
Towards Verifying Correctness of Wireless
Sensor Network Applications using Insense and

Spin

O. Sharma1, J. Lewis2, A. Miller1, A. Dearle2, D. Balasubramaniam2, R.
Morrison2, and J. Sventek1

1 Department of Computing Science, University of Glasgow, Scotland
2 School of Computer Science, University of St. Andrews, Scotland

Abstract. The design and implementation of wireless sensor network
applications often require domain experts, who may lack expertise in soft-
ware engineering, to produce resource-constrained, concurrent, real-time
software without the support of high-level software engineering facilities.
The Insense language aims to address this mismatch by allowing the
complexities of synchronisation, memory management and event-driven
programming to be borne by the language implementation rather than
by the programmer. The main contribution of this paper is an initial
step towards verifying the correctness of WSN applications with a focus
on concurrency. We model part of the synchronisation mechanism of the
Insense language implementation using Promela constructs and verify
its correctness using SPIN. We demonstrate how a previously published
version of the mechanism is shown to be incorrect by SPIN, and give
complete verification results for the revised mechanism.

Keywords

Promela; SPIN; Concurrency; Distributed systems; Formal Modelling; Wireless
Sensor Networks

1 Introduction

The coupling between software and hardware in the design and implementation
of wireless sensor network (WSN) applications, driven by time, power and space
constraints, often results in ad-hoc, platform specific software. Domain experts
are expected to produce complex, concurrent, real-time and resource-constrained
applications without the support of high-level software engineering facilities.

To address this mismatch, the Insense language [3, 9] abstracts over the com-
plexities of memory management, concurrency control and synchronisation and
decouples the application software from the operating system and the hard-
ware. An Insense application is modelled as a composition of active components
that communicate via typed, directional, synchronous channels. Components are
single threaded and stateful but do not share state, thereby avoiding race con-
ditions. Thus, the complexity of concurrent programming in Insense is borne

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821420?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by the language implementation rather than by the programmer. Verifying the
correctness of Insense applications requires that the language implementation be
proved correct with respect to its defined semantics.

The main contribution of this paper is an initial step towards verifying the
correctness of WSN applications by modelling the semantics of Insense using
Promela constructs. We focus here on concurrent programming and in particular
on the correctness of the Insense channel implementation. The Insense channels
and some of their associated algorithms are modelled in Promela. SPIN is then
used to verify a set of sufficient conditions under which the Insense channel
semantics are satisfied for a small number of sender and receiver components.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on WSNs, Insense, and model checking. We then present
the Insense channel model and its implementation in sections 3 and 4 respec-
tively. Section 5 details the translation of the Insense channel implementation
to Promela, develops a set of properties to verify the correctness of the imple-
mentation and demonstrates how a previously published version of the channel
algorithms is shown to be incorrect by SPIN. Section 6 presents complete ver-
ification results for a revised set of algorithms and for previously unpublished
connect and disconnect algorithms. Section 7 includes conclusions and some
thoughts and directions on future work.

2 Background

2.1 Wireless Sensor Networks

WSNs, in general, and wireless environmental sensor networks, in particular, are
receiving substantial research focus due to their potential importance to society
[1]. By composing inexpensive, battery-powered, resource-constrained computa-
tion platforms equipped with short range radios, one can assemble networks of
sensors targeted at a variety of tasks – e.g. monitoring air or water pollution
[13], tracking movement of autonomous entities (automobiles [17], wild animals
[19]), and attentiveness to potentially disastrous natural situations (magma flows
indicative of imminent volcanic eruptions [20]).

A wireless sensor node is an example of a traditional embedded system, in
that it is programmed for a single, particular purpose, and is tightly integrated
with the environment in which it is placed. As with all embedded computer sys-
tems, it is essential that appropriate design and construction tools and method-
ologies be used to eliminate application errors in deployed systems. Additionally,
a wireless sensor node is usually constrained in a number of important operating
dimensions: a) it is usually battery-powered and placed in a relatively inaccessi-
ble location; thus there is a need to maximize the useful lifetime of each node to
minimize visits to the node in situ to replace batteries; b) the processing power
and memory available to each node are severely constrained, therefore forcing
the use of cycle-efficient and memory-efficient programming techniques; and c)
the range of a node’s radio is limited, thus potentially forcing each node to act
as a forwarding agent for packets from neighbouring nodes.

