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a b s t r a c t

This paper mainly focuses on one of the most classical testing problems in directional
statistics, namely the spherical location problem that consists in testing the null hypothe-
sisH0 : θ = θ0 underwhich the (rotational) symmetry center θ is equal to a given value θ0.
The most classical procedure for this problem is the so-called Watson test, which is based
on the sample mean of the observations. This test enjoys many desirable properties, but its
asymptotic theory requires the sample size n to be large compared to the dimension p. This
is a severe limitation, since more and more problems nowadays involve high-dimensional
directional data (e.g., in genetics or textmining). In the presentwork, we derive the asymp-
totic null distribution of theWatson statistic as both n and p go to infinity. This reveals that
(i) the Watson test is robust against high dimensionality, and that (ii) it allows for (n, p)-
asymptotic results that are universal, in the sense that p may go to infinity arbitrarily fast
(or slowly) as a function of n. Turning to Euclidean data, we show that our results also lead
to a test for the null that the covariance matrix of a high-dimensional multinormal distri-
bution has a ‘‘θ0-spiked’’ structure. Finally, Monte Carlo studies corroborate our asymptotic
results and briefly explore non-null rejection frequencies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The technological advances and the ensuing new devices to collect and store data lead nowadays in many disciplines
to data sets with very high dimension p, often larger than the sample size n. Consequently, there is a need for inferential
methods that can deal with such high-dimensional data, and this has entailed a huge activity related to high-dimensional
problems in the last decade. One- and multi-sample location problems have been investigated in [23,22,9,24,25], among
others. Since the seminal paper by Ledoit and Wolf [15], problems related to covariance or scatter matrices have also been
thoroughly studied by several authors; see, e.g., [10,16,18,13]. In particular, the problemof testing for sphericity has attracted
much attention.

In this paper, we are interested in high-dimensional directional data, that is, in data lying on the unit hypersphere

Sp−1
=


x ∈ Rp

: ∥x∥ =
√
x′x = 1


,

with p large. Such data occurwhen only the direction of the observations and not theirmagnitudematters, and are extremely
common, e.g., in magnetic resonance [11], gene-expression [1], and text mining [2]. Inference for high-dimensional
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directional data has already been considered in several papers. For instance, Banerjee and Ghosh [3,4] and Banerjee et al. [2]
investigate clustering methods in this context. Most asymptotic results available, however, have been obtained as p goes
to infinity, with n fixed. This is the case of almost all results in [26,28,30,11]. To the best of our knowledge, the only
(n, p)-asymptotic results available can be found in [11,8,7,19]. However, Dryden [11] imposes the stringent condition that
p/n2

→ ∞ when studying the asymptotic behavior of the classical pseudo-FvML location estimator (FvML here refers to
Fisher–von Mises–Langevin distributions; see below). Cai and Jiang [8] and Cai et al. [7] consider various (n, p)-asymptotic
regimes in the context of testing for uniformity on the unit sphere, but the tests to be used depend on the regime considered
which makes practical implementation problematic. Finally, Paindaveine and Verdebout [19] propose tests that are robust
to the (n, p)-asymptotic regime considered; their tests, however, are sign procedures, hence are not based on sufficient
statistics—unlike the much more classical pseudo-FvML procedures.

In the present paper, we intend to overcome these limitations in the context of the spherical location problem, one of the
most fundamental problems in directional statistics. Thenatural distributional framework for this problem is providedby the
class of rotationally symmetric distributions (see Section 2), that is a semiparametric model, indexed by a finite-dimensional
(location) parameter θ ∈ Sp−1 and an infinite-dimensional parameter F . The spherical location problem is the problem

H0 : θ = θ0
H1 : θ ≠ θ0,

where θ0 is a given unit vector and F remains unspecified. The classical test for this problem is the so-called Watson test,
based on the sample mean of the observations; see [29]. This test enjoys many desirable properties, and in particular is a
pseudo-FvML procedure: in otherwords, it achieves optimality under FvML distributions, yet remains valid (in the sense that
it meets the asymptotic nominal level constraint) under extremely mild assumptions on F .

