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Abstract

We introduce the directionally dispersed class of multivariate distributions, a generalisation of
the elliptical class. By allowing dispersion of multivariate random variables to vary with direction
it is possible to generate a very wide and flexible class of distributions. Directionally dispersed
distributions are shown to have a simple form for their density, which extends a spherically sym-
metric density function by including a function D modelling directional dispersion. Under a mild
condition, the class of distributions is shown to preserve both unimodality and moment existence.
By adequately defining D, it is possible to generate skewed distributions. Using spline models on
hyperspheres, we suggest a very general, yet practical, implementation for modelling directional
dispersion in any dimension. Finally, we use the new class of distributions in a Bayesian regres-
sion setup and analyse the distributions of a set of biomedical measurements and a sample of U.S.
manufacturing firms.

Keywords: Bayesian regression model, directional dispersion, elliptical distributions, existence of
moments, modality, skewed distributions.

1 Introduction

Spherical distributions, in the sense of Fang et al. (1990), can be characterised by having constant
dispersion along every direction. In this article we introduce distributions that reflect the situation
where dispersion can vary with direction.

A continuous random variable x ∈ <m is said to follow a spherical distribution around zero with
density f if the latter is of the form

f(x) = g(m)
(
x′x

)
, (1)

where g(m) is a m-dimensional density generator or labelling function, which satisfies (2.19) in Fang
et al. (1990). From (1) we see that the density depends on x only through its l2 norm, denoted by
‖x‖. The distributions that we introduce here are generated by densities that depend on both norm
and direction of x through the ratio ‖x‖2/D(dx), where dx denotes the direction of x and D is a
function taking positive values. Function D determines directional dispersion, i.e the dispersion of
the distribution along each direction and, as will be seen in the sequel, by controlling D it is possible
to generate a very rich and flexible class of distributions, which we call the directionally dispersed
class, abbreviated to D-class.
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The simplicity of directionally dispersed distributions, in combination with their great flexibility
makes them quite appealing for use in applications. Each member of the D-class can be defined by
choosing three elements with unequivocal roles: the density generator of a spherical distribution, the
centre of the distribution, and D. The density generator determines how the distribution tails off.
The centre of the distribution determines location. Finally, D determines directional dispersion. In
addition, each one of these elements can be chosen independently of the others.

Amongst the characteristics of directionally dispersed distributions, we highlight the following
facts: if the density generator is decreasing in its argument, then, under rather general conditions
on D, the directionally dispersed distribution is unimodal; moment existence is unaffected by passing
from the corresponding spherical distribution to our more general setup.

Recent years have seen an increased interest in flexible classes of distributions that can model
distributional asymmetry (see Genton 2004 for a review). By choosing D such that there is a set of
directions of positive measure on the unit sphere for which D(dx) 6= D(d−x), we obtain a skewed distri-
bution. By choosing a flexible form for D, we generate a wide class of unimodal skewed distributions.
Nevertheless, by imposing that D(dx) = D(d−x) for all x ∈ <, we can still obtain symmetric distribu-
tions in the sense that x and −x have the same distribution. In particular, Section 2 shows that the
D-class generalises both the spherical and elliptical (Kelker 1970) classes of continuous distributions.

The class of distributions that we introduce here covers the very general class of v-sperical distri-
butions of Fernández et al. (1995). The latter defined distributions generated by densities with fixed
shapes of the isodensity sets. In our notation, the isodensity sets will be parameterised by the function
D and the choice of the function v in Fernández et al. (1995) is here replaced by the choice of D. In
addition, the focus of the present paper is quite different. Fernández et al. (1995) did not provide
any operational guidelines for exploiting the generality of their class as a modelling tool. Here we are
primarily interested in conducting inference on the shape of the isodensity sets and provide a very
flexible modelling framework for multivariate data.

In this article we do not focus on particular forms for the directional dispersion function. Instead,
we introduce a general methodology that allows us to model dispersion in an almost unrestricted
manner. The set of all directions in <m can be parameterised through its unit hypersphere Sm−1. This
suggests constructing D using functions defined on hyperspheres. In particular, we use hyperspherical
splines (Wahba 1990, Taijeron et al. 1994) to model the logarithm of D. These have the advantage of
being intuitive and well-defined for any dimension m, and their smoothness can be controlled directly.

We then propose a Bayesian regression model using the D-class where D is modelled with splines.
In particular, we derive a prior structure on D which is invariant under linear orthogonal transforma-
tions. Inference under these models must be carried out using numerical methods and we introduce
a reversible jump Markov chain Monte Carlo (MCMC) algorithm (Green 1995) to implement this.
Finally, we provide two illustrations. In the first, the distribution of biomedical data is analysed,
comparing both symmetric and skewed directionally dispersed distributions with their elliptical coun-
terpart and a skewed distribution defined as in Ferreira and Steel (2004a). In the second application,
we study the size distribution of a set of U.S. manufacturing firms.

