinetti (1886) in which all symmetric configurations n3n_3 can be obtained from an infinite set of so called {\em irreducible} configurations \cite{VM}. The list of irreducible configurations has been completed by Boben \cite{B} in terms of their {\em irreducible Levi graphs}. In this paper we characterize irreducible pseudo 2--factor isomorphic cubic bipartite graphs proving that the only pseudo 2--factor isomorphic irreducible Levi graphs are the Heawood and Pappus graphs. Moreover, the obtained characterization allows us to partially prove the above Conjecture

    Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids

    Get PDF
    The chromatic polynomial P_G(q) of a loopless graph G is known to be nonzero (with explicitly known sign) on the intervals (-\infty,0), (0,1) and (1,32/27]. Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multivariate Tutte polynomial Z_G(q,v). The proofs are quite simple, and employ deletion-contraction together with parallel and series reduction. In particular, they shed light on the origin of the curious number 32/27.Comment: LaTeX2e, 49 pages, includes 5 Postscript figure

    Hamiltonian cycles and 1-factors in 5-regular graphs

    Full text link
    It is proven that for any integer g≥0g \ge 0 and k∈{0,…,10}k \in \{ 0, \ldots, 10 \}, there exist infinitely many 5-regular graphs of genus gg containing a 1-factorisation with exactly kk pairs of 1-factors that are perfect, i.e. form a hamiltonian cycle. For g=0g = 0, this settles a problem of Kotzig from 1964. Motivated by Kotzig and Labelle's "marriage" operation, we discuss two gluing techniques aimed at producing graphs of high cyclic edge-connectivity. We prove that there exist infinitely many planar 5-connected 5-regular graphs in which every 1-factorisation has zero perfect pairs. On the other hand, by the Four Colour Theorem and a result of Brinkmann and the first author, every planar 4-connected 5-regular graph satisfying a condition on its hamiltonian cycles has a linear number of 1-factorisations each containing at least one perfect pair. We also prove that every planar 5-connected 5-regular graph satisfying a stronger condition contains a 1-factorisation with at most nine perfect pairs, whence, every such graph admitting a 1-factorisation with ten perfect pairs has at least two edge-Kempe equivalence classes. The paper concludes with further results on edge-Kempe equivalence classes in planar 5-regular graphs.Comment: 27 pages, 13 figures; corrected figure

    The complexity of the Perfect Matching-Cut problem

    Full text link
    Perfect Matching-Cut is the problem of deciding whether a graph has a perfect matching that contains an edge-cut. We show that this problem is NP-complete for planar graphs with maximum degree four, for planar graphs with girth five, for bipartite five-regular graphs, for graphs of diameter three and for bipartite graphs of diameter four. We show that there exist polynomial time algorithms for the following classes of graphs: claw-free, P5P_5-free, diameter two, bipartite with diameter three and graphs with bounded tree-width

    Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

    Get PDF
    We introduce a new framework of restricted 2-matchings close to Hamilton cycles. For an undirected graph (V,E) and a family U of vertex subsets, a 2-matching F is called U-feasible if, for each setU in U, F contains at most |setU|-1 edges in the subgraph induced by U. Our framework includes C_{= 5. For instance, in bipartite graphs in which every cycle of length six has at least two chords, our algorithm solves the maximum C_{<=6}-free 2-matching problem in O(n^2 m) time, where n and m are the numbers of vertices and edges, respectively
    corecore