Unfortunately, nothing is known about the validity of the Watson test in the high-dimensional setup, which, in view
of the growing number of high-dimensional directional data to be analyzed, is a severe limitation. Therefore, the aim of
this paper is to investigate this issue. We derive the (n, p)-asymptotic null properties of theWatson test. Our results require
minimal distributional assumptions and allow for virtually any rotationally symmetric distributions. Even better: in contrast
with earlier asymptotic investigations of high-dimensional pseudo-FvML procedures, our asymptotic results are ‘‘universal’’
in the sense that they only require that p goes to infinity as n does (p may go arbitrarily fast (or slowly) to infinity as a
function of n). Moreover, as an interesting by-product, we show that our procedures can be used to test the null hypothesis
that the covariance matrix of a high-dimensional multinormal distribution is ‘‘θ0-spiked’’, meaning that it is of the form
6 = σ 2(Ip + λθ0θ

′

0) for some σ 2 > 0 and some λ ≥ 0 (here, θ0 ∈ Sp−1 is fixed); see, e.g., [14] or the quite recent Onatski
et al. [18] where this covariance structure has been used as an alternative to sphericity.

The outline of the paper is as follows. In Section 2, we define the class of rotationally symmetric distributions and
introduce the Watson test for spherical location. In Section 3, we propose a standardized Watson test statistic and derive
its asymptotic null distribution in the high-dimensional setting. We also prove that, in some cases, it is asymptotically
equivalent to a sign test statistic. In Section 4, we show that the standardizedWatson test further allows to test for a spiked
covariance structure in high-dimensional multinormal distributions. Monte Carlo studies are conducted in Section 5, while
an Appendix collects the proofs.

2. Rotational symmetry and the Watson test

The distribution of the random p-vector X, with values on the unit hypersphere Sp−1, is rotationally symmetric about
location θ(∈ Sp−1) if OX is equal in distribution to X for any orthogonal p × p matrix O satisfying Oθ = θ; see [21].
Rotationally symmetric distributions are characterized by the location parameter θ and an infinite-dimensional parameter,
the cumulative distribution function F of X′θ, hence they are of a semiparametric nature. The rotationally symmetric
distribution associated with θ and F will be denoted as R(θ, F) in the sequel. The most celebrated members of this family
are the Fisher-von Mises-Langevin distributions, corresponding to

Fp,κ(t) = cp,κ

 t

−1
(1 − s2)(p−3)/2 exp(κs) ds (t ∈ [−1, 1]),

where cp,κ is a normalization constant and κ(>0) is a concentration parameter (the larger the value of κ , the more concen-
trated about θ the distribution is); see [17] for further details.

Let X1, . . . ,Xn be a random sample from R(θ, F) and consider the problem of testing the null hypothesis H0 : θ = θ0
against the alternative H1 : θ ≠ θ0, where θ0 ∈ Sp−1 is fixed and F remains unspecified. At first sight, the rotational
symmetry assumption may appear quite restrictive. Note however that it contains the null hypothesis of uniformity on
the sphere, which itself contains the null hypothesis of sphericity for Euclidean data (since the uniform distribution on the
sphere may be obtained by projecting spherical distributions on the sphere), a null that has been the topic of numerous
papers in high-dimensional statistics.

Letting X̄ :=
1
n

n
i=1 Xi, the classical test for the problem above rejects the null for large values of the Watson statistic

Wn :=
n(p − 1)X̄′(Ip − θ0θ

′

0)X̄

1 −
1
n

n
i=1

(X′

iθ0)2
. (2.1)
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Under verymild assumptions on F , the fixed-p asymptotic null distribution ofWn is chi-squarewith p−1 degrees of freedom.
The resulting test, φW

n say, therefore rejects the null, at asymptotic level α, wheneverWn > 9−1
p−1(1−α), where9p−1 stands

for the cumulative distribution function of the chi-square distribution with p − 1 degrees of freedom; see [29].
Beyond achieving asymptotic level α under virtually any rotationally symmetric distribution, φW

n is optimal – more
precisely, locally and asymptotically maximin, in the Le Cam sense – when the underlying distribution is FvML; for details,
we refer to Paindaveine and Verdebout [20], where the asymptotic properties of φW

n under local alternatives are derived.
Although φW

n is based on the sample mean of the observations, these excellent power properties are not obtained at the
expense of robustness, since observations by construction are on the unit hypersphere.

