28,215 research outputs found

    Entropy guided visualization and analysis of multivariate spatio-temporal data generated by physically based simulation

    Get PDF
    Flow fields produced by physically based simulations are subsets of multivariate spatiotemporal data, and have been in interest of many researchers for visualization, since the data complexity makes it difficult to extract representative views for the interpretation of fluid behavior. In this thesis, we utilize Information Theory to find entropy maps for vector flow fields, and use entropy maps to aid visualization and analysis of the flow fields. Our major contribution is to use Principal Component Analyses (PCA) to find a projection that has the maximal directional variation in polar coordinates for each sampling window in order to generate histograms according to the projected 3D vector field, producing results with fewer artifacts than the traditional methods. Entropy guided visualization of different data sets are presented to evaluate proposed method for the generation of entropy maps. High entropy regions and coherent directional components of the flow fields are visible without cluttering to reveal fluid behavior in rendered images. In addition to using data sets those are available for research purposes, we have developed a fluid simulation framework using Smoothed Particle Hydrodynamics (SPH) to produce flow fields. SPH is a widely used method for fluid simulations, and used to generate data sets that are difficult to interpret with direct visualization techniques. A moderate improvement for the performance and stability of SPH implementations is also proposed with the use of fractional derivatives, which are known to be useful for approximating particle behavior immersed in fluids

    Visualizing Magnitude and Direction in Flow Fields

    Get PDF
    In weather visualizations, it is common to see vector data represented by glyphs placed on grids. The glyphs either do not encode magnitude in readable steps, or have designs that interfere with the data. The grids form strong but irrelevant patterns. Directional, quantitative glyphs bent along streamlines are more effective for visualizing flow patterns. With the goal of improving the perception of flow patterns in weather forecasts, we designed and evaluated two variations on a glyph commonly used to encode wind speed and direction in weather visualizations. We tested the ability of subjects to determine wind direction and speed: the results show the new designs are superior to the traditional. In a second study we designed and evaluated new methods for representing modeled wave data using similar streamline-based designs. We asked subjects to rate the marine weather visualizations: the results revealed a preference for some of the new designs

    A Phase Field Model for Continuous Clustering on Vector Fields

    Get PDF
    A new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical clustering model, the Cahn Hilliard model, which describes phase separation, is modified to reflect the properties of the data to be visualized. Clusters are defined implicitly as connected components of the positivity set of a density function. An evolution equation for this function is obtained as a suitable gradient flow of an underlying anisotropic energy functional. Here, time serves as the scale parameter. The evolution is characterized by a successive coarsening of patterns-the actual clustering-during which the underlying simulation data specifies preferable pattern boundaries. We introduce specific physical quantities in the simulation to control the shape, orientation and distribution of the clusters as a function of the underlying flow field. In addition, the model is expanded, involving elastic effects. In the early stages of the evolution shear layer type representation of the flow field can thereby be generated, whereas, for later stages, the distribution of clusters can be influenced. Furthermore, we incorporate upwind ideas to give the clusters an oriented drop-shaped appearance. Here, we discuss the applicability of this new type of approach mainly for flow fields, where the cluster energy penalizes cross streamline boundaries. However, the method also carries provisions for other fields as well. The clusters can be displayed directly as a flow texture. Alternatively, the clusters can be visualized by iconic representations, which are positioned by using a skeletonization algorithm.

    Visualization of acoustic intensity vector fields using scanning measurement techniques

    No full text
    Sound propagation paths are not always well understood mainly because of the complex nature of the source or the environment. A direct method to capture the sound energy flow throughout a room is to measure the three-dimensional sound intensity distribution across space. In the past years, several studies have been carried out using step by step measurements with a three-dimensional intensity probe consisting of a sound pressure transducer and three orthogonal particle velocity sensors. The probe’s ability to measure even in highly reverberant environments and its small size are key features required for numerous applications. However, punctual measurements are time-consuming, especially when a large number of measurement positions are evaluated. The use of advanced scanning measurement techniques, such Scan & Paint, allows for the gathering of data across a time stationary sound field in a fast and efficient way, using a single sensor and webcam only. The acoustic signals are acquired manually by moving a probe across a measurement plane whilst filming the event with a camera. In the post-processing stage, the sensor position is extracted and then used for linking a segment of the signal acquired to a certain position of the space. In this manner, the overall measurement time is reduced from hours to minutes. In this paper, the acoustic intensity vector fields of several complex examples are investigated; revealing the acoustic energy flow of several vehicles, a loudspeaker in a room, and also the interaction between an absorbing sample and a reverberant sound field

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    Get PDF
    An optical flow gradient algorithm was applied to spontaneously forming net- works of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling pat- terns. We begin by briefly reviewing the mathematics of the optical flow algorithm, and then describe how to solve for the displacement vectors and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the algorithm for capturing different types of spatiotemporal calcium activity. We discuss the imaging requirements, parameter selection and threshold selection for reliable measurements, and offer perspectives on uses of the vector data.Comment: 23 pages, 5 figures. Peer reviewed accepted version in press in Annals of Biomedical Engineerin

    Uncertain Flow Visualization using LIC

    Get PDF
    In this paper we look at the Line Integral Convolution method for flow visualization and ways in which this can be applied to the visualization of two dimensional, steady flow fields in the presence of uncertainty. To achieve this, we start by studying the method and reviewing the history of modifications other authors have made to it in order to improve its efficiency or capabilities, and using these as a base for the visualization of uncertain flow fields. Finally, we apply our methodology to a case study from the field of oceanography
    • 

    corecore