Section 2 introduces the D-class of distributions. Section 3 deals with modelling function D,
in particular using hyperspherical log-splines. In Section 4, we introduce the Bayesian regression
model. Section 5 presents some details on conducting inference and Section 6 presents the applications.
Finally, Section 7 provides some concluding remarks. All proofs are deferred to the Appendix.
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2 The D-Class of Distributions

The most common generalisation of the class of spherical distributions is the elliptical class, generated
by affine linear transformations. Let Σ be an m×m covariance matrix, x have a spherical distribution
centred at zero with density (1) and µy ∈ <m. Then, y = Σ1/2x + µy has an elliptical distribution
with density given by

fm(y|µy, Σ) = |Σ|−1/2g(m)
[
(y − µy)′Σ−1(y − µy)

]
. (2)

Now consider dy−µy = y−µy

‖y−µy‖ . The direction of y − µy is given by dy−µy ∈ Sm−1, the unit sphere in
<m. It is now immediate that (2) can be written as

fm(y|µy, Σ) = |Σ|−1/2g(m)

[
(y − µy)′(y − µy)

D(dy−µy)

]
, (3)

where
D(dy−µy) =

(
d′y−µy

Σ−1dy−µy

)−1
. (4)

The formulation of fm(y|µy, Σ) given in (3) allows a clearer comparison between the spherical and the
elliptical classes. For the former, the l2 norm of y − µy is all that is needed to calculate the density
values. In contrast, for the elliptical case, the direction of y − µy also plays a part. Function D,
with its directional argument can be seen as modelling the dispersion of y − µy along dy−µy , with
larger (smaller) values of D implying larger (smaller) dispersion. Henceforth, we will call D(dy−µy)
the “directional dispersion function” of y − µy.

Note that for Σ = σ2Im, with σ2 > 0 and Im the m-dimensional identity matrix, we obtain a spher-
ical distribution for y centred at µy and D(dy−µy) = σ2. Thus, spherical densities are characterised
by having a constant dispersion function, and they provide a natural benchmark for our class.

Despite the increased flexibility provided by the elliptical class, imposing a specific, rigid form for
D does not make use of the full potential of directional dispersion. The class of distributions that we
present here (the D-class) is based on dropping the restriction that the dispersion function D is of the
form given in (4), thus generating a much broader class of distributions, with densities of the form

fm(y|µy, g
(m), D) =

1
KD

g(m)

[
(y − µy)′(y − µy)

D(dy−µy)

]
, (5)

where D is a function from Sm−1 to <+, KD is a constant and our notation reflects the dependence
of fm on g(m).

The distributions in the D-class are then indexed by three elements: the directional dispersion
function D, the location µy and the density generator g(m).

The class defined here is exactly as rich as the flexible v-spherical class of Fernández et al. (1995),
but has a different and more operational parameterisation. In the v-spherical framework of the latter
paper, (5) corresponds to choosing v(x) = ||x||/{τD

1
2 (dx)}, where τ is a scale parameter introduced

in Fernández et al. (1995). In our parameterisation τ is superfluous. However, there are important
differences in that Fernández et al. (1995) focuses on fixing v, while varying the density generator g(m)

(see e.g. their Theorem 1 on inference robustness). In contrast, the present paper is mainly about
conducting inference on the shape of the isodensity sets and is particularly focused on providing an
operational methodology that allows us to use the full flexibility of the D-class in practical modelling
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of data. The difference in parameterisation adds interpretability and facilitates implementation, as we
shall see in the sequel.

Using a transformation to polar coordinates, the following result states the necessary and sufficient
condition on D so that (5) is a probability density function.

Theorem 1. Let y − µy = ρ t(ω), where ρ ∈ <+, ω = (ω1, . . . , ωm−1) ∈ Ω = [0, π)m−2 × [0, 2π) and
t(ω) = [t1(ω), . . . , tm(ω)]′ with

tj(ω) =

(
j−1∏

i=1

sinωi

)
cosωj , 1 ≤ j ≤ m− 1 and tm(ω) =

m−1∏

i=1

sinωi.

Then, D[t(ω)] is a suitable directional dispersion function, for any µy ∈ <m and density generator
g(m), if and only if the integral

∫
Ω

(∏m−2
i−1 sinm−1−i ωi

)
D[t(ω)]m/2dω exists.

Given the form of the integral in Theorem 1, the following result holds.

Corollary 1. If there is a finite constant C such that D < C for any dy−µy ∈ Sm−1, then
fm(y|µy, g

(m), D) defined by (5) is a density function in <m.

The restrictions in Corollary 1 do not exclude many situations of practical interest. Bounding D

away from infinity implies that the distance between any two isodensity sets is always finite.
The definition of the density function in (5) is completed by calculating the integrating constant.

Corollary 2. If D is a directional dispersion function satisfying the condition of Theorem 1, then

KD =
Γ(m/2)
2πm/2

∫

Ω




m−2∏

j=1

sinm−1−j ωi


D[t(ω)]m/2dω.