Consequently, φW
n is a nice solution to the testing problem considered on all counts but one: implementation is based

on fixed-p asymptotics, so that φW
n cannot be used when p is of the same order as, or even larger than, n. The goal of the

present work is therefore to investigate the (n, p)-asymptotic properties of the Watson test. We will show that, as n and p
go to infinity, the standardized Watson test statistic

W̃n :=
Wn − (pn − 1)
√
2(pn − 1)

(2.2)

is asymptotically normal under the null. This of course leads to a high-dimensionalWatson test that consists in rejecting the
null, at asymptotic level α, whenever W̃n exceeds the upper α-quantile of the standard normal distribution. This test clearly
is asymptotically equivalent to the original (fixed-p) Watson test based on chi-square critical values, so that the latter may
be considered robust to high dimensionality.

3. A high-dimensional Watson test

Consider the high-dimensional version of the testing problem H0 : θ = θ0 against H1 : θ ≠ θ0, based on a triangular
array of observations Xni, i = 1, . . . , n, n = 1, 2, . . . , where Xni takes values in Spn−1 and pn goes to infinity with n. Using
the (null) tangent-normal decomposition Xni = (X′

niθ0)θ0 + vniSni, where

vni := ∥Xni − (X′

niθ0)θ0∥ =


1 − (X′

niθ0)2

and

Sni :=


Xni − (X′

niθ0)θ0

∥Xni − (X′

niθ0)θ0∥
if Xni ≠ θ0

0 otherwise,

the Watson statistic rewrites

Wn =
pn − 1
n

i=1
v2
ni

n
i,j=1

vnivnjS′

niSnj =
pn − 1
n

i=1
v2
ni


n

i=1

v2
ni + 2


1≤i<j≤n

vnivnjS′

niSnj



= (pn − 1) +
2(pn − 1)

n
i=1

v2
ni


1≤i<j≤n

vnivnjS′

niSnj.

The standardized Watson statistic in (2.2) then takes the form

W̃n =

√
2(pn − 1)

n
i=1

v2
ni


1≤i<j≤n

vnivnjS′

niSnj. (3.3)

The following result provides the (n, p)-asymptotic null distribution of W̃n (see the Appendix for the proof).

Theorem 3.1. Let Xni, i = 1, . . . , n, n = 1, 2, . . . , form a triangular array of random vectors satisfying the following con-
ditions: (i) for any n, Xn1,Xn2, . . . ,Xnn are mutually independent and share a common rotationally symmetric distribution on
Spn−1 with location θ0; (ii) pn → ∞ as n → ∞; (iii) E[v2

n1] > 0 for any n; (iv) E[v4
n1]/(E[v

2
n1])

2
= o(n) as n → ∞. Then W̃n

is asymptotically standard normal.

The assumptions of Theorem 3.1 are extremely mild. Note in particular that it is not assumed that the common
distribution of the Xni’s is absolutely continuous with respect to the surface area measure on Spn−1. Assumption (iii) only
excludes the degenerate case for which Xn1 = θ0 almost surely, which would imply that Wn – hence also W̃n – is not well-
defined. Most importantly, it should be noted that Assumption (ii) allows pn to go to infinity in an arbitrary way with n, so
that Theorem 3.1 provides a ‘‘(n, p)-universal’’ asymptotic distributional result for the standardized Watson statistic.
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Assumption (iv) possibly looks more stringent. However, a sufficient (yet not necessary) condition for (iv) is that√
n E[v2

n1] → ∞ as n → ∞. In other words, if (iv) does not hold, we must then have that, for some constant C > 0,

