
Abstract Interpretation-based
Verification/Certification in the CiaoPP System

Germán Puebla 1 , Elvira Albert2 , and Manuel Hermenegildo1 '3

1 Facultad de Informática, Technical University of Madrid, german@fi.upm.es
2 DSIP, Complutense University of Madrid, elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New México, herme@unm.edu

Abs t r ac t . CiaoPP is the abstract interpretation-based preprocessor of
the Ciao multi-paradigm (Constraint) Logic Programming system. It
uses modular, incremental abstract interpretation as a fundamental tool
to obtain information about programs. In CiaoPP, the semantic approxi-
mations thus produced have been applied to perform high- and low-level
optimizations during program compilation, including transformations
such as múltiple abstract specialization, parallelization, partial evalu-
ation, resource usage control, and program verification. More recently,
novel and promising applications of such semantic approximations are
being applied in the more general context of program development such
as program verification. In this work, we describe our extensión of the sys­
tem to incorpórate Abstraction-Carrying Code (ACC), a novel approach
to mobile code safety. ACC follows the standard strategy of associating
safety certificates to programs, originally proposed in Proof Carrying-
Code. A distinguishing feature of ACC is that we use an abstraction (or
abstract model) of the program computed by standard static analyzers
as a certifícate. The validity of the abstraction on the consumer side
is checked in a single-pass by a very efficient and specialized abstract-
interpreter. We have implemented and benchmarked ACC within CiaoPP.
The experimental results show that the checking phase is indeed faster
than the proof generation phase, and that the sizes of certificates are
reasonable. Moreover, the preprocessor is based on compile-time (and
run-time) tools for the certification of CLP programs with resource con-
sumption assurances.

1 Abstract Interpretation-based Verification

We star t by briefly describing an abstract interpretation-based approach to pro­
gram verification [23,5,21] which constitutes the basis for the certification pro-
cess carried out in Abstraction Carrying Code (ACC).

Abstract interpretation [7] is now a well established technique which has
allowed the development of very sophisticated global static program analyses
tha t are at the same time automatic, provably correct, and practical. The basic
idea of abstract interpretation is to infer information on programs by interpreting

mailto:german@fi.upm.es
mailto:elvira@sip.ucm.es
mailto:herme@unm.edu

("running") them using abstract valúes rather than concrete ones, thus obtaining
safe approximations of the behavior of the program. An abstract valué of an
abstract domain (Da) is a finite representation of a, possibly infinite, set of
actual valúes in the concrete domain (D). Our approach relies on the abstract
interpretation theory [7], where the set of all possible abstract semantic valúes
which represents Da is usually a complete lattice or cpo which is ascending chain
finite. However, for this study, abstract interpretation is restricted to complete
lattices over sets, both for the concrete (2-°,C) and abstract (Da,Q) domains.
Abstract valúes and sets of concrete valúes are related via a pair of monotonic
mappings (a,j): abstraction a : 2D —> Da, and concretization 7 : Da —> 2D,
such tha t \/x £ 2D : j(a(x)) D x and \/y <G Da : a(j(y)) = y. In general IZ
is induced by C and a. Similarly, the operations of least upper bound (U) and
greatest lower bound (n) mimic those of 2D in a precise sense.

We consider the important class of semantics referred to as fixed-point se­
mantics. In this setting, a (monotonic) semantic operator (which we refer to as
Sp) is associated to each program P . This Sp function operates on a semantic
domain which is generally assumed to be a complete lattice or, more generally, a
chain-complete partial order. The meaning of the program (which we refer to as
IPJ) is defined as the least fixed point of the Sp operator, i.e., [PJ = lfp(Sp).
A well-known result is t ha t if Sp is continuous, the least fixed point is the limit
of an iterative process involving at most ui applications of Sp and start ing from
the bot tom element of the lattice.