A typical application operating on a WSN system consists of code to: take
measurements (either at regular intervals or when an application-specific event
occurs), forward these measurements to one or more sink nodes, and subse-
quently to communicate these measurements from the sink node(s) to a data
centre. In order to design such an application, a variant of the following method-
ology is used:

– A domain expert (e.g. hydrologist), using information obtained from a site
visit and topological maps, determines the exact locations at which sensors
should be placed (e.g. at the bends of a stream)

– A communications expert, using information obtained from a site visit, de-
termines the exact location(s) at which the sink node(s) should be placed
(e.g. with sufficient cellular telephony data signal strength to enable trans-
port of the data back to a data centre)

– A communications expert, using information obtained from a site visit, topo-
logical maps, and knowledge of radio wave propagation characteristics, then
determines the number and placement of additional forwarding nodes in or-
der to achieve required connectivity and redundancy

– The system operation is then simulated using realistic data flow scenarios
to determine whether the design meets the connectivity, redundancy, and
reliability requirements. If not, the design is iterated until the simulations
indicate that the requirements are met.

Implementation of such a design takes many forms. The most common are:

– a component-based framework such as using the nesC extension to C under
TinyOS [11] to construct the application;

– a more traditional OS kernel based approach such as using Protothreads for
constructing the application in C under Contiki [10].

As these examples show, and as is normal for embedded systems, the application
code is usually produced using a variant of the C programming language.

2.2 Insense

A fundamental design principle of Insense is that the complexity of concur-
rent programming is borne by the language implementation rather than by the
programmer. Thus, the language does not include low-level constructs such as
processes, threads and semaphores. Instead, the unit of concurrent computation
is a language construct called the component. Components are stateful and pro-
vide strong syntactic encapsulation whilst preventing sharing, thereby avoiding
accidental race conditions.

In Insense an application is modelled as a composition of components that
communicate via channels. Channels are typed, directional and synchronous,
promoting the ability to reason about programs. Components are the basic
building blocks of applications and thus provide strong cohesion between the
architectural description of a system and its implementation. Components can

create instances of other components and may be arranged into a Fractal pattern
[5], enabling complex programs to be constructed. We envisage the future de-
velopment of high-level software engineering tools which permit components to
be chosen and assembled into distributed applications executing on collections
of nodes.

The locus of control of an Insense component is by design akin to a single
thread that never leaves the syntactic unit in which it is defined. As components
and threads are defined by the same syntactic entity, each component may be
safely replaced without affecting the correct execution of others with respect to
threading. By contrast, in conventional thread based approaches, threads weave
calls through multiple objects, often making it difficult (or at least expensive)
to determine if a component can be replaced in a running program.

The topology of Insense applications may be dynamically changed by con-
necting and disconnecting channels. Furthermore, new component instances may
be dynamically created and executing component instances may be stopped.
These mechanisms permit arbitrary components to be safely rewired and re-
placed at runtime.

In order to decouple the application software from the operating system and
hardware, Insense programs do not make operating system calls or set specific
registers to read from a device. Instead, parts of the hardware are modelled as In-
sense components with the appropriate channels to allow the desired interaction
and are provided as part of an Insense library.

The Insense compiler is written in Java and generates C source code which is
compiled using gcc and linked with the Insense library for the appropriate host
operating system code. The current Insense library implementation is written
for the Contiki operating system [10].

2.3 Model checking

Errors in system design are often not detected until the final testing stage when
they are expensive to correct. Model checking [6–8] is a popular method that
helps to find errors quickly by building small logical models of a system which
can be automatically checked.

Verification of a concurrent system design by temporal logic model checking
involves first specifying the behaviour of the system at an appropriate level
of abstraction. The specification P is described using a high level formalism
(often similar to a programming language), from which an associated finite state
model, M(P), representing the system is derived. A requirement of the system
is specified as a temporal logic property, φ.

A software tool called a model checker then exhaustively searches the finite
state model M(P), checking whether φ is true for the model. In Linear Time
Temporal Logic (LTL) model checking, this involves checking that φ holds for all
paths of the model. If φ does not hold for some path, an error trace or counter-
example is reported. Manual examination of this counter-example by the system
designer can reveal that P does not adequately specify the behaviour of the
system, that φ does not accurately describe the given requirement, or that there

is an error in the design. In this case, either P , φ, or the system design (and
thus also P and possibly φ) must be modified, and re-checked. This process is
repeated until the model checker reports that φ holds in every initial state of
M(P), in which case we say M(P) satisfies φ, written M(P) |= φ.

Assuming that the specification and temporal properties have been con-
structed with care, successful verification by model checking increases confidence
in the system design, which can then be refined towards an implementation.

The model checker SPIN [12] allows one to reason about specifications written
in the model specification language Promela.

Promela is an imperative style specification language designed for the de-
scription of network protocols. In general, a Promela specification consists of a
series of global variables, channel declarations and proctype (process template)
declarations. Individual processes can be defined as instances of parameterised
proctypes in which case they are initiated via a defined init process. Properties
are either specified using assert statements embedded in the body of a proctype
(to check for unexpected reception, for example), an additional monitor process
(to check global invariance properties), or via LTL properties.

WSNs are inherently concurrent and involve complex communication mech-
anisms. Many aspects of their design would therefore benefit from the use of
model checking techniques. Hitherto, the use of model checking in this domain
has been largely restricted to the quantitative evaluation of WSN protocols [4,
15, 18].