E[(X′

n1θ0)
2
] ≥ 1 −

C
√
n

(3.4)

for infinitely many n. In the high-dimensional setup considered, (3.4) is extremely pathological, since it corresponds to
the distribution of Xn1 concentrating in one particular direction – namely, the direction θ0 – in the expanding Euclidean
space Rpn . Moreover, there are parametric classes of distributions on the sphere for which Assumption (iv) always holds. An
important example is the class of FvML distributions. To show this, note that the integral representation

Iν(z) =
(z/2)ν

√
π Γ


ν +

1
2

  1

−1
(1 − s2)ν−

1
2 exp(zs) ds

of the modified Bessel function of the first kind Iν(z) (see, e.g., [27, p. 79]) readily yields

cp,κ(ℓ) :=

 1

−1
(1 − s2)(p+ℓ−3)/2 exp(κs) ds =

√
π Γ


p+ℓ−1

2


I p+ℓ

2 −1(κ)

(κ/2)
p+ℓ
2 −1

for any nonnegative integer ℓ. If X1n follows an FvML distribution with a concentration κn that is allowed to depend on the
sample size n, then

E[vℓ
n1] = E[(1 − (X′

n1θ0)
2)ℓ/2] =

cpn,κn(ℓ)
cpn,κn(0)

=

Γ


pn+ℓ−1

2


I pn+ℓ

2 −1(κn)

(κn/2)
ℓ
2 Γ

 pn−1
2


I pn

2 −1(κn)
,

which, by using the log-concavity (for any fixed κ) of ν → Iν(κ) (see, e.g., [5]) and the identity Γ (z + 1) = zΓ (z), yields

E[v4
n1]

(E[v2
n1])

2
=

(pn + 1)I pn
2 +1(κn)I pn

2 −1(κn)

(pn − 1)(I pn
2
(κn))2

≤
pn + 1
pn − 1

≤ 3.

Consequently, Assumption (iv) is fulfilled in the FvML case, irrespective of the dependence of (κn, pn) in n—hence, also if κn
goes to infinity arbitrarily fast. On all counts, thus, Assumption (iv) is extremely mild, too.

Theorem 3.1 states that the standardized Watson test statistic W̃n is asymptotically standard normal under the null. It
is natural to try and control how much the cumulative distribution function of W̃n deviates from normality. This can be
achieved by using the main result from Heyde and Brown [12] and leads to the following theorem (see the Appendix for the
proof).

Theorem 3.2. Let Xni, i = 1, . . . , n, n = 1, 2, . . . , form a triangular array of random vectors satisfying the following con-
ditions: (i) for any n, Xn1,Xn2, . . . ,Xnn are mutually independent and share a common rotationally symmetric distribution on
Spn−1 with location θ0; (ii) E[v2

n1] > 0 for any n; (iii) E[v4
n1]/(E[v

2
n1])

2
= o(n) as n → ∞. Let

˜̃W n =


n

n − 1

1/2

W̃n.

Then there exists a positive constant C such that, for n large enough,

sup
z∈R

P ˜̃W n ≤ z

− 8(z)

 ≤ C


E[v4
n1]

n(E[v2
n1])

2
+

1
pn

1/5

,

where 8 denotes the cumulative distribution function of the standard normal distribution.

Of course, if it is further assumed that pn → ∞ as n → ∞, then this yields Theorem 3.1 (uniformity is no reinforcement
here since the limiting distribution is continuous). More importantly, if more stringent assumptions are imposed on
E[v4

n1]/(E[v
2
n1])

2 and pn, then Theorem 3.2 further provides (uniform) rates of convergence. For instance, if it is assumed

that E[v4
n1]/(E[v

2
n1])

2
= O(1) and 1/pn = O(1/n), then Theorem 3.2 yields that supz∈R

P[ ˜̃W n ≤ z] − 8(z)
 = O(n−1/5) as

n → ∞. Clearly, non-trivial convergence rates can only be obtained by imposing a minimal rate at which pn should go to
infinity, which is incompatible with the ‘‘universal asymptotics phenomenon’’ we describe in this paper. We therefore do
not pursue this direction in the sequel.

