27,234 research outputs found

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    On high-dimensional sign tests

    Full text link
    Sign tests are among the most successful procedures in multivariate nonparametric statistics. In this paper, we consider several testing problems in multivariate analysis, directional statistics and multivariate time series analysis, and we show that, under appropriate symmetry assumptions, the fixed-pp multivariate sign tests remain valid in the high-dimensional case. Remarkably, our asymptotic results are universal, in the sense that, unlike in most previous works in high-dimensional statistics, pp may go to infinity in an arbitrary way as nn does. We conduct simulations that (i) confirm our asymptotic results, (ii) reveal that, even for relatively large pp, chi-square critical values are to be favoured over the (asymptotically equivalent) Gaussian ones and (iii) show that, for testing i.i.d.-ness against serial dependence in the high-dimensional case, Portmanteau sign tests outperform their competitors in terms of validity-robustness.Comment: Published at http://dx.doi.org/10.3150/15-BEJ710 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    High-dimensional tests for spherical location and spiked covariance

    Get PDF
    Rotationally symmetric distributions on the p-dimensional unit hypersphere, extremely popular in directional statistics, involve a location parameter theta that indicates the direction of the symmetry axis. The most classical way of addressing the spherical location problem H_0:theta=theta_0, with theta_0 a fixed location, is the so-called Watson test, which is based on the sample mean of the observations. This test enjoys many desirable properties, but its implementation requires the sample size n to be large compared to the dimension p. This is a severe limitation, since more and more problems nowadays involve high-dimensional directional data (e.g., in genetics or text mining). In this work, we therefore introduce a modified Watson statistic that can cope with high-dimensionality. We derive its asymptotic null distribution as both n and p go to infinity. This is achieved in a universal asymptotic framework that allows p to go to infinity arbitrarily fast (or slowly) as a function of n. We further show that our results also provide high-dimensional tests for a problem that has recently attracted much attention, namely that of testing that the covariance matrix of a multinormal distribution has a "theta_0-spiked" structure. Finally, a Monte Carlo simulation study corroborates our asymptotic results

    Modelling Directional Dispersion Through Hyperspherical Log- Splines

    Get PDF
    We introduce the directionally dispersed class of multivariate distributions, a generalisation of the elliptical class. By allowing dispersion of multivariate random variables to vary with direction it is possible to generate a very wide and flexible class of distributions. Directionally dispersed distributions are shown to have a simple form for their density, which extends a spherically symmetric density function by including a function D modelling directional dispersion. Under a mild condition, the class of distributions is shown to preserve both unimodality and moment existence. By adequately defining D, it is possible to generate skewed distributions. Using spline models on hyperspheres, we suggest a very general, yet practical, implementation for modelling directional dispersion in any dimension. Finally, we use the new class of distributions in a Bayesian regression setup and analyse the distributions of a set of biomedical measurements and a sample of U.S. manufacturing firms.Bayesian regression model, directional dispersion, elliptical distributions, existence of moments, modality, skewed distributions.
    corecore