Both program verification and debugging compare the actual semantics of
the program, i.e., \P\, with an intended semantics for the same program, which
we denote by I . This intended semantics embodies the user's requirements, i.e.,
it is an expression of the user's expectations. The classical verification problem
of verifying tha t P is partially corred w.r.t. I can be formulated as follows:

P is partially corred w.r.t. I if [[P] C I

However, using the exact either actual or intended semantics for automatic ver­
ification and debugging is in general not realistic, since the exact semantics can
be infinite, too expensive to compute, only partially known, etc. An alternative
approach is to work with approximations of the semantics. This is interesting,
among other reasons, because the technique of abstract interpretation can pro-
vide safe approximations of the program semantics. For now, we assume tha t
the program specification is given as a semantic valué Ia <G Da. Comparison be-
tween actual and intended semantics of the program is most easily done in the
same domain, since then the operators on the abstract lattice, t ha t are typically
already defined in the analyzer, can be used to perform this comparison. Thus,
for comparison we need in principie a(|[P]|) and we proceed as follows:

P is partially corred w.r.t. Ia if a(|P]]) IZ Ia

However, using abstract interpretation, we can usually only compute | [P] | a ,
which is an approximation of a(|[P]|) and it is computed by the analyzer as

I-PJQ, = Ifp(Sp). The operator Sf, is the abstract counterpart of Sp. A key idea
in abstract interpretation-based veriñcation is to use |[P]]a directly in debugging
and veriñcation tasks. The possible loss of accuracy due to approximation pre­
venís full veriñcation in general. However, and interestingly, it turns out that
in many cases useful veriñcation and debugging conclusions can still be derived
by comparing the approximations of the actual semantics of a program to the
(also possibly approximated) abstract intended semantics. Thus, we are inter-
ested in studying the implications of comparing Ia and [P]]a. Analyses which
over-approximate the actual semantics (which we denote |[-P]|a+), are specially
suited for proving partial correctness and incompleteness with respect to the
abstract speciñcation Ia. In particular, a sufficient condition for demonstrating
that P is partially correct is as follows:

P is partially correct w.r.t. Ia if |[P]|a+ E 1-a

In our approach, we compare |[P]]a directly to the (also approximate) intention
which is given in terms of assertions [22]. Such assertions are linguistic construc-
tions which allow expressing properties of programs, as we will explain in the
next section.

2 The Abstraction-Carrying Code Framework

Current approaches to mobile code safety, inspired by the technique of Proof-
Carrying Code (PCC) [20], associate safety information in the form of a cer­
tifícate to programs. The certiñcate (or proof) is created by the code supplier
at compile time, and packaged along with the untrusted code. The consumer
who receives the code+certiñcate package can then run a checker which by a
straightforward inspection of the code and the certiñcate, can verify the validity
of the certiñcate and thus compliance with the safety policy. The key beneñt of
this approach is that the burden of ensuring compliance with the desired safety
policy is shifted from the consumer to the supplier. Indeed the (proof) checker
performs a task that should be much simpler, efficient, and automatic than gen-
erating the original certiñcate. For instance, in the ñrst PCC system [20], the
certiñcate is originally a proof in ñrst-order logic of certain verification condi-
tions and the checking process involves ensuring that the certiñcate is indeed a
valid ñrst-order proof.

The main practical difficulty of PCC techniques is in generating safety cer-
tiñcates which at the same time:

— allow expressing interesting safety properties,
— can be generated automatically and,
— are easy and efficient to check.

The idea of Abstraction Carrying Code (ACC) [1,2] is a natural extensión of
our approach to abstract interpretation-based program veriñcation which offers a
number of advantages for dealing with the aforementioned issues in the context

Safety Policy

PRODUCER CONSUMER

Fig. 1. Abstraction-Carrying Code

of mobile code. In particular, the expressiveness of existing abstract domains
will be implicitly available in abstract interpretation-based code certiñcation to
deñne a wide range of safety properties. Figure 1 presents an overview of ACC.
The certiñcation process carried out by the code producer is depicted to the left
of the ñgure while the checking process performed by the code consumer appears
to the right. In particular, ACC has the foUowing fundamental elements which
can handle the challenges of P C C .

The ñrst element, which is common to both producer and consumers, is
the Safety Policy. We rely on an expressive class of safety policies based on
"abstract"—i.e. symbolic—properties over different abstract domains. Thus, our
framework is parametric w.r.t. the abstract domain(s) of interest, which gives us
generality and expressiveness. As in the case of simple veriñcation, an expressive
assertion language is used to deñne the safety policy. Given an initial program
P, we ñrst deñne its Safety Policy by means of a set of assertions AS in the
context of an abstract domain Da. The domain is appropriately chosen among a
repertoire of Domains available in the system. The assertions are obtained from
the assertions for system predicates and those provided by the user.