SPIN has been used throughout the development of the WSN language In-
sense. In this paper we concentrate on the channel implementation. We show
how even fairly simple analysis using SPIN has revealed errors in the early de-
sign, and allowed for the development of robust code, that we are confident is
error-free.

3 Insense Channel Model

Insense channels are typed and directional and are the only means for inter-
component communication and synchronisation. A channel type consists of the
direction of communication (in or out) and the type of messages that can be com-
municated via the channel. All values in the language may be sent over channels
of the appropriate type including channels themselves. Inter-component commu-
nication is established by connecting an outgoing channel in one component to
an incoming channel of the same message type in another component using the
connect operator. Similarly the language supports a disconnect operation that
permits components to be unwired.

Insense supports three communication operations over channels: send, re-
ceive, and a non-deterministic select. In this paper we concentrate on the send
and receive operations. Communication over channels is synchronous; the send
operation blocks until the message is received and the receive operation blocks
until a message is sent. These two operations also block if the channel is not
connected.

Multiple incoming and outgoing channels may be connected together enabling
the specification of complex communication topologies. This facility introduces
non-determinism into the send and receive operations. The semantics of send
and receive can be explained in more detail by considering Fig.1 which depicts
four connection topologies.

a) b) c) d)

cout

S2
cout

R1
cin

cin

R1
cin

S1 R1
cincout

S1
cout

S1
cout

R1
cin

R2
cin

S2
cout

S3
cout

R2

S1

Fig. 1. Connection Topologies

Fig. 1 (a) depicts a one-to-one connection between a sender component la-
belled S1 and a receiver component labelled R1. The semantics of send and
receive over a one-to-one connection are akin to sending data down a traditional
pipe in that all values sent by S1 are received by R1 in the order they were sent.
The topology in Fig 1 (b) represents a one-to-many connection pattern between
a sender component S1 and two receiver components R1 and R2. Each value sent
by S1 is non-deterministically received by either R1 or R2, but not by both. A
usage scenario for the one-to-many connection pattern is that a sender compo-
nent wishes to request a service from an arbitrary component in a server farm.
From the perspective of the sender it is irrelevant which component receives
its request. The connection topology shown in Fig. 1 (c) represents a many-to-
one connection pattern in which a number of output channels from potentially
numerous components may be connected to an input channel associated with an-
other component. For the depicted topology, R1 non-deterministically receives
values from either S1 or S2 on a single incoming channel. In this pattern, the
receiving component cannot determine the identity of the sending component or
the output channel that was used to send the message and the arrival order of
messages is determined by scheduling. The pattern is useful as a multiplexer in
which R1 can multiplex data sent from S1 and S2 and could forward the data to
a fourth component. The multiplexer pattern is used to allow multiple compo-
nents to connect to a shared standard output channel. Each of the three basic
patterns of connectivity depicted in Fig. 1 (a)-(c) may be hybridized to create
further variations. An example variation combining the patterns from Fig. 1 (b)
and Fig. 1 (c) is depicted in Fig. 1 (d).

4 Insense Channel Implementation

Insense channels are used for concurrency control and to provide inter-component
communication via arbitrary connection topologies. Furthermore, the language
is intended to permit components to be rewired and even replaced at runtime.
The combination of component and channel abstractions reduces the complexity
faced by the Insense programmer at the cost of increasing complexity in the
channel implementation.

Each Insense channel is represented by a half channel object in the imple-
mentation. Each half channel contains five fields:

1. a buffer for storing data of the corresponding message type;
2. a field called ready which indicates if its owner is ready to send or receive

data,
3. a list of pointers, called connections, to the channels to which the channel is

connected; and
4. two binary semaphores: one called mutex which serialises access to the chan-

nel and,
5. another called blocked upon which the components may block.

When a channel is declared in the language a corresponding half channel
is created in the implementation. Whenever a connection is made between an
outgoing and an incoming channel in Insense, each half channel is locked in turn
using the mutex. Next a pointer to the corresponding half channel is added to
each of the connections lists and the mutex released. Disconnection is similar
with the connections list being traversed and the bi-directional linkage between
the half channels dissolved.

The implementation of the send and receive operations are shown in Fig. 2
and were published in [9]. Numbers on the left hand side of the descriptions
should be ignored - they are used for reasoning purposes in Section 5.2.

The send and receive operations are almost symmetric. Both operations at-
tempt to find a waiting component in the list of connections with the receiver
looking for a waiting sender and vice-versa. If no such match is found the sender
or receiver block on the blocked semaphore until they are re-awakened by the
signal(match.blocked) statement in the corresponding receive or send opera-
tion respectively.