Theorems 3.1–3.2 lead to the test announced at the end of Section 2, namely the test, φ̃W
n say, that rejects the null

hypothesis H0 : θ = θ0 in favor of H1 : θ ≠ θ0 at asymptotic level α whenever

W̃n > 8−1(1 − α).

As usual, these tests can be inverted to obtain a confidence zone for the symmetry center θ. More precisely, denoting by
W̃n(θ0) the high-dimensional Watson test statistic for the null H0 : θ = θ0, the region

Rn =


θ ∈ Spn−1

: W̃n(θ) ≤ 8−1(1 − α)
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is an (n, p)-asymptotically valid confidence zone for θ. Of course, from a practical point of view, one needs to be able to
determine Rn, whichmay be computationally challenging. This problem, that was not even considered for small p, is beyond
the scope of this paper.

We stress that both the high-dimensional tests and confidence zones above are asymptotically valid in a ‘‘universal’’
way, that is, irrespective of the way pn goes to infinity with n. In particular, this implies that the original (fixed-p) test
φW
n , that is asymptotically equivalent to φ̃W

n , is asymptotically valid in the high-dimensional case, hence is robust to high
dimensionality.

Finally, for the testing problem considered above, Paindaveine and Verdebout [19] introduced the high-dimensional sign
statistic

Q̃n :=

√
2(pn − 1)

n


1≤i<j≤n

S′

niSnj (3.5)

and showed that the (n, p)-universal asymptotic null distribution of Q̃n is standard normal. In the next result (that is also
proved in the Appendix), we identify assumptions on the sequence (vn1) under which W̃n and Q̃n are ((n, p)-universally)
asymptotically equivalent in probability under the null.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold and further assume that (v) E[v2
n1]/(E[vn1])

2
→ 1 as n → ∞. Then,

W̃n − Q̃n = oP(1) as n → ∞.

This result shows that, quite intuitively, if vn1 becomes constant asymptotically (in the sense that Var[vn1]/(E[vn1])
2

→

0), then the high-dimensional Watson test φ̃W
n coincides with the sign test based on (3.5). Note, however, that there is no

particular reasonwhy the distribution ofXn1 should concentrate on the intersection of the spherewith (a possibly translated
version of) the orthogonal complement of θ0.

4. Spiked covariance matrices

Let Yn1, . . . , Ynn be a random sample from the pn-dimensional multinormal distribution with mean zero and covariance
matrix6. For fixed θ0 ∈ Spn−1, we consider here theproblemof testing thenull hypothesis that6has a ‘‘θ0-spiked’’ structure,
that is, is of the form

H
spi
0 : 6 = σ 2(Ipn + λθ0θ

′

0), for some σ 2 > 0 and λ ≥ 0.

Consider the projections Xni := Yni/∥Yni∥, i = 1, . . . , n, of the observations on the unit hypersphere, and let

Sni :=
Xni − (X′

niθ0)θ0

∥Xni − (X′

niθ0)θ0∥
.

Under H
spi
0 , (i) the Sni’s are mutually independent and are uniformly distributed over Spn−1(θ⊥

0 ) := {x ∈ Spn−1
| x′θ0 = 0};

moreover, (ii) the X′

niθ0’s are independent and identically distributed, and they are independent of the Sni’s. It is well-
known that (i)–(ii) imply that the common distribution of the projected observations Xni is rotationally symmetric about θ0.
Consequently, a high-dimensional test for θ0-spikedness is the test, φ̃spi

n say, that rejects the null H
spi
0 , at asymptotic level

α, whenever

W̃ spi
n (Yn1, . . . , Ynn) := W̃n(Xn1, . . . ,Xnn) > 8−1(1 − α).

Theorem 3.1 ensures that φ̃
spi
n has asymptotic null size α as soon as pn goes to infinity with n (universal (n, p)-

asymptotics), which is illustrated in the simulations of the next section. Typically, this test will show large powers against
θ-spiked alternatives, with θ ≠ θ0 and λ > 0.