Once the safety policy is speciñed, the next element at the producer's side
is a ñxpoint-based static Analyzer which automatically and efficiently infers an
abstract model (or simply abstraction) of the mobile code, | [P] | a , in terms of the
abstract domain Da. This abstraction can then be used to prove tha t the code
is safe w.r.t. the given policy. Thus, our certiñcation method is based on the
foUowing key idea:

An abstraction of the program computed by abstract interpretation-based
analyzers can play the role of certifícate for attesting program safety.

The process of returning this abstraction of P ' s execution, [[-P]]a, in terms of the
abstract domain Da is well understood for several general types of analyses for
Prolog and its (constraint or multi-paradigm) extensions [8,3,18,16,6,11] . In
particular, our implementation is based on PLAI [18,17], a generic engine which
has the description domain and functions on this domain as parameters.

The veriñcation condition generator, VCGen in the ñgure, generates, from the
initial safety policy and the abstraction, a Verification Condition (VC) which can
be proved only if the execution of the code does not viólate the safety policy. The
formal deñnition of VCGen is outside the scope of this paper (it can be found in
[2]). Intuitively, the veriñcation condition is a conjunction of boolean expressions
whose validity ensures the consistency of a set of assertions w.r.t. the answer
table computed by the analyzer. The condition is sent to an automatic validator
which attempts to check its validity w.r.t. the answer table. This validation
may yield three different possible status: i) the veriñcation condition is indeed
checked (marked as OK in Fig. 1), then the certiñcate (Le., the abstraction) is
considered valid, ii) it is disproved, and thus the certiñcate is not valid and the
code is deñnitely not safe to run (we should obviously correct the program before
continuing the process); iii) it cannot be proved ñor disproved, which may be
due to several circumstances. For instance, it can happen that the analysis is
not able to infer precise enough information to verify the conditions. The user
can then provide a more reñned description of initial calling patterns or choose
a different, ñner-grained, domain. Although, it is not showed in the picture, in
both the ii) and iii) cases, the certiñcation process needs to be restarted until
achieving a veriñcation condition which meets i). If it succeeds, the answer table
constitutes a valid certiñcate and can be sent to the consumer together with the
program.

The checking process performed by the consumer is illustrated on the right
hand side of Fig. 1. Initially, the supplier sends the program P together with
the certiñcate to the consumer. To retain the safety guarantees, the consumer
can provide a new set of assertions which specify the Safety Policy required by
this particular consumer. It should be noted that ACC is very flexible in that it
allows different implementations of the way the safety policy is provided. Clearly,
the same assertions AS used by the producer can be sent to the consumer. But,
more interestingly, the consumer can decide to impose a weaker safety condition
which can still be proved with the submitted abstraction. Also, the imposed
safety condition can be stronger and it may not be proved if it is not implied by
the current abstraction (which means that the code would be rejected). From the
provided assertions, the consumer must genérate again a trustworthy VC and use
the incoming certiñcate to efñciently check that the VC holds. The re-generation
of the VC (and its corresponding validation) is identical to the process done in
the producer.

Regarding the deñnition of the Checker, although global analysis is efficient
enough to be now used routinely as a practical tool, it is still unacceptable to run
the whole Analyzer to validate the certiñcate since it involves considerable cost.
One of the main reasons is that the analysis algorithm is an iterative process
which often computes answers (repeatedly) for the same cali due to possible up-
dates introduced by further computations. At each iteration, the algorithm has
to manipúlate rather complex data structures—which involve performing up-
dates, lookups, etc.—until the ñxpoint is reached. The whole validation process
is centered around the following observation: the checking algorithm can be de-

fined, as a very simplified "one-pass" analyzer. The computation of the Analyzer
can be understood as:

\P\a = Analyzer = \fp(analysis_step)

Le., a process which repeatedly performs a traversal of the analysis graph (de-
noted by analysisstep) until the computed information does not change, Le., it
reaches a ñxpoint. The idea is that the simple, non-iterative analysisstep pro­
cess can play the role of abstract interpretation-based checker (or simply analysis
checker). In other words,

Checker = analysisstep

Intuitively, since the certiñcation process already provides the ñxpoint result as
certiñcate, an additional analysis pass over it cannot change the result. Thus, as
long as the analysis results are a valid ñxpoint one single execution of analysisstep
validates the certiñcate.