5 Verification of the Send and Receive Operations

In this section we describe the Promela implementation of the half channels and
of the send and receive operations described in Section 4. We show how simple
initial verification with SPIN using assert statements revealed a subtle error in
the channel implementation. We then provide the corrected algorithms which
have been developed with the help of model checking. A list of properties is
given, specifying the semantics of the send and receive operations.

send(data : int, half_channel cout) {
1:wait(cout.mutex)
2:set(cout.ready) // signal sender ready
3:signal(cout.mutex)
 foreach(halfchan match in cout.connections)
 {
 wait(match.mutex) // start with rcvr
 if(match.ready) { // a receiver ready
 match.buffer = data // copy to receiver
 unset(match.ready)// rcvr matched
 set(match.nd_received) // used by select
 signal(match.blocked) // let rcvr run
 signal(match.mutex) // done with rcvr
 wait(cout.mutex) // got match so
 unset(cout.ready) // clear ready
 signal(cout.mutex)
 return
 }
 signal(match.mutex)// finished with rcvr
 }
 cout.buffer = data // save in sender buffer
 wait(cout.blocked) // block sender
}

(a) The Send Algorithm

receive(half_channel cin) {
4:wait(cin.mutex)
5:set(cin.ready) // signal receiver ready
6:signal(cin.mutex)
7:foreach(halfchan match in cin.connections)
 {
 8:wait(match.mutex)) // start with sndr
 9:if(match.ready) { // a sndr is ready
 10:cin.buffer=match.buffer//copy from sndr
 unset (match.ready) // sndr matched
 signal(match.blocked)// let sndr run
 signal(match.mutex) // done with sndr
 wait(cin.mutex) // got match so
 unset(cin.ready) // clear ready
 signal(cin.mutex)
 return
 }
 signal(match.mutex) // finished with sndr
 }
 wait(cin.blocked) } // block receiver
}

(b) The Receive Algorithm

Fig. 2. Original Send and Receive Algorithms

5.1 Send and Receive in Promela

Communication between Insense components over a channel is achieved by a
send operation in one component and a corresponding receive operation in the
other. We therefore model the operations in Promela using a Sender and a
Receiver proctype (see Section 2.3). We can then verify the behaviour of the
send/receive operations to/from given sets of components by initiating the appro-
priate Sender/Receiver processes within an init process (see Section 2.3). Both
proctypes have an associated myChan parameter, which is a byte identifying a
process’s half-channel. In addition the Sender proctype has a data parameter
indicating the item of data to be sent. After initialisation we are not interested
in the actual data sent, so a single value for each Sender process suffices.

Half-channels Half-channels are implemented as C structs in the Insense im-
plementation. They contain a buffer for storing an item of the channel type,
semaphores and flags, and a list of other half-channels that this half-channel is
connected to (see Section 4).

In Promela, we implement half-channels using variations of the following
typedef definition:

typedef halfchan {
// Binary semaphores
bit mutex; // locks access to channel
bit blocked; // indicates channel is blocked
// Boolean Flags

bit ready; //TRUE if ready to send/recv
// Buffer
byte buffer;
// List of connections to other half-channels
bit connections[NUMHALFCHANS];

}

Every sender and receiver is owner of exactly one half-channel. In our Promela
specification all half channels are stored in a globally accessible array hctab.

Connections and Semaphores Each half-channel contains a list of other half-
channels to which it is connected. The connections list is an array of bits, where
a value of 1 at index i indicates that the half-channel is connected to half-channel
i in the hctab array.

The Send and Receive algorithms use binary semaphores to synchronize. For
example, if LOCK and UNLOCKED are constants denoting locked and unlocked sta-
tus of a semaphore and me the half-channel parameter, then the wait operation
(line (1) in Figure 2(a)) is represented by the following Promela code in the
Sender proctype:

atomic{
hctab[me].mutex!=LOCKED; // wait for mutex
hctab[me].mutex=LOCKED //lock mutex

}

The lock can only be obtained if it is currently not in use (that is, it is
currently set to UNLOCKED). If the lock is being used, the atomic sequence blocks
until the lock can be obtained. The use of an atomic statement here ensures that
race conditions do not occur.

Data transfer In addition to the data item being transfered from sender to
receiver, global flags are set to note the type of transfer. In the case of a sin-
gle sender and receiver, there are two types of data transfer: either the sender
pushes the data item to the receiver, or the receiver pulls the data item from
the sender. Two bit flags, push and pull, used for verification purposes only,
are set accordingly within appropriate atomic steps.

5.2 Error in the Original Version of the Send Algorithm

The send and receive algorithms were modelled in Promela as described above.
Our initial model only involved one Sender and one Receiver process, where each
process could only execute a single cycle (i.e. the processes terminated when the
statement corresponding to return had been reached). The model was sufficient
to reveal a previously unobserved flaw in the send operation. This error was
detected using an assert statement embedded in the Receiver proctype.

