144 research outputs found

    Investigating the benefits and limitations of cascaded converter topologies used in modular battery systems

    Get PDF
    The Performance of battery packs is highly affected by imbalances between the series connected cells that provide the required string voltage. A modular battery implementation based on cascaded converters can have advantages over traditional centralized battery systems with add-ons active/passive balancing techniques. This paper investigates the use of a modular battery integrated within a cascaded converter and how the choice of the converter topology for the module influences the benefits and limitations of the modular battery system performance. Simulation results have been obtained using detailed battery model to validate the analysis

    Review of Cell-Balancing Schemes for Electric Vehicle Battery Management Systems

    Get PDF
    The battery pack is at the heart of electric vehicles, and lithium-ion cells are preferred because of their high power density, long life, high energy density, and viability for usage in relatively high and low temperatures. Lithium-ion batteries are negatively affected by overvoltage, undervoltage, thermal runaway, and cell voltage imbalance. The minimisation of cell imbalance is particularly important because it causes uneven power dissipation by each cell and, hence, temperature distribution that adversely impacts the battery lifetime. Several papers in the literature proposed advanced cell-balancing techniques to increase the effectiveness of basic cell-balancing approaches, reduce power losses, and reduce the number of components in balancing circuits. The new developments and optimisations over the last few years have been particularly intense due to the increased interest in battery technologies for several end-use applications. This paper reviews and discusses recent cell-balancing techniques or methods, covering their operating principles and the optimised utilisation of electrical components

    Review of Cell-Balancing Schemes for Electric Vehicle Battery Management Systems

    Get PDF
    The battery pack is at the heart of electric vehicles, and lithium-ion cells are preferred because of their high power density, long life, high energy density, and viability for usage in relatively high and low temperatures. Lithium-ion batteries are negatively affected by overvoltage, undervoltage, thermal runaway, and cell voltage imbalance. The minimisation of cell imbalance is particularly important because it causes uneven power dissipation by each cell and, hence, temperature distribution that adversely impacts the battery lifetime. Several papers in the literature proposed advanced cell-balancing techniques to increase the effectiveness of basic cell-balancing approaches, reduce power losses, and reduce the number of components in balancing circuits. The new developments and optimisations over the last few years have been particularly intense due to the increased interest in battery technologies for several end-use applications. This paper reviews and discusses recent cell-balancing techniques or methods, covering their operating principles and the optimised utilisation of electrical components

    Powering the future: a comprehensive review of battery energy storage systems

    Get PDF
    Global society is significantly speeding up the adoption of renewable energy sources and their integration into the current existing grid in order to counteract growing environmental problems, particularly the increased carbon dioxide emission of the last century. Renewable energy sources have a tremendous potential to reduce carbon dioxide emissions because they practically never produce any carbon dioxide or other pollutants. On the other hand, these energy sources are usually influenced by geographical location, weather, and other factors that are of stochastic nature. The battery energy storage system can be applied to store the energy produced by RESs and then utilized regularly and within limits as necessary to lessen the impact of the intermittent nature of renewable energy sources. The main purpose of the review paper is to present the current state of the art of battery energy storage systems and identify their advantages and disadvantages. At the same time, this helps researchers and engineers in the field to find out the most appropriate configuration for a particular application. This study offers a thorough analysis of the battery energy storage system with regard to battery chemistries, power electronics, and management approaches. This paper also offers a detailed analysis of battery energy storage system applications and investigates the shortcomings of the current best battery energy storage system architectures to pinpoint areas that require further study.This publication is part of the project TED2021-132864A-I00, funded by MCIN/ AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR”.Peer ReviewedPostprint (published version

    A Simple Mismatch Mitigating Partial Power Processing Converter for Solar PV Modules

    Get PDF
    Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%)

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications

    Resilient and Real-time Control for the Optimum Management of Hybrid Energy Storage Systems with Distributed Dynamic Demands

    Get PDF
    A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides the capability to individually monitor and control a wide range of different ES, enabling the extraction of an ES module within a series array to charge or conduct maintenance, while remaining storage can still function to serve a demand. Enhancements and testing of the ESMC are explored in not only interfacing of multiple ES and HESS, but also as a platform to improve management algorithms. There is an imperative need to provide a bridge between the depth of the electrochemical physics of the battery and the power engineering sector, a feat which was accomplished over the course of this work. First, the ESMC was tested on a lead acid battery array to verify its capabilities. Next, physics-based models of lead acid and lithium ion batteries lead to the improvement of both online battery management and established multiple metrics to assess their lifetime, or state of health. Three unique HESS were then tested and evaluated for different applications and purposes. First, a hybrid battery and SC HESS was designed and tested for shipboard power systems. Next, a lithium ion battery and SC HESS was utilized for an electric vehicle application, with the goal to reduce cycling on the battery. Finally, a lead acid battery and flywheel ES HESS was analyzed for how the inclusion of a battery can provide a dramatic improvement in the power quality versus flywheel ES alone

    Battery charging system incorporating an equalisation circuit for electric vehicles

    Get PDF
    Ph.D. ThesisHybrid electric vehicles (HEVs) and electric vehicles (EVs) are gaining in popularity mainly due to the fact that unlike combustion-powered vehicles, they do not pollute with greenhouse gases and toxic particles. Most HEVs and EVs are powered by lithium-ion battery packs which have high power density and longer cycle lives compared to other battery types. Each pack is made out of many battery cells in series connected and due to manufacturing tolerances and chemical processes in individual cells each cell has its own electric characteristics. In order to achieve a balanced voltage across all cells, a battery management system (BMS) must be employed to actively monitor and balance the cells voltage. On-board battery chargers are installed in HEVs/EVs to charge the lithium-ion battery pack from the grid. This charger converts AC grid voltage into a controllable DC output voltage, but it adds weight to the vehicle, reducing the overall efficiency of an HEV/EV and also increasing its cost. The aim of researches in multi-functional power electronics is to design systems which perform several different functions at the same time. These systems promise cost and weight reductions since only one circuit is used to conduct different functions. An example is the electric drive in an HEV/EV. On one hand, it propels the car forward when driving, while on the other hand the battery can be charged via a modified electric motor and inverter topology. Thus, no additional on-board charger is required. This thesis describes a new multi-functional circuit for HEVs/EVs which combines the functions of voltage equalisation with grid charging. Compared to a drive system, the proposed circuit does not rely on an electric motor to charge the battery. Various battery chargers and equalisation circuits are first compared. Then, the design of the proposed circuit is described and simulation results are presented for charging and voltage balancing. An experimental test rig was built and practical results have been captured and compared with simulation results for validation. The advantages and disadvantages of the proposed circuit are discussed at the end of the thesis. Keywords- Multi-functional system, Battery charging, Voltage equalisation, Lithium-ion batter
    • …
    corecore