Another efficiency issue that the ACC model addresses is which particular
subset of [PJQ, is sufficient for veriñcation purposes. It turns out, not surprisingly,
that there is a tradeoff between the amount of information sent and the cost
of the checking phase. However, we have also shown that only a very small
portion of |[P]|a (the "guesses" in the recursive diques) is sufficient to ensure
that the checker does not need to itérate. In any case, the analysis checker for
efficiently validating the certiñcate can be designed in a simple way which does
not require the use of many of the complex data structures which are needed in
the implementation of a practical analyzer. More details are presented in [2].

3 Some Examples in CiaoPP

The above abstract interpretation-based code certiñcation framework has been
implemented in CiaoPP [13]: the preprocessor of the Ciao program development
system [4]. Ciao is a multi-paradigm programming system, allowing program-
ming in logic, constraint, and functional styles. At the heart of Ciao is an effi-
cient logic programming-based kernel language. This allows the use of the very
large body of approximation domains, inference techniques and tools for abstract
interpretation-based semantic analysis which have been developed to a power-
ful and mature level in this área (see, e.g., [19,6,11,14] and their references).
These techniques and systems can approximate at compile-time, always safely,
and with a signiñcance degree of precisión, a wide range of properties which is
much richer than, for example, traditional types. This includes data structure
shape (including pointer sharing), independence, bounds on data structure sizes,
and other operational variable instantiation properties as well as procedure-level
properties such as determinacy, termination, non-failure and bounds on resource
consumption (time or space cost). The latter tasks are performed in an integrated
fashion in CiaoPP.

In the context of CiaoPP, the abstract interpretation-based certiñcation sys­
tem is implemented in Ciao 1.11^200 [4] with compilation to bytecode. In

essence, we have used the efficient, highly optimized, state-of-the-art analysis
system of CiaoPP (which is part of a working compiler) as ñxpoint analyzer for
generating safety certiñcates. The checker has been implemented also as a sim-
pliñcation of such generic abstract interpreter. Our aim here is to present not
the techniques used by CiaoPP for code certiñcation (which are described in [2])
but its main functionalities by means of some examples.

Example 1 (sharing+freeness). The next program mmul t ip ly multiplies two ma­
trices by using two auxiliary predicates: m u l t i p l y which performs the multipli-
cation of a matr ix and an array and vmul which computes the vectorial product
of two arrays (by multiplying all their elements):

mmul t ip ly ([] , _ , []) .
mmultiply([VO|Rest], VI, [Result|Others]):-

mmultiply(Rest, VI, Others),
multiply(Vl,VO,Result).

multiply([] ,_,[]).
multiply([VO|Rest], VI, [Result|Others]):-

multiply(Rest, VI, Others),

vmul(VO,VI,Result) .

vmul([],[],0).

v m u l ([H l | T I] , [H2 |T2] , R e s u l t) : -
vmul (T l ,T2 , N e w r e s u l t) ,
P roduc t i s H1*H2,
R e s u l t i s P roduc t+Newresu l t .

One of the distinguishing features of logic programming is tha t arguments to
procedures can be uninstantiated variables. This, together with the search exe-
cution mechanism available (generally backtracking) makes it possible to have
multi-directional procedures. Le., rather than having ñxed input and output
arguments, execution can be "reversed". Thus, we may compute the "input"
arguments from known "output" arguments. However, predicate i s / 2 (used as
an inñx binary operator) is mono-directional. It computes the arithmetic valué
of its second (right) argument and uniñes it with its ñrst (left) argument. The
execution of i s with an uninstantiation rightmost argument results in a run-
time error. Therefore, a safety issue in this example is to ensure tha t calis t o the
built-in predicate i s are performed with ground da ta in the right argument.

