22,474 research outputs found

    Using parametric set constraints for locating errors in CLP programs

    Full text link
    This paper introduces a framework of parametric descriptive directional types for constraint logic programming (CLP). It proposes a method for locating type errors in CLP programs and presents a prototype debugging tool. The main technique used is checking correctness of programs w.r.t. type specifications. The approach is based on a generalization of known methods for proving correctness of logic programs to the case of parametric specifications. Set-constraint techniques are used for formulating and checking verification conditions for (parametric) polymorphic type specifications. The specifications are expressed in a parametric extension of the formalism of term grammars. The soundness of the method is proved and the prototype debugging tool supporting the proposed approach is illustrated on examples. The paper is a substantial extension of the previous work by the same authors concerning monomorphic directional types.Comment: 64 pages, To appear in Theory and Practice of Logic Programmin

    Towards verifying correctness of wireless sensor network applications using Insense and Spin

    Get PDF
    The design and implementation of wireless sensor network applications often require domain experts, who may lack expertise in software engineering, to produce resource-constrained, concurrent, real-time software without the support of high-level software engineering facilities. The Insense language aims to address this mismatch by allowing the complexities of synchronisation, memory management and event-driven programming to be borne by the language implementation rather than by the programmer. The main contribution of this paper is all initial step towards verifying the correctness of WSN applications with a focus on concurrency. We model part of the synchronisation mechanism of the Insense language implementation using Promela constructs and verify its correctness using SPIN. We demonstrate how a previously published version of the mechanism is shown to be incorrect by SPIN, and give complete verification results for the revised mechanism.Preprin

    Multi-level Contextual Type Theory

    Full text link
    Contextual type theory distinguishes between bound variables and meta-variables to write potentially incomplete terms in the presence of binders. It has found good use as a framework for concise explanations of higher-order unification, characterize holes in proofs, and in developing a foundation for programming with higher-order abstract syntax, as embodied by the programming and reasoning environment Beluga. However, to reason about these applications, we need to introduce meta^2-variables to characterize the dependency on meta-variables and bound variables. In other words, we must go beyond a two-level system granting only bound variables and meta-variables. In this paper we generalize contextual type theory to n levels for arbitrary n, so as to obtain a formal system offering bound variables, meta-variables and so on all the way to meta^n-variables. We obtain a uniform account by collapsing all these different kinds of variables into a single notion of variabe indexed by some level k. We give a decidable bi-directional type system which characterizes beta-eta-normal forms together with a generalized substitution operation.Comment: In Proceedings LFMTP 2011, arXiv:1110.668

    Towards Parameterized Regular Type Inference Using Set Constraints

    Full text link
    We propose a method for inferring \emph{parameterized regular types} for logic programs as solutions for systems of constraints over sets of finite ground Herbrand terms (set constraint systems). Such parameterized regular types generalize \emph{parametric} regular types by extending the scope of the parameters in the type definitions so that such parameters can relate the types of different predicates. We propose a number of enhancements to the procedure for solving the constraint systems that improve the precision of the type descriptions inferred. The resulting algorithm, together with a procedure to establish a set constraint system from a logic program, yields a program analysis that infers tighter safe approximations of the success types of the program than previous comparable work, offering a new and useful efficiency vs. precision trade-off. This is supported by experimental results, which show the feasibility of our analysis

    Abstract Interpretation-based verification/certification in the ciaoPP system

    Get PDF
    CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Constraint) Logic Programming system. It uses modular, incremental abstract interpretation as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approximations thus produced have been applied to perform high- and low-level optimizations during program compilation, including transformations such as múltiple abstract specialization, parallelization, partial evaluation, resource usage control, and program verification. More recently, novel and promising applications of such semantic approximations are being applied in the more general context of program development such as program verification. In this work, we describe our extensión of the system to incorpórate Abstraction-Carrying Code (ACC), a novel approach to mobile code safety. ACC follows the standard strategy of associating safety certificates to programs, originally proposed in Proof Carrying- Code. A distinguishing feature of ACC is that we use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstractinterpreter. We have implemented and benchmarked ACC within CiaoPP. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-time (and run-time) tools for the certification of CLP programs with resource consumption assurances

    Parameterized Model Checking of Token-Passing Systems

    Full text link
    We revisit the parameterized model checking problem for token-passing systems and specifications in indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X}. Emerson and Namjoshi (1995, 2003) have shown that parameterized model checking of indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X} in uni-directional token rings can be reduced to checking rings up to some \emph{cutoff} size. Clarke et al. (2004) have shown a similar result for general topologies and indexed LTL\X\textsf{LTL} \backslash \textsf{X}, provided processes cannot choose the directions for sending or receiving the token. We unify and substantially extend these results by systematically exploring fragments of indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X} with respect to general topologies. For each fragment we establish whether a cutoff exists, and for some concrete topologies, such as rings, cliques and stars, we infer small cutoffs. Finally, we show that the problem becomes undecidable, and thus no cutoffs exist, if processes are allowed to choose the directions in which they send or from which they receive the token.Comment: We had to remove an appendix until the proofs and notations there is cleare
    corecore