One feature of the results in Theorem 1 and Corollaries 1 and 2 is that they do not depend on
either location or density generator. As such, if the directional dispersion function D is valid for a
particular choice of location and, more importantly, density generator then it is also valid for any
other choices of location and density generator. Further, the integrating constant KD needs only to
be calculated once.

By appropriately selecting D, it is possible to obtain very different shapes for the directionally
dispersed distributions. Contour plots of four bivariate densities are presented in Figure 1. Plot (a)
represents an elliptical distribution centred at zero and with Σ having diagonal elements equal to two
and off diagonal equal to one, obtained by selecting D as in (4). The departure of the densities depicted
in plots (b)-(d) from elliptical densities is evident. In Figure 1(b) the contours are not concentric,
in contrast to elliptical distributions. The continuous density represented in Figure 1(c) is clearly
made up of the distinct parts. For y2 > 0 the contours are l1-spherical (as defined in Osiewalski and
Steel, 1993), whilst for negative y2 the contours are spherical. Finally, Figure 1(d) depicts a rather
complicated density which is relatively simple to obtain in our setup.

The directional dispersion functions of the densities presented in Figure 1 are plotted in Figure
2, using the parameterisation dy−µy = [cos ω, sinω]′, for ω = [0, 2π), spanning the complete set of
directions in <2. The symmetric pattern of the densities in Figures 1(a) and (d) is also present in
the directional dispersion functions, represented with solid and dot-dashed lines respectively. Whilst
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Figure 1: Examples of four two dimensional members of the directional dispersed class.

symmetry is characteristic of elliptical densities, the contours in Figures 1(d) illustrate that it can also
be carried over to a more general set of directionally dispersed distributions. Generally, symmetry is
induced by choosing D such that for all y ∈ <m, D(dy−µy) = D(dµy−y). The dotted and dashed lines
in Figure 2 represent D for the densities with contours in Figures 1(b) and (c), respectively. These
densities generate skewed distributions, and illustrate the variety of forms that can be generated by
modelling D. The function plotted by the dotted curve in Figure 2 has the property that D(dµy−y) =
D(dy−µy)−1, which causes uncentred contours. Finally, the piecewise form of the dashed curve in
Figure 2 determines the split in shape represented in Figure 1(c).

0     pi 2pi
0

3
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ω

D

Figure 2: Directional dispersion as a function of dy−µy = [cosω, sinω]′ for the densities presented in
Figure 1(a) (solid), (b) (dotted), (c) (dashed) and (d) (dot-dashed).

Parameter µy determines the location or centre of directionally dispersed distributions. The centre
of a distribution is particularly relevant when the distribution is unimodal. The following result holds
for members of the D-class.

Theorem 2. Let g(m) be a decreasing function. Then, for any D meeting the condition of Corollary
1, the distribution with density fm(y|µy, g

(m), D) as in (5) is unimodal and the mode is at µy.

Thus, if the density generator g(m) corresponds to a unimodal spherical distribution in (1) with
mode at zero, then it will also generate a unimodal distribution through (5) with mode at µy. Ensuring
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unimodality is often of primary importance in the context of applications and Theorem 2 states that
the general framework provided by varying D does not affect this property.

The density generator also determines the rate at which the tails of the distribution taper off.
For the D-class, the role played by g(m) is very similar as for spherical and elliptical distributions.
The only difference is that scale is now a function of direction. As D(d) gets larger (smaller) the
distance between the isodensity sets is increased (decreased) with respect to the one for the spherical
distribution defined by constant D. By controlling tail behaviour, the density generator also controls
moment existence. Within the entire D-class, g(m) alone determines the moment properties, as the
following result states.

Theorem 3. Let y have density fm(y|µy, g
(m), D) defined by (5) with any D meeting the condition

of Corollary 1. Then, existence of moments of y will only depend on g(m).

The result of Theorem 3 ensures us that the results on moment existence that hold for spherical
and elliptical distributions are immediately extended to the whole D-class.

Several proposals for multivariate skewed distributions have recently been proposed in the litera-
ture. However, up to our knowledge none of the suggested methods explicitly considers the directional
nature of skewed data. Due to its direct modelling of directional dispersion, the D-class has great
potential in the modelling of skewed data. Ferreira and Steel (2004c) proposed methods for describing
multivariate skewness with directional skewness measures. Quantifying such directional skewness is
straightforward in the D-class.

3 Modelling Directional Dispersion

In order to take advantage of the D-class it is necessary to develop forms for the directional distribution
function D that can adapt to the particular application. There are two potential avenues for tackling
this problem. The first is to develop forms for D to suit specific situations. This is for example the case
of D in (4), corresponding to elliptical distributions or the D implicit in Example 1 of Fernández et
al. (1995). The second is to develop flexible forms that can adapt to a large number of circumstances.
Even though the first approach gives us more control over D, flexible families of directional distribution
functions are perhaps more appealing in practical modelling situations. Thus, this paper will only
focus on the latter alternative, where we wish to conduct inference on D within a wide class, rather
than prespecify it in a much more rigid framework.