We can infer this safety information by analyzing the above program in
CiaoPP using a mode and independence analysis ("sharing+freeness"). In the
"sharing+freeness" domain, va r denotes variables tha t do not point yet to any
data structure, mshare denotes pointer sharing pat terns between variables and
ground variables which point to da ta structures which contain no pointers. The
analysis is performed with the following e n t r y assertion which allows specifying
a restricted class of calis to the predicate.

: - e n t r y m m u l t i p l y (X , Y , Z) : (v a r (Z) , g round(X) , ground(Y)) .

It denotes tha t calis t o mmultiply will be performed with ground terms in the
ñrst two arguments and a free variable in the last one.

For the above entry, the output of CiaoPP yields, among others, the following
set of assertions which constitute our safety certiñcate:

: - t rue pred A i s B+C
: (m s h a r e ([[A]]) , v a r (A) , g r o u n d ([B , C]))

=> (ground([A,B,C])) .
: - t rue pred A i s B*C

: (m s h a r e ([[A]]) , v a r (A) , g r o u n d ([B , C]))
=> (ground([A,B,C])) .

The "true pred" assertions above specify in a combined way properties of both:
" :" the entry (Le., upon calling) and "=>" the exit (Le., upon success) points
of all calis to the predicate. These assertions for predicate i s express tha t the
leftmost argument is a free unaliased variable while the rightmost arguments
are input valúes (Le., ground on cali) when i s is called (:). Upon success, all
three arguments will get instantiated. Given this information, we can verify tha t
the safety condition is accomplished and thus the code is safe to run. Thus, the
above analysis output can be used as a certiñcate to at test a safe use of predicate
i s .

The above experiment has been performed using a sharing+freeness domain.
However, the whole method is domain-independent. This allows plugging in
different abstract domains, provided suitable interfacing functions are deñned.
From the user point of view, it is sufficient to specify the particular abstract
domain desired. For instance, CiaoPP can also infer (parametric) types for pro-
grams both at the predicate level and at the literal level [11,12,25]. Clearly,
type information is very useful for program certiñcation, veriñcation, optimiza-
tion, debugging (see, e.g., [13]).

Example 2 (eterms). Our next experiment uses the regular type domain eterms [25]
to analyze the same program of Ex. 1. We use in our examples term as the most
general type (Le., it corresponds to all possible terms), l i s t to represent lists
and num for numbers. We also allow parametric types such as l i s t (T) which
denotes lists whose elements are all of type T. Type l i s t is clearly equivalent to
l i s t (t e r m) .

The program is analyzed w.r.t. the following entry assertion which speciñes
tha t calis to mmultiply are performed with matrices in the ñrst two arguments:

: - entry mmultiply(X,Y,Z): (var (Z) ,
l i s t (X , l i s t (n u m)) , l i s t (Y , l i s t (n u m))) .

CiaoPP output yields, among other, the following assertions for the built-in
predicate i s :

: - t rue pred A i s B+C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

: - t rue pred A i s B*C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

They indicate tha t calis to i s will be performed with numbers in the right-
most argument (thus, ground terms) and will return, upon success, a number
in the ñrst argument. Therefore, they also constitute a valid (and more precise)
certiñcate for the safety issue described in Ex. 1.

4 Computational Properties

Abstract interpretation-based techniques are able t o reason about computational
properties which can be useful for controlling efficiency issues, an interesting
issue for instance in the context of pervasive computing systems. CiaoPP can
infer lower and upper bounds on the sizes of terms and the computational cost
of predicates [9,10]. Cost bounds are expressed as functions on the sizes of the
input arguments and yield the number of resolution steps. Various measures can
be used for the "size" of the input, such as list-length, term-size, term-depth,
integer-value, etc. The idea is tha t the system can disregard code which makes
requirement tha t are too large in terms of computing resources (in t ime and/or
space). Let us see an example.

Example 3. The following program i n c . a l l increments all elements of a list by
adding one to each of them.

i n c . a l l ([] , []) .
i n c a l í ([H|T] , [NH|NT]) : -

NH i s H+l,
i n c a l í (T, NT).