After data has been pulled by the receiver, it should have the same value as
that sent by the sender. Assuming that the sender always sends data with value 5,
the assert statement is assert(hctab[me].buffer==5). A safety check showed
that there was an assertion violation. Close examination of the output generated
by a guided simulation provided the error execution sequence for our model. The
corresponding sequence in the send and receive operations is illustrated in the
algorithms given in Figs. 2(a) and 2(b), following the numbered statements from
(1) to (10). Both processes obtain their own (half-channel’s) mutex lock, set
their ready flag and release the lock. The receiver then checks that the sender is
ready for data transfer (by checking its ready flag), then commences to pull data
from the sender’s buffer. This is where the error occurs: the data item is copied
although it has not been initialized by this stage.

Inspection of the send algorithm shows that the sender’s buffer is not set
until the penultimate line of code is reached. Possible fixes for this bug are
to either set the sender’s buffer before setting the ready flag or to not set the
ready flag until the buffer is initialized. To maximize parallelism, the former fix
was implemented. The corrected algorithms are shown in Fig. 3. Note that in
addition to the fix, a conns semaphore, used when dynamically connecting and
disconnecting channels, is introduced to the half channel data structures and to
both algorithms.

send(data , half_channel cout) {
 wait (cout.conns) // wait for conns
 wait(cout.mutex) // lock sndr
 cout.buffer = data // save in sndr buffer
 set(cout.ready) // signal sndr is ready
 signal(cout.mutex) // release sndr
 foreach(halfchan match in cout.connections)
 {
 wait(match.mutex) // lock rcvr
 wait(cout.mutex) // lock sndr
 if(match.ready && cout.ready) {
 match.buffer = data // copy to rcvr
 unset(match.ready) // both no longer
 unset(cout.ready) // ready
 set(match.nd_received) // used by select
 signal(match.blocked)// let rcvr run
 signal(cout.mutex) // release sndr
 signal(match.mutex) // release rcvr
 signal(cout.conns) // incr conns
 return
 }
 signal(cout.mutex) // release sndr
 signal(match.mutex) // release rcvr
 }
 signal(cout.conns) // incr conns
 wait(cout.blocked) // block sndr
}

(a) The Send Algorithm

receive(half_channel cin) {
 wait (cin.conns) // wait for conns
 wait(cin.mutex) // lock rcvr

 set(cin.ready) // signal rcvr ready
 signal(cin.mutex) // release rcv
 foreach(halfchan match in cin.connections)
 {
 wait(cin.mutex) // lock rcvr
 wait(match.mutex) // lock sndr
 if(match.ready && cin.ready) {
 cin.buffer = match.buffer// copy
 unset(match.ready) // no longer
 unset(cin.ready) // ready

 signal(match.blocked) // let sndr run
 signal(match.mutex) // release sndr
 signal(cin.mutex) // release rcvr
 signal(cin.conns) // incr conns
 return
 }
 signal(match.mutex) // release sndr
 signal(cin.mutex) // release rcvr
 }

 signal(cin.conns) // incr conns
 wait(cin.blocked) // block rcvr
}

(b) The Receive Algorithm

Fig. 3. Corrected Send and Receive Algorithms

5.3 Extending the model for multiple processes

After adapting our Sender proctype to reflect the corrected version of the send
operation, verification runs were performed to ensure that a model with single
Sender and Receiver processes behaved as expected. They were then extended
to run indefinitely, via an additional goto statement and a label (start).

The current Promela implementation allows for multiple Sender and Receiver
processes. Extra receivers require the global variable NUMHALFCHANS to be incre-
mented, thereby adding an additional element to global data structures such
as the half-channel table and the half-channel’s connection lists. Each receiver’s
half-channel must be initialized in the init proctype and the each sender and
receiver process instantiated.

With multiple sender/receiver processes, variables used for verification must
be adapted. In particular, rather than using a single bit to indicate a sender
push or receiver pull, bit arrays of length NUMHALFCHANS are used. As with the
global half-channels table, each element in these arrays is associated with a single
sender or receiver process.

Note that some of the properties described in Section 5.4 apply only when
multiple sender or receiver processes are present. In particular, property 6, which
is concerned with duplication of data, applies only to versions where a sender is
connected to multiple receivers.

5.4 Properties

The following list contains the high-level requirements of the channel implemen-
tation provided by the Insense designers. This list was developed over a period
of time during discussion between the designers and modellers. This helped to
clarify the design specification.