In the sequel, we always assume that D is bounded (as in Corollary 1). This is likely to be true
for cases of practical relevance. As D is strictly positive, we model its logarithm, denoted by log D.

The definition of functions on hyperspheres has a large tradition, especially for the two- and
three-dimensional cases. There are several alternatives present in the literature of which we mention
hyperspherical harmonics (Müller 1966) and hyperspherical splines (Taijeron et al. 1994).

We model log D using spline models or, equivalently, we model D with hyperspherical log-splines.
The simplicity of hyperspherical splines is very appealing. As will be seen below, hyperspherical splines
are constructed similarly to splines in real spaces. Despite their simplicity, hyperspherical splines are
very flexible and can well approximate any smooth function. As with splines on real spaces, it is
possible to control the smoothness of a hyperspherical spline. This characteristic is important to us as
we would generally like D to be smooth. Taijeron et al. (1994) compare hyperspherical splines with

6



hyperspherical harmonics and find the former numerically more stable. Hyperspherical harmonics also
exhibit a wiggly behaviour that we do not expect to be present in most applications.

Applying hyperspherical spline models in our context, we assume that log D is given by

log D(d) = c0 +
K∑

k=1

ciR
l
m(d|dk), (6)

where K is a positive integer, c = (c0, c1, . . . , cK)′ ∈ <K+1, BD = {d1, . . . , dK} is a set of vectors in
Sm−1 and Rl

m(d|dk) ∈ C(l), the set of functions with l continuous derivatives, are real valued spline
basis functions defined on Sm−1 for k = 1, . . . , K. Vectors dk, k = 1, . . . ,K, are usually called knots.
As the function in (6) is a linear combination of C(l) basis functions, it is also in C(l). By choosing an
appropriate l, it is therefore possible to control the smoothness of D.

Basis functions for spline interpolation and smoothing on the circle (m = 2) and the sphere (m = 3)
were determined in Wahba (1975) and Wahba (1981), respectively. Taijeron et al. (1994) generalised
the above results and provided the solution for the problems in any dimension m > 1. In the form of
(6), the solution is provided when Rl

m(d|dk), k = 1, . . . , K, represent a family of reproducing kernels
related to Green’s function for the Laplacian on the hyperspheres. For m 6= 2, closed forms for
Rl

m(d|dk) are not known, leading to the use of approximating reproducing kernels for which a closed
form is available. For our modelling of D the use of the approximating reproducing kernels does not
lead to any modelling restrictions. Thus, we will also use the notation Rl

m(d|dk) for the approximating
kernel.

For the case in S1, the reproducing kernel is given by

Rl
2(d|dk) =

(−1)l/2(2π)l−1

(2π)!
Bl+2

(
θ

2π

)
,

with θ the angle between d and dk and Bl+2 the Bernoulli polynomial of degree l + 2 (Abramowitz
and Stegun 1972).

For m > 2, Taijeron et al. (1994) indicates that the approximating reproducing kernels can be
defined by,

Rl
m(d|dk) =

Γ(m/2)
m− 2

[
q(l, m− 2, d′dk)

l!
− 1

(l + 1)!

]
,

with

q(r, s, z) =
∫ 1

0
(1− h)r(1− 2hz + h2)−s/2dh.

For l = 0, 1, . . . and m > 2, closed forms for Rl
m are available and can be calculated easily with a

symbolic mathematics package. Examples can be found in Wahba (1981) and Taijeron et al. (1994).
Once l corresponding to the smoothness of log D has been specified, an interpolating spline (6)

can then be characterised by K,BD and c. Given a vector of values v = (v1, . . . , vK)′ ∈ <K associated
with the knots, c can be obtained as the solution of the linear system of equations

(
1K R

0 1′K

)
c =

(
v

0

)
, (7)

where 1K is the K-dimensional vector with all components equal to one and R is a K×K matrix with
entry (i, j) equal to Rl

m(dj |di). Vector c is such that its last K elements add up to zero and ensures
that log D(dk) = vk, k = 1, . . . , K.
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The flexibility of spline models is well documented in the literature (see e.g. Wahba, 1990). By
allowing an appropriate number of knots, positioned at suitable locations, it is possible to approximate
any function in C(l). It is also a suitable tool for use in numerical computations as the matrix on the
left-hand side of (7) is non-singular as long as dk, k = 1, . . . ,K are distinct.

4 Regression Modelling

In the remainder we assume that we have n observations from an underlying process, given by pairs
(xi, yi), i = 1, . . . , n, where xi ∈ <k is a vector of explanatory variables and yi ∈ <m is the variable of
interest. Throughout, we condition on xi without explicit mention. We assume that the observables
yi ∈ <m, i = 1, . . . , n, are independently generated from

yi = h(B, xi) + εi, (8)

where h(B, xi) is a function in <m, B parameterises the location and εi has a directionally dispersed
distribution centred at the origin, with density generator g(m) and directional dispersion function D.
Equivalently, yi has the directionally dispersed distribution fm(yi|h(B, xi), g(m), D).