The following assertions have been added by the user of the pervasive computing
system:

: - entry i n c _ a l l (A , B) : (l i s t (A , n u m) , v a r (B)) .
: - check c a l i s i n c a l í (A,B)

: l i s t (A , n u m) .
: - check s u c c e s s i n c _ a l l (A , B)

=> l i s t (B , n u m) .
: - check comp i n c a l í (A, B)

: (l i s t (A , n u m) , var(B))
+ s t e p s _ u b (l e n g t h (A) + l) .

The entry assertion speciñes tha t calis to i n c a l í must be performed with a list
of numbers in the ñrst argument while the second one must be a free variable.
The next three check assertions express the intended semantics of the program.
The third one intends to check tha t , upon success, the second argument of calis
to i n c _ a l l will be a list of numbers. Finally, the last computational (comp)

assertion tries to verify tha t the upper bound of the predícate is the sum of
the length of the ñrst list and one. The idea is tha t the code will be accepted
provided all assertions can be checked.

The cost analysis available in CiaoPP infers, among others, the following
assertions for the above program and entries:

: - checked c a l i s i n c _ a l l (A , B)
: l i s t (A , n u m) .

: - checked s u c c e s s i n c _ a l l (A , B)
=> l i s t (B , n u m) .

: - checked comp i n c _ a l l (A , B)
: (l i s t (A , n u m) , va r (B))
+ s t e p s _ u b (i n c _ a l l (A , B) , l e n g t h (A) + l) .

: - t r u e p r e d i n c _ a l l (A , B)
: (l i s t (A , n u m) , va r (B))

=> (l i s t (A , n u m) , l i s t (B , n u m))
+ (n o t _ f a i l s , i s _ d e t ,

s t e p s _ u b (l e n g t h (A) + l)) .

Therefore, the s ta tus of the last three check assertions has become checked,
which means tha t they have been validated and thus the program is safe to run
(according to the intended meaning). The last procedure-level assertion merges
them all and, additionally, indicates tha t calis to the predícate do not fail and
their execution is deterministic by combining information available for other
abstract domains.

P C C techniques—based on certiñcates which are computed outside the device—
constitute a good scenario for the certiñcation of software deployed in systems
with limited computed resources, which may lack computing resources to per-
form static analysis. They compute tamper-proof certiñcates which simplify code
veriñcation and pass them along with the code. In our abstract interpretation-
based context, although global analysis is now routinely used as a practical tool,
it is still unacceptable to run the whole analyzer to validate the certiñcate as it
involves considerable cost. One of the main reasons is tha t the ñxpoint algorithm
is an iterative process which often computes answers (repeatedly) for the same
cali due to possible updates introduced by further computations. At each iter-
ation, the algorithm has to manipúlate rather complex data structures—which
involve performing updates , lookups, etc.—until the ñxpoint is reached. Luckily,
in abstract interpretation-based code certiñcation, the burden on the consumer
side is reduced by using a simple one-traversal checker, which is a very simpli-
ñed and efficient abstract interpreter which does not need to compute a ñxpoint.
The benchmark results in [2] show tha t the speedup achieved by the checking is
approximately 1.63 in just analysis t ime which, we believe, makes our approach
practically applicable in pervasive contexts.

A similar proposal is presented in [24] to split the type-based bytecode ver­
iñcation of the KVM (an embedded variant of the JVM) in two phases, where
the producer ñrst computes the certiñcate by means of a type-based dataflow

analyzer and then the consumer simply checks that the types provided in the
code certifícate are valid. This approach is extended in [15] to real world Java
Software. As in our case, the validation can be done in a single, linear pass over
the bytecode. However, these approaches are designed limited to types, whereas
our approach supports a very rich set of domains especially well-suited for this
purpose, including complex properties such as computational and memory cost,
non-failure, determinacy, etc. (as we have seen in the examples in this section)
and possibly even combining several of them.