– Property 1 In a connected system, send and receive operations are free
from deadlock

– Property 2 Finite progress – in a connected system data always flows from
senders to receivers

– Property 3 For any connection between a sender and a receiver, either the
sender can push or the receiver can pull, but not both

– Property 4 The send operation does not return until data has been written
to a receiver’s buffer (either by sender-push or receiver-pull)

– Property 5 The receive operation does not return until data has been writ-
ten into its buffer (either by sender-push or receiver-pull)

– Property 6 Data passed to the send operation is written to exactly one
receiver’s buffer. i.e. data is not duplicated during a single send operation

– Property 7 The receiver’s buffer is only written to once during a single
operation. i.e. data is never overwritten (lost) before the receive operation
returns

Before we can verify that the properties hold at every possible system state,
they must first be expressed in LTL. Property 1 can be checked by performing

a no invalid endstates verification with SPIN, so no LTL property is required
in this case. In Table 1 we define propositions used in our LTL properties to-
gether with their meaning in Promela. The index i ranges from 1 to 3 and is
used to access array elements associated with the ith sender or ith receiver pro-
cess respectively. On the other hand, spid i and rpid i are variables storing the
process identifiers of the ith sender/receiver process respectively and are used
to remotely reference labels within a given sender/receiver process. Note that
scount [i] and rcount [i] are array elements recording the number of push/pull
operations executed. Variable scount [i] is incremented when the ith sender is
involved in a push or a pull, and decremented when the sender reaches its return
label (similarly for rcount [i]). Note that both senders and receivers can incre-
ment these variables, but the scount [i]/rcount [i] variables are only decremented
by the corresponding sender/receiver. The ith elements of the push and pull
arrays record whether a push or pull has occurred to or from the ith receiver.

Table 1. Propositions used in LTL properties

Proposition Definition Proposition Definition
Pushi push[i] == TRUE Pulli pull[i] == TRUE

SenderStarti Sender[spidi]@start SenderReturni Sender[spidi]@RETS1
ReceiverStarti Receiver[rpidi]@start ReceiverReturni Receiver[rpidi]@RETR1

Scountmax i scount[i] == 1 Rcountmax i rcount[i] == 1

We use the usual !, ||, && and → for negation, disjunction, conjunction
and implication. In addition [], 〈〉, and U denote the standard temporal opera-
tors “always”, “eventually” and “(strong) until” respectively. As shorthand we
use W for “(weak) until”, where pWq denotes ([]p || (pUq)). In addition, for
1 ≤ j ≤ 3 we use the notation [PushOrPull]j and [PushAndPull]j to represent
(Push1||Pull1|| . . . ||Pushj||Pullj) and ((Push1&&Pull1)|| . . . ||(Pushj&&Pullj))
respectively. Here R denotes the number of receivers. Properties are the same
for any number of Senders greater than zero.

– Property 2
• 1 ≤ R ≤ 3: []〈〉[PushOrPull]R

– Property 3
• 1 ≤ R ≤ 3: []![PushAndPull]R

– Property 4
• 1 ≤ R ≤ 3: [](SenderStart1 → ((!SenderReturn1)W [PushOrPull]R))

– Property 5
• 1 ≤ R ≤ 3: [](ReceiverStart1 → ((!ReceiverReturn1)W (Push1||Pull1)))

– Property 6
• R = 1: Not applicable.

• R > 1: [](SenderReturn1 → Scountmax1)

– Property 7
• 1 ≤ R ≤ 3: [](ReceiverReturn1 → Rcountmax1)

6 Experimental results

The experiments were conducted on a 2.4 GHz Intel Xenon processor with 3Gb
of available memory, running Linux (2.4.21) and SPIN 5.1.7.

6.1 Verification of the corrected Send and Receive operations

To provide consistency, a template model was used from which a unique model
was generated for each configuration and property being tested. This allowed
us to control the state-space by only including variables that were relevant to
the property being tested. Promela code for our template and some example
configurations, together with claim files (one per property) and full verification
output for all configurations and properties can be found in an appendix at
http://www.dcs.gla.ac.uk/dias/appendices.htm.

In Table 2 we give results for scenarios in which S sender processes are
connected to R receiver processes, where R + S ≤ 4.

Here Property is the property number as given in Section 5.4; time is the
actual verification time (user + system) in seconds; depth is the maximum search
depth; states is the total number of stored states; and memory is the memory
used for state storage. Compression was used throughout, and in all cases full
verification was possible (with no errors).

Note that there is no result for property 6 with a single receiver, as this
property applies to multiple receivers only.

6.2 Verification of the Connect/Disconnect operations

The Insense designers worked closely with the model checking experts to develop
previously unpublished algorithms for dynamic connection and disconnection of
components. Using SPIN, deadlocks were shown to exist in previous versions of
the algorithms. The final, verified algorithms are given in Fig. 4.

We note that:

– The connect and disconnect algorithms make use of: an additional Boolean
is input field in the half channel data structures (that is set to true for
incoming half channels) to prevent deadlocks from occurring by imposing a
common order on mutex locking for send, receive, connect, and disconnect
operations; and a conn op mutex to prevent race conditions from occurring
when executing multiple connect and disconnect operations concurrently.