We adopt a prior structure given by

PB,D = PB × PD,

assuming prior independence between the location parameters and the dispersion function.
Since the logarithm of D is given by an interpolating hyperspherical spline form, with unknown

number of knots K, knot locations BD and knot values v, the prior on D can be defined through a
prior on K, BD and v. The elicitation of a prior distribution on these parameters is facilitated if we
write

PK,BD,v = PBD,v|KPK .

In a Bayesian curve fitting spline setting, two prior distributions on K have often been suggested: a
Uniform prior on the set of integers between one and some Kmax, and a Poisson prior with parameter
λK , restricted to K > 0 (see DiMatteo et al. 2001 and references therein). In this article we use
the latter, thus having the possibility to penalise models with a number of knots that we believe
inadequate without restricting the support.

We also assume independence between locations and values of the knots. This is perhaps simplistic
but it is an almost inevitable choice in the absence of further information. The prior on BD is derived
by assuming that each of its elements has a Uniform distribution on Sm−1, independent of all other
elements.

The prior distribution on D is completed by setting the prior on v. For each component we use
a Normal prior with mean µv and variance σ2

v , implying that at each knot, the distribution of D is
Log-Normal. Thus, we centre the prior over the benchmark case of sphericity.

By assigning a Uniform prior on the knot locations and a jointly independent prior on the values
at the knots, we define a prior that is invariant to linear orthogonal transformations and, therefore,
is uninformative about the direction of skewness. Prior knowledge about directional dispersion could
be incorporated by making the priors on BD and v dependent and varying with location.
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5 Inference

Inference for the regression model introduced in the previous section requires numerical methods.
Further, as the number of knots K is left unknown, inference must be conducted on a space with
variable dimension. Here we briefly describe the details of a reversible jump MCMC sampler that can
be used in this context. Further details can be obtained from the authors upon request.

Like in the previous section, we leave the regression function unspecified and focus solely on
sampling the parameters of D. Due to the independent roles of location and D, sampling D and B

independently is likely to work well.
In order to parameterise the knot location dk we use polar coordinates parameterised by ωk =

(ωk
1 , . . . , ωk

m−1) as in Theorem 1. The Uniform prior of dk on Sm−1 implies the prior is given by

p(ωk) =
m−2∏

j=1

sinm−j−1 ωk
j , k = 1, . . . , K.

The sampler has four move types: (a) change values, (b) change locations, (c) introduce a new
knot and (d) remove an existing knot. Moves (a) and (b) are fixed dimension moves and are defined
as random walk moves, whilst moves (c) and (d) change the dimension of the parameter space.

For move (a), we select one existing knot k ∈ {1, . . . ,K} and then propose a new knot value v∗k
sampled from a Normal distribution with mean vk, the current value of the knot, and variance tuned
so as to obtain an acceptance rate close to 30%.

Sampling location is again started by selecting one existing knot k ∈ {1, . . . ,K}. Then, component
j ∈ 1, . . . ,m− 1 of ωk is selected and a new value for ωk

j ∗ is proposed from a Normal distribution
centred at ωk

j , variance tuned to obtain the same acceptance rate as for move (a), and truncated to
[0, π) if j ≤ m − 2 or [0, 2π) if j = m − 2. When m = 2, the location of each knot is parameterised
using only one angle. In this case, ordering the locations of the knots is possible and a sampler similar
to the change-point locations sampler suggested in Section 4 of Green (1995) could be used. We did
not find any significant differences between these samplers and therefore we always use the former
sampling scheme which is valid for any dimension.

For the introduction of a new knot, we set K∗ = K + 1, sample a location dK∗ in Sm−1 for the
Uniform distribution and then sample a knot value vK∗ from a Normal distribution centred on the
current value of log D at dK∗ and variance tuned as previously. The proposed new set of locations
and values are then B∗D = BD ∪ dK∗ and v∗ = (v′, vK∗)′.

Finally, removing a knot can only be done when the number of existing knots is larger than one and
is performed by selecting k ∈ {1, . . . , K} from a discrete uniform distribution and setting K∗ = K−1,
B∗D = BD \ dk and v∗ = (v1, . . . , vk−1, vk+1, . . . , vK)′.

6 Examples

In the sequel, we always make use of cubic hyperspherical splines, i.e we use Rl
m with l = 2 as the spline

basis. This generates dispersion functions that we feel are sufficiently smooth for most applications.
Nevertheless, we remind the reader that choosing a different l does not imply any methodological
changes. We always normalise the data so that each component has mean zero and variance one. This
simplifies the choice of the prior hyperparameters. We also select g(m) to be the density generator
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of the multivariate standard Normal distribution. Other choices, possibly dependent on unknown
parameters, can easily be implemented.