5 Conclusions

Abstract interpretation-based veriñcation forms the córner stone of the safety
model of CiaoPP: the preprocessor of the Ciao multi-paradigm programming
system. It ensures the integrity of the runtime environment even in the presence
of untrusted code. The framework uses modular, incremental, abstract interpre-
tation as a fundamental tool to infer information about programs. This infor-
mation is used to certify and validate programs, to detect bugs with respect to
partial speciñcations written using program assertions, to genérate and simplify
run-time tests and to perform high-level optimizations such as múltiple abstract
specialization, parallelization, and resource usage control. Among these appli-
cations, we herein focus on the use of abstract interpretation-based veriñcation
for the purpose of mobile code safety by following the standard PCC method-
ology. We report on some experiments in CiaoPP at work which illustrate how
the actual process of program certiñcation is aided in an implementation of this
framework. We point out that computational properties inferred by CiaoPP can
be useful for controlling resource usage and ñltering out mobile code which does
not meet certain cost requirements. Also, the fact that our approach follows PCC
techniques—in which the certifícate is generated outside the device—makes it
potentially applicable in this pervasive context. However, controlling it in a per-
fect way proves far from obvious, and a range of challenging open problems
remain as topics for further research. For instance, we plan to study a more
precise model of the memory requirements of small devices. The size of certifi-
cates needs to be minimized as much as possible to ñt in such limited systems.
We believe that they can be further reduced by omitting the information which
has to be necessarily re-computed by the checker. This is the subject of ongoing
research.

References

1. E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based
Approach to Mobile Code Safety. In Proc. of Compiler Optimization meets Com-
piler Verification (COCV'04), Electronic Notes in Theoretical Computer Science
132(1), pages 113-129. Elsevier - North Holland, April 2005.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In llth
International Conference on Logic for Programming Artificial Intelligence and Rea-
soning (LPAR'04), number 3452 in LNAI, pages 380-397. Springer-Verlag, March
2005.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

4. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla. The Ciao Prolog System. Reference Manual (vi.8). Technical Re-
port CLIP4/2002.1, School of Computer Science, UPM, 2002. Available at
h t t p : / / c l i p . d i a . f i . upm.e s /So f twa re /C iao / .

5. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on Au-
tomated Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May 1997.
U. of Linkoping Press.

6. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

7. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

8. S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM Transactions on Programming Languages and Systems, ll(3):418-450, 1989.

9. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Estimating the
Computational Cost of Logic Programs. In Proc. of SAS'94, number 864 in LNCS,
pages 255-265. Springer-Verlag, 1994. Invited Talk.

http://clip.dia.fi.upm.es/Software/Ciao/

10. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In Proc. of ILPS'97, pages 291-305. MIT
Press, Cambridge, MA, 1997.

11. J. Gallagher and D. de Waal. Fast and Precise Regular Approximations of Logic
Programs. In Proc. of ICLP'94, pages 599-613. MIT Press, 1994.

12. J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite
Tree Autómata for Set-Based Analysis of Logic Programs. In Proc. of PADL'02,
LNCS, pages 243-261, 2002.

13. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.
of SAS'03, pages 127-152. Springer LNCS 2694, 2003.

14. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187-223, March 2000.

15. K. Klohs and U. Kastens. Memory Requirements of Java Bytecode Verification on
Limited Devices. In Proc. of Compüer Optimization meets Compiler Verification
(COCV'04), 2004.

16. K. Marriott, H. S0ndergaard, and N.D. Jones. Denotational Abstract Interpre­
tation of Logic Programs. ACM Transactions on Programming Languages and
Systems, 16(3):607-648, 1994.

17. K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algo-
rithm for Top-down Abstract Interpretation of Logic Programs. Technical Report
ACT-DC-153-90, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, April 1990.

18. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

19. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De­
pendency Using Abstract Interpretation. Journal of Logic Programming, 13(1, 2,
3 and 4):315-347, 1992.

20. G. Necula. Proof-Carrying Code. In Proc. of POPL'97, pages 106-119. ACM
Press, 1997.

21. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 63-107. Springer-Verlag, September 2000.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23-61. Springer LNCS 1870, 2000.

23. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro­
gram Synthesis and Transformation (LOPSTR'99), number 1817 in LNCS, pages
273-292. Springer-Verlag, 2000.

24. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSALA Workshop on
Formal Underpinnings of Java, 1998.

25. C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In Proc. of SAS'02, pages 102-116. Springer LNCS 2477, 2002.

26. M. Weiser. The computer for the twenty-first century. Scientific American,
3(265):94-104, September 1991.