Table 2. Results for sender and receiver verifications

S:R Property Time Depth States Memory
1:1 1 0.5 474 1488 0.3
1:1 2 0.6 972 2982 0.4
1:1 3 0.5 972 1518 0.3
1:1 4 0.5 1014 2414 0.3
1:1 5 0.5 971 2425 0.3
1:1 7 0.5 969 1552 0.3

1:2 1 1.3 1.9×104 1.3×105 4.0
1:2 2 4.3 4.1×104 2.7×105 9.7
1:2 3 1.5 4.1×104 1.4×105 5.3
1:2 4 2.0 4.2×104 2.0×105 7.3
1:2 5 2.1 4.1×104 2.1×105 7.9
1:2 6 1.5 4.0×104 1.4×105 5.3
1:2 7 1.6 4.3×104 1.5×105 5.7

1:3 1 115.7 1.0×106 1.1×107 351.6
1:3 2 446.7 2.2×106 2.2×107 832.0
1:3 3 148.4 2.2×106 1.2×107 439.3
1:3 4 188.7 2.1×106 1.5×107 576.8
1:3 5 229.4 2.2×106 1.8×107 678.0
1:3 6 147.4 2.1×106 1.1×107 437.1
1:3 7 162.3 2.4×106 1.3×107 486.2

2:1 1 1.0 1.5×104 8.0×104 2.5
2:1 2 2.7 3.2×104 1.6×105 5.9
2:1 3 1.1 3.2×104 8.3×104 3.3
2:1 4 1.5 3.3×104 1.3×105 5.1
2:1 5 1.4 3.2×104 1.2×105 4.7
2:1 7 1.1 3.2×104 8.4×104 3.3

2:2 1 158.2 2.3×106 1.5×107 460.1
2:2 2 562.2 5.0×106 2.8×107 1052.0
2:2 3 205.5 5.0×106 1.6×107 573.2
2:2 4 227.3 5.1×106 2.2×107 828.8
2:2 5 283.3 5.0×106 2.2×107 826.7
2:2 6 204.1 5.0×106 1.6×107 586.1
2:2 7 209.8 5.1×106 1.6×107 590.8

3:1 1 42.5 5.9×105 4.0×106 127.8
3:1 2 163.7 1.2×106 7.9×106 282.1
3:1 3 51.7 1.2×106 4.2×106 148.3
3:1 4 83.6 1.4×106 6.8×106 244.7
3:1 5 72.1 1.2×106 5.9×106 214.5
3:1 7 51.9 1.2×106 4.2×106 149.1

(a) The Connect Algorithm (b) The Disconnect Algorithm

Fig. 4. Connect and Disconnect

– In our Promela model, R× S Connect processes and R + S Disconnect pro-
cesses are used to simulate connection and disconnection (1 Connect process
per Sender-Receiver pair, and 1 Disconnect process per Sender or Receiver).
The executions of these processes interleave with those of S Sender and R
Receiver processes.

– As Property 2 of 5.4 refers to a connected system, it is not relevant in this
context.

– All other relevant properties have been shown to hold for cases R + S ≤ 3.
See Table 3.

– A (further) template model was used to generate models. This template and
an example model is contained in the online appendix.

7 Conclusions and Further Work

This paper outlines an initial step towards verifying the correctness of WSN
applications with a focus on concurrency. The general approach taken here is to
verify the implementation of the inter-component synchronisation mechanism of
the Insense language using SPIN. Specifically, the Insense channel implementation
and their associated send, receive, connect, and disconnect operations are first
modelled using Promela constructs and SPIN is then used to verify a set of LTL

Table 3. Results for sender and receiver verifications, with additional Connect and
Disconnect processes

S:R Property Time Depth States Memory
1:1 1 0.6 1.1×103 1.5×104 0.7
1:1 3 0.6 2.1×103 1.5×104 0.9
1:1 4 0.7 2.7×103 2.4×104 1.1
1:1 5 0.7 2.1×103 2.4×104 1.1
1:1 7 0.6 3.3×103 1.6×104 0.9

1:2 1 68.4 3.0×105 5.1×106 205.1
1:2 3 80.5 6.3×105 5.3×106 234.1
1:2 4 111.2 6.2×105 7.6×106 328.5
1:2 5 127.2 6.3×105 8.2×106 356.6
1:2 6 78.3 6.4×105 5.3×106 232.4
1:2 7 93.5 7.6×105 6.2×106 271.3

2:1 1 48.1 3.7×105 3.7×106 142.7
2:1 3 54.4 7.1×105 3.8×106 160.8
2:1 4 98.3 8.6×105 6.4×106 276.8
2:1 5 84.7 7.1×105 5.7×106 247.8
2:1 7 57.1 7.1×105 3.8×106 162.0

properties under which the channel semantics are satisfied for a small number
of senders and receivers.

The SPIN model checker is used to reveal errors in a previously published
version of the Insense channel implementation. SPIN is also shown to aid the
development of revised algorithms that are correct with respect to their defined
semantics.

There are three avenues of further work in this area. First, the verification of
the Insense language implementation is to be completed by modelling the non-
deterministic select operation in Promela and using SPIN to check the relevant
LTL properties.