The description of the model requires the specification of the hyperparameters λK , µv and σ2
v . We

chose λK = 5m reflecting the fact that we expect a larger number of knots to be necessary in higher
dimensions. We set µv to zero and σ2

v = 1.96 corresponding to a prior that puts 90% of the mass of
the directional dispersion along the direction set by each knot between one tenth and ten.

Inference is conducted using MCMC chains of 120,000 iterations, retaining every 10th sample after
a burn-in period of 20,000 draws.

We assess the relative adequacy of different models using Bayes factors. Estimates of marginal
likelihoods are obtained using the p4 measure in Newton and Raftery (1994), with their δ = 0.1.

6.1 Australian Institute of Sport Data

First, we illustrate D-class distributions in the context of fitting multivariate distributions. In the
setup introduced in Section 4, this corresponds to choosing h(B, xi) = B, with B an m-dimensional
vector of real coefficients, indicating the mode. For B we assume a multivariate Normal prior with
mean zero and covariance matrix 100Im, corresponding to a diffuse proper prior.

We compare the D-class model, henceforth D-Normal, with three other models: the D-class model
where symmetry is imposed (symmetric D-Normal), the elliptical (Normal) and the model using the
skewed Normal distribution as defined in Ferreira and Steel (2004a) (FS-Normal). In the framework
introduced in Section 3, dispersion functions that generate symmetric distributions are easily generated
by imposing that if a spline knot d is in BD so is knot −d, both with the same knot value. For both
Normal and FS-Normal models, we adopt the prior defined in Ferreira and Steel (2004c). These priors
are similarly vague and are also invariant with respect to orthogonal transformations.

A dataset from the Australian Institute of Sport, measuring four biomedical variables: body mass
index (BMI), percentage of body fat (PBF), sum of skin folds (SSF), and lean body mass (LBM), is
used. The data were collected for n =202 athletes at the Australian Institute of Sport and are described
in Cook and Weisberg (1994). For simplicity of illustration, here we consider the distribution of the
six different pairs of variables.

We begin by formally comparing the suitability of the different classes of distributions using Bayes
factors. Table 1 presents the logarithm of the Bayes factors with respect to the Normal model for
each of the six pairs. The first conclusion that can be drawn from the results in Table 1 is that
both skewed alternatives are strongly favoured by the data. Restricting our attention to symmetric
distributions we realise that neither of these models performs uniformly better than the other. In
addition, differences between the symmetric alternatives are small. A distinct situation occurs for the
skewed models. Without exception, the D-class finds more support, with differences in logarithm of
Bayes factors up to 15.2 in favour of the D-class alternative, corresponding to a Bayes factor close to
four million. Only for the distribution of BMI and LBM do the models perform similarly.

Plotting the posterior predictive D-Normal densities for the six problems illustrates the advantages
of this class. The plots below the diagonal in Figure 3 display predictive contours of the D-class
densities superimposed on the data. The shapes of the contours exhibit a marked departure from
symmetry. This can be seen from the fact that, in all cases, the mode of the distribution is not at
the centre of the contours. Even for the case of the posterior predictive density of variables PBF and
SSF, where each contour appears to be close to an ellipse, the mode of the distribution is very near

10



Table 1: Biomedical data: Log of Bayes factors for the different models and different pairs of variables
with respect to the Normal alternative.

Model BMI/PBF BMI/SSF BMI/LBM PBF/SSF PBF/LBM SSF/LBM

Symmetric D-Normal 0.82 -0.87 -3.74 -3.25 2.62 2.58
FS-Normal 48.02 44.42 21.77 46.99 41.78 38.20
D-Normal 53.42 50.23 22.26 62.13 56.98 50.65

the lower left side of the contours, implying a substantial amount of skewness. The flexibility of the
directionally dispersed distributions, demonstrated by the diversity of contour shapes in Figure 3, is
also generally much more suitable to model the skewness of these data than the more rigid nature of
the skewed distributions in Ferreira and Steel (2004a), underlying the FS-Normal model.

The plots above the diagonal in Figure 3 present the posterior mean and 95% credible intervals for
the directional dispersion functions. These plots are particularly useful in determining the orientation
of the distributions. Areas with small directional dispersion values are areas where the data are
more concentrated. In areas with large directional dispersion the spread is greater. These plots also
highlight the smoothness of the direction dispersion functions modelled with the spline model in C(2).

As mentioned at the end of Section 2, one of the appealing characteristics of the D-class is that
the description of multivariate skewness, as in Ferreira and Steel (2004c), is straightforward. Figure
4 presents posterior mean and 95% credible intervals of directional skewness for the distributions
of BMI/PBF, BMI/LBM, PBF/SSF, and PBF/LBM. The cases of BMI/SSF and SSF/LBM were
excluded as they are very similar to BMI/PBF and PBF/LBM, respectively. We followed Ferreira and
Steel (2004c) and quantified directional skewness using the univariate measure of skewness introduced
in Arnold and Groeneveld (1995). We only present the range [0, π) because adding π merely reverses
the sign of the measure of skewness. Skewness for the different distributions again highlights the
flexibility of the D-class. In all cases but the one presented in Figure 4(b), skewness of the distribution
can be quite extreme (values close to ± 1). For BMI/PBF and PBF/LBM the transition between
extreme positive and negative values of directional skewness was more gradual than for PBF/SSF,
illustrating the sharpness of the joint distribution of these last two variables.