5. Monte Carlo studies

5.1. Null behavior

In this section, our aim is to check the validity of our universal asymptotic results related to both W̃n and W̃ spi
n . To do so,

we generated, for every (n, p) ∈ C × C , with C = {5, 30, 200, 1000}, and with θ0 the first vector of the canonical basis of
Rp,M = 2500 independent random samples from each of the following p-dimensional distributions:
(i) the FvML distribution R(θ0, Fp,2) (see Section 2);
(ii) the Purkayastha distribution R(θ0,Gp,1), associated with

Gp,κ(t) = dp,κ

 t

−1
(1 − s2)(p−3)/2 exp(−κ arccos(s)) ds (t ∈ [−1, 1]),

where dp,κ is a normalizing constant;
(iii) the multinormal distribution with mean zero and covariance matrix 6 = Ip + (1/2)θ0θ

′

0.
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Fig. 1. Histograms, for various values of n and p, of the standardized Watson statistic W̃n evaluated on M = 2500 independent random samples of size n
from the p-dimensional FvML distribution with concentration κ = 2; see Section 5.1 for details.

The standardized Watson statistic W̃n was evaluated on the samples from (i)–(ii) (rotational symmetry about θ0), while the
statistic W̃ spi

n was computed for each sample from (iii) (θ0-spikedness). For each (n, p)-regime considered, we report the
corresponding histograms of W̃n in Figs. 1–2 and those of W̃ spi

n in Fig. 3 (each histogram is based on M = 2500 values of
these statistics).

From Theorem 3.1 and the discussion in Section 4, histograms are expected to be approximately standard normal as soon
as min(n, p) is large, in a universal way (that is, irrespective of the relative sizes of n and p). Inspection of the results shows
that, for all three setups, the standard normal approximation is valid for moderate-to-large values of n and p, irrespective of
the value of p/n, which confirms our universal asymptotic results. Note also that, for small p and moderate-to-large n (that
is, p = 5 and n ≥ 30), histograms are approximately (standardized) chi-square, which is consistent with classical fixed-p
asymptotic results; see Section 2.

To further assess the quality of the standard normal approximation at some relatively moderate dimensions p and
sample sizes n, we conducted a second simulation, where we investigate how well the asymptotic Gaussian critical values
approximate the (unknown) fixed-(n, p) corresponding quantiles of the Watson statistic under the null (this is of course of
primary importance in the hypothesis context considered). To do so, for every (n, p) ∈ C × C , with C = {10, 30, 100, 200},
we generated M = 10 000 independent random samples from the FvML distributions R(θ0, Fp,1), where θ0 is still the first
vector of the canonical basis of Rp. In line with the high-dimensional FvML distributions of Dryden [11], we also conducted
this simulation with the FvML distributions R(θ0, Fp,√p).

For every (n, p) and each concentration considered, we evaluated

1
M

M
i=1

I[W̃n > 8−1(1 − α)]

(I[A] stands for the indicator function of A), which is the empirical null size of the proposed high-dimensional Watson test.
These rejection frequencies are reported in Table 1, which reveals that (i) the Gaussian approximation for W̃n indeed is reli-
able for relatively moderate values of n and p, and that (ii) the concentration does not have an important impact in practice.

5.2. Behavior under the alternative

We conducted a last Monte Carlo study to illustrate the non-null behavior of the proposed high-dimensional Watson
test. To do so, we generated, for any (n, p) ∈ C × C , with C = {20, 200, 1000}, independent random samples from the
mixture-of-FvML distribution

1
ℓ

R

θ0, Fp,√p


+


1 −

1
ℓ


R

θ1, Fp,√p


, ℓ = 1, 2, 3, 4; (5.6)
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Fig. 2. Histograms, for various values of n and p, of the standardized Watson statistic W̃n evaluated on M = 2500 independent random samples of size n
from the p-dimensional Purkayastha distribution with concentration κ = 1; see Section 5.1 for details.