Second, we would like to show that the send and receive operations are safe
for any number S of senders and any number R of receivers. This is an example
of the parameterised model checking problem (PMCP) which is not, in general,
decidable [2]. One approach that has proved successful for verifying some pa-
rameterised systems involves the construction of a network invariant (e.g. [14]).
The network invariant I represents an arbitrary member of a family of processes.
The problem here is especially hard, as we have two parameters, S and R. By
fixing S to be equal to 1, however, we have applied an invariant-like approach,
(from [16]) to at least show that a system with one sender process connected to
any number (greater than zero) of receivers does not deadlock. (Details are not
included here, for space reasons). In future work we intend to extend this to the
case where S > 1.

Finally, an important aspect of further work is to extend our methodology
from verifying the Insense language implementation to verifying programs. Our
intention is to model WSN applications written in Insense using Promela con-
structs and to verify correctness of these programs using SPIN.

8 Acknowledgements

This work is supported by the EPSRC grant entitled DIAS-MC (Design, Im-
plementation and Adaptation of Sensor Networks through Multi-dimensional
Co-design) EP/C014782/1.

References

1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cyirici. Wireless sensor net-
works: A survey. Computer Networks, 38(4):393–422, 2002.

2. Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-
state concurrent systems. Information Processing Letters, 22:307–309, 1986.

3. D. Balasubramaniam, A. Dearle, and R. Morrison. A composition-based approach
to the construction and dynamic reconfiguration of wireless sensor network appli-
cations. In Proc. 7th Int. Symp. on Software Composition (SC 2008), volume 4954
of Lecture Notes in Computer Science, pages 206–214. Springer, 2008.

4. P. Ballarini and A. Miller. Model checking medium access control for sensor net-
works. In Proc. of the 2nd int’l symp. on leveraging applications of formal methods,
pages 255–262. IEEE, 2006.

5. É. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in Java. Software Practice and Experience,
36(11-12):1257–1284, 2006.

6. E. Clarke and E. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Proc. of the 1st Workshop in Logic of Programs, volume
131 of Lecture Notes in Computer Science. Springer, 1981.

7. E. Clarke, E. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, 1986.

8. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cam-
bridge, MA, 1999.

9. A. Dearle, D. Balasubramaniam, J. Lewis, and R. Morrison. A component-based
model and language for wireless sensor network applications. In Proc. of the 32nd
Int’l Computer Software and Applications Conference (COMPSAC 2008), IEEE
Computer Society, pages 1303–1308. IEEE, 2008.

10. A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a lightweight and flexible op-
erating system for tiny networked sensors. In Proc. 1st Workshop on Embedded
Networked Sensors (EmNets-I). IEEE, 2004.

11. D. Gay, P. Levis, and D. Culler. Software design patterns for TinyOS. Transactions
on Embedded Computing Systems, 6(4):22, 2007.

12. G. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, Boston, U.S.A., 2003.

13. A. Khan and L. Jenkins. Undersea wireless sensor network for ocean pollution
prevention. In Proc. 3rd Int’l Conference on Communication Systems Software
and Middleware (COMSWARE’08), IEEE, pages 2–8, 2008.

14. R. P. Kurshan and K.L. McMillan. A structural induction theorem for processes.
In Proceedings of the eighth Annual ACM Symposium on Principles of Distrubuted
Computing, pages 239–247. ACM Press, 1989.

15. Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilistic model
checking of the IEEE 802.11 wireless local area network protocol. In Proc. 2nd
Joint Int’l Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification (PAPM-PROBMIV 2002), volume 2399 of Lecture Notes
in Computer Science, pages 169–187. Springer, 2002.

16. A. Miller, M. Calder, and A.F. Donaldson. A template-based approach for the
generation of abstractable and reducible models of featured networks. Computer
Networks, 51(2):439–455, 2007.

17. A. Skordylis, A. Guitton, and N. Trigoni. Correlation-based data dissemination
in traffic monitoring sensor networks. In Proc. 2nd int’l conference on emerging
networking experiments and Technoligies (CoNext’06), page 42, 2006.

18. L. Tobarra, D. Cazorla, F. Cuatero, G. Diaz, and E. Cambronero. Model checking
wirelss sensor network security protocols: TinySec + LEAP. In Wireless Sensor
and Actor Networks, volume 248 of IFIP International Federation for Information
Processing, pages 95–106. Springer-Verlag, 2007.

19. S. Venkatraman, J. Long, K. Pister, and J. Carmena. Wireless inertial sensors for
monitoring animal behaviour. In Proc. 29th Int’l Conference on Engineering in
Medicine and Biology (EMBS’07), IEEE, pages 378–381, 2007.

20. G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and
J. Lees. Deploying a wireless sensor network on an active volcano. IEEE Internet
Computing, 10(2):18–25, 2006.