Finally, we present some statistics for the number of knots used in the spline modelling of the
logarithm of the dispersion functions. Table 2 presents the minimum, median, mean and maximum
values for the number of knots recorded in the MCMC sampler. Overall, the number of knots used
never exceeded eleven and was never smaller than two. Modelling directional dispersion for PBF/SSF
required the smallest number of knots. This is in line with the simpler shape of the corresponding
directional dispersion function presented in Figure 3.

6.2 Firm Size Data

The study of firm size is a perennial problem in economics. Here we analyse the joint distribution of
a set of measures of firm size, using two covariates for 300 publicly traded U.S. manufacturing firms
in 1990. This dataset has been analysed previously in Ferreira and Steel (2004b).

The main goal is to analyse the distribution of three measures of firm size (market value, tangible
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Figure 3: Biomedical data. Below the diagonal: contour plots of the posterior predictive D-Normal
densities of the pairs of variables superimposed on the data, denoted by dots. Above the diagonal:
mean posterior directional dispersion functions as a function of direction (solid lines) and 95% credible
intervals (dotted lines).

assets and sales), with two covariates (research and development (R&D) effort, and investment). The
measures of firm size were expressed as the logarithm of the original values (in millions of dollars),
and then each measure was normalised to have mean zero and variance one. The covariates R&D and
Investment are measured as the ratio between quantity spent and total assets, both standardised to
have mean zero and unit variance. A constant term is also included.

We assume a linear form for the regression function setting h(B, xi) = B′xi, where B ∈ <k×m is
a matrix of regression coefficients and xi is the k-dimensional vector of covariates corresponding to
observation i ∈ {1, . . . , n}. For the firm size data problem k = m = 3. A matrix-variate Normal prior
is chosen on B, with mean zero and variance 100Ikm.

12



−1

0

1
(a)

0                                pi

(b)

0                                pi

(c)

0                                pi

(d)

0                                pi

Figure 4: Biomedical data: Directional skewness of the distribution of BMI and PBF (a), BMI and
LBM (b), PBF and SSF (c) and PBF and LBM (d), as a function of direction.

Table 2: Biomedical data: Statistics for the number of knots used in the spline modelling of the
logarithm of the dispersion functions.

Statistic BMI/PBF BMI/SSF BMI/LBM PBF/SSF PBF/LBM SSF/LBM

Min. 4 6 3 2 6 6
Median 6 7 5 3 6 6
Mean 6.44 6.61 4.86 2.62 6.61 6.56
Max. 10 11 9 5 10 11

In Ferreira and Steel (2004b), it was seen that skewed distributions are more suitable to describe the
distribution of log firm size. As such, we only consider the two potentially skewed models: D-Normal
and FS-Normal. The estimated logarithm of the Bayes factor is 22.41 in favour of the D-Normal
alternative, implying that the flexibility of the directional dispersed model finds much more support
in the data.

For this 3-dimensional problem, plotting the density is not trivial. However, we can gain substantial
insight by analysing the directional dispersion function D. Figure 5 presents the posterior mean and
standard deviation of D as a function of direction. There are mainly two areas where mean directional
dispersion has large values (peaks). By relating the location of the two peaks with the parameterisation
of direction, it is found that they are roughly antipodal on the S2 sphere, which might suggest a
symmetric distribution. However, the different relative height of the peaks indicates that the most
favoured models are skewed, confirming the findings in Ferreira and Steel (2004b). Panel (b) of Figure
5 indicates that the posterior on D is concentrated enough to conduct meaningful inference.

The plot in Figure 5 also illustrates the smoothness of the function D as modelled with hyper-
spherical log-splines, even when the value of l is chosen as low as two. Another interesting aspect is
the complexity of the directional dispersion function measured by the number of bases that is used.
This is also relevant for computation as, from the formulation in (6), the computational burden will
increase linearly with the number of knots. Figure 6 shows the posterior probability function of the
number of bases. The latter assigns non-zero mass to values in the interval 9-19 and has a modal value
of 13. The concentration of the probability function on such relatively small values also facilitates
inference.
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Figure 5: Firm size data: Posterior mean (panel (a)) and posterior standard deviation (panel (b)) of
directional dispersion D as a function of direction dy−µy parameterised as in Theorem 1.
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Figure 6: Firm size data: The bars indicate the posterior probability mass function of the number of
knots, while the crosses indicate the corresponding prior probabilities.