Fig. 3. Histograms, for various values of n and p, of the test statistic W̃ spi
n for θ0-spikedness evaluated on M = 2500 independent random samples of size

n from the p-dimensional multinormal distribution with mean zero and covariance matrix 6 = Ip + (1/2)θ0θ
′

0; see Section 5.1 for details.
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Table 1
For various values of n and p, null rejection frequencies of the high-dimensional Watson test computed
from M = 10 000 independent random samples of size n generated according to the p-dimensional FvML
distributions R(θ0, Fp,1) or R(θ0, Fp,√p); see Section 5.1 for details.

n p
10 30 100 200

κ = 1

10 0.0622 0.0619 0.0634 0.0643
30 0.0529 0.0591 0.0616 0.0647

100 0.0523 0.0563 0.0540 0.0554
200 0.0483 0.0517 0.0557 0.0537

κ =
√
k

10 0.0574 0.0630 0.0694 0.0655
30 0.0550 0.0592 0.0645 0.0590

100 0.0471 0.0545 0.0577 0.0565
200 0.0478 0.0532 0.0582 0.0560

Fig. 4. For various values of n and p, non-null rejection frequencies of the high-dimensional Watson test computed fromM = 2500 independent samples
of size n generated according to the p-dimensional mixture-of-FvML distributions in (5.6); see Section 5.2 for details.

denoting by ep,r the rth vector of the canonical basis of Rp, we took above θ0 = ep,1 and θ1 = (ep,1 + ep,p/4 − 2ep,p/2)/
√
6.

Clearly, ℓ = 1 corresponds to the null hypothesis H0 : θ = θ0 (FvML distribution with location θ0), whereas ℓ = 2, 3, 4
provide increasingly severe alternatives. For each (n, p)-value considered, Fig. 4 reports the rejection frequencies of the
high-dimensional Watson test based on W̃n (empirical rejection frequencies are based on M = 2500 replications). Clearly,
this test exhibits non-trivial powers under the type of alternatives considered, irrespective of the value of (n, p).
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Appendix. Proofs

We start with the proof of the main result, that is, Theorem 3.1. The proof will follow by applying the Slutsky Lemma to

W̃n =

√
2(pn − 1)
nE[v2

n1]


1≤i<j≤n

vnivnjS′

niSnj
 1

n

n
i=1 v2

ni

E[v2
n1]


=: Rn/Ln. (A.1)

The stochastic convergence of the denominator is taken care of in the following result.

Proposition A.1. Under the assumptions of Theorem 3.1, Ln → 1 in quadratic mean as n → ∞.
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Proof of Proposition A.1. Since

E

(Ln − 1)2


= E




1
n

n
i=1

v2
ni

E[v2
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− 1
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1
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1
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n1]

2

=
1

(E[v2
n1])

2
Var


1
n

n
i=1

v2
ni


=

Var[v2
n1]

n(E[v2
n1])

2
≤

E[v4
n1]

n(E[v2
n1])

2
, (A.2)

the result follows from Condition (iv) in Theorem 3.1. �

To establish Theorem 3.1, it is therefore sufficient to prove the following result.

Proposition A.2. Under the assumptions of Theorem 3.1, Rn is asymptotically standard normal.

The proof of this proposition is more delicate and will be based on the following martingale Central Limit Theorem; see
Theorem 35.12 in [6].

Theorem A.1. Assume that, for each n, Zn1, Zn2, . . . is a martingale relative to the filtration Fn1, Fn2, . . . and define Ynℓ =

Znℓ − Zn,ℓ−1. Suppose that the Ynℓ’s have finite second-order moments and let σ 2
nℓ = E[Y 2

nℓ | Fn,ℓ−1] (with Fn0 = {∅, Ω}).
Assume that


∞

ℓ=1 Ynℓ and


∞

ℓ=1 σ 2
nℓ converge with probability 1. Then, if, for n → ∞,

∞
ℓ=1

σ 2
nℓ = σ 2

+ oP(1), (A.3)

where σ is a positive real number, and

∞
ℓ=1

E

Y 2
nℓ I[|Ynℓ| ≥ ε]


→ 0 ∀ε > 0, (A.4)

we have that σ−1∞

ℓ=1 Ynℓ is asymptotically standard normal.