We conclude by analysing the location of the knots used in modelling D. Figure 7 exhibits a
scatter plot of the locations of the knots, visited by the MCMC sampler, after the burn-in period.
A clear connection can be made between the location of the knots and the form of D illustrated in
Figure 5. There are large areas of the ω space that were only sparingly visited, and there are other,
smaller, areas where the locations of the knots seem to concentrate. The latter are mainly the areas
around the peaks shown in Figure 5 and two other areas near ω = (3π/4, π/8)′ and ω = (π/2, π/2)′.
The reason behind placing knots near the peaks of D is clear. We think that the other areas have
mainly regulatory functions, modelling perhaps less evident phenomena.

7 Conclusion

This article introduces a novel class of multivariate distributions through explicit modelling of direc-
tional dispersion. The class generalises the class of continuous elliptical distributions in an intuitive
manner, and provides a useful framework for modelling. These distributions can be generated by the
density generator of a spherical distribution while allowing dispersion to vary with the direction in
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Figure 7: Firm size data: Sampled locations of the knots of the directional dispersion function.

the space. We show that, by controlling directional dispersion, it is possible to generate a very wide
class of distributions, that we believe will prove useful for the description of real phenomena. By
imposing a simple condition on the directional dispersion function, we show that unimodality can be
controlled and that moment existence characteristics of the spherical distribution generated by the
density generator are carried over to our more general setup.

We suggest modelling directional dispersion using hyperspherical log-splines, where we can approx-
imate any (smooth) function on a hypersphere to any degree and can control smoothness straightfor-
wardly. Hyperspherical splines are well defined in real spaces of any dimension and are relatively easy
to implement.

The directionally dispersed class of distributions is used in the context of a Bayesian regression
model. In the prior structure we separate the roles of the regression function and of the error distri-
bution. We define a prior distribution on directional dispersion, using invariance arguments, through
priors on the parameters of the hyperspherical log-spline. Inference for this regression framework can
be conducted using a reversible jump Markov chain Monte Carlo sampler.

Modelling directional dispersion is complementary to the choice of a suitable spherical density
generator. Here we have not addressed the latter issue, but note that it is not different from the
case with elliptical distributions. In particular, the use of scale mixtures of distributions can easily be
implemented under our framework.

Acknowledgements: Part of the work of the first author was supported by grant SFRH BD 1399
2000 from Fundação para a Ciência e Tecnologia, Ministério para a Ciência e Tecnologia, Portugal.

Proofs

Without loss of generality, in the sequel we assume that µy = 0.
Proof of Theorem 1. We use the transformation to polar coordinates y = ρ t(ω), for which

p(ρ, ω|D) =
1

KD
ρm−1

(
m−2∏

i=1

sinm−1−i ωi

)
g(m)

{
ρ2

D[t(ω)]

}
. (9)

Now, (5) denotes a density if and only if (9) integrates to unity. Defining ρ = D[t(ω)]1/2r, the integral
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becomes
1

KD

∫

Ω

(
m−2∏

i=1

sinm−1−i ωi

)
D[t(ω)]m/2dω

∫

<+

rm−1g(m)(r2)dr =

1
KD

Γ(m/2)
2πm/2

∫

Ω

(
m−2∏

i=1

sinm−1−i ωi

)
D[t(ω)]m/2dω, (10)

which concludes the proof. ¤

Proof of Corollary 1. If for any direction dy, D(dy) < C < ∞, then there is a finite M such that
for any dy, D[t(ω)]m/2 < M , and therefore

∫

Ω

(
m−2∏

i=1

sinm−1−i ωi

)
D[t(ω)]m/2dω < M

∫

Ω

(
m−2∏

i=1

sinm−1−i ωi

)
dω < ∞.

¤

Proof of Corollary 2. Follows directly from (10). ¤

Proof of Theorem 2. As fm(y|0, g(m), D) defined by (5) is proportional to g(m)
[

y′y
D(dy)

]
and 0 <

D(dy) < C < ∞, g(m)
[

y′y
D(dy)

]
is decreasing in y for any direction dy and, thus, the result follows. ¤

Proof of Theorem 3. The existence of the joint moment of order qj in yj , for j = 1, . . . ,m, is
equivalent to ∫

<m

m∏

j=1

|yj |qjfm(y|0, g(m), D)dy < ∞.

Transforming to polar coordinates and defining q =
∑m

j=1 qj , the integral above equals
1

KD

∫
<+×Ω ρq

∏m
j=1 |tj(ω)|qjρm−1

(∏m−2
i=1 sinm−1−i ωi

)
g(m)

{
ρ2

D[t(ω)]

}
dρdω =

1
KD

∫
Ω

(∏m−2
i=1 sinm−1−i ωi

)∏m
j=1 |tj(ω)|qjD[t(ω)]

q+m
2 dω

∫
<+ rq+m−1g(m)(r2)dr ∝∫

<+ rq+m−1g(m)(r2)dr, since the integral in ω is a finite positive number.
As the last integral above depends on g(m) alone, the proof is complete. ¤
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