In order to apply this result, we need to identify the distinct quantities in the present setting. Let Fnℓ be the σ -algebra
generated by Xn1, . . . ,Xnℓ and denote by Enℓ[.] the conditional expectation with respect to Fnℓ. Then, letting

Ynℓ := Enℓ[Rn] − En,ℓ−1[Rn] =

√
2(pn − 1)
nE[v2

n1]

ℓ−1
i=1

vnivnℓS′

niSnℓ

for ℓ = 1, . . . , n and (as in [6]) Ynℓ = 0 for ℓ > n, we clearly have that Rn =
n

ℓ=2 Ynℓ, where the Ynℓ’s have finite second-
order moments. Also,


∞

ℓ=2 Ynℓ =
n

ℓ=2 Ynℓ and


∞

ℓ=2 σ 2
nℓ =

n
ℓ=2 σ 2

nℓ, with σ 2
nℓ = En,ℓ−1[Y 2

nℓ] as in Theorem A.1, and both
converge with probability 1, as required. Now, the crucial conditions (A.3) and (A.4) are shown to hold in the subsequent
lemmas.

Lemma A.1. Under the assumptions of Theorem 3.1,
n

ℓ=2 σ 2
nℓ → 1 in quadratic mean as n → ∞.

Lemma A.2. Under the assumptions of Theorem 3.1,
n

ℓ=2 E[Y
2
nℓ I[|Ynℓ| > ε]] → 0 as n → ∞ for any ε > 0.

Before proving these lemmas,we recall that, under the assumptions of Theorem3.1, the signs Sni are uniformlydistributed
over Spn−1(θ⊥

0 ) (see Section 4) and that the vni’s are independent of the Sni’s, i = 1, . . . , n. From Lemma A.1 in [19] it directly
follows that, for fixed n, the quantities ρn,ij := S′

niSnj are pairwise independent and satisfy E[ρn,ij] = 0, E[ρ2
n,ij] = 1/(pn − 1),

and E[ρ4
n,ij] = 3/(p2n − 1).

Proof of Lemma A.1. Rotational symmetry about θ0 readily yields

E[SnℓS′

nℓ] =
1

pn − 1
(Ipn − θ0θ

′

0).

The independence between the vni’s and Sni’s then provides
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Hence we obtain
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Moreover, the pairwise independence of the ρn,ij’s entails
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(A.6)

→ 0, (A.7)

in view of Conditions (ii) and (iv) from Theorem 3.1. Using (A.5) and (A.7) in
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then establishes the result. �

Proof of Lemma A.2. Applying first the Cauchy–Schwarz inequality, then the Chebyshev inequality, yields
n
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Noting that Var[Ynℓ] ≤ E[Y 2
nℓ] = 2(ℓ − 1)/n2, we obtain
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Using the fact that 0 ≤ vni ≤ 1 almost surely and the independence between the vni’s and the Sni’s, we get
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which yields
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Plugging into (A.8), we conclude that
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which, in view of Condition (iv) from Theorem 3.1, is indeed o(1). �

It remains to prove Theorems 3.2 and 3.3.
Proof of Theorem 3.2. In this proof, C will stand for a generic constant that may change from line to line. Applying (with
δ = 1) the theorem in [12] to the martingale Rn =

n
ℓ=2 Ynℓ considered in the previous proof readily provides
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where we let
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It therefore only remains to show that, for n large enough,
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To do so, recall (A.1) and writeP[W̃n ≤ z] − P[Rn ≤ z]
 =
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say. Using the Markov inequality and (A.2), we readily obtain
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As for Fn, applying (A.10) to
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for some ξn,z ∈ (−1, 1). For n large enough, we therefore have
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We conclude that, still for n large enough,
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which is (A.11). This establishes the result. �

Proof of Theorem 3.3. Decompose W̃n − Q̃n into An + Bn, with
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Propositions A.1 and A.2 readily entail that An = oP(1) as n → ∞. As for Bn, we have (see the beginning of the Appendix for
a recall on some results regarding expectations of the signs Sni)
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which, in view of Condition (v), is o(1) as n → ∞. The result follows. �
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