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Abstract

Flow fields produced by physically based simulations are subsets of multivariate spatio-

temporal data, and have been in interest of many researchers for visualization, since the

data complexity makes it difficult to extract representative views for the interpretation

of fluid behavior. In this thesis, we utilize Information Theory to find entropy maps

for vector flow fields, and use entropy maps to aid visualization and analysis of the

flow fields. Our major contribution is to use Principal Component Analyses (PCA) to

find a projection that has the maximal directional variation in polar coordinates for each

sampling window in order to generate histograms according to the projected 3D vector

field, producing results with fewer artifacts than the traditional methods.

Entropy guided visualization of different data sets are presented to evaluate pro-

posed method for the generation of entropy maps. High entropy regions and coherent

directional components of the flow fields are visible without cluttering to reveal fluid be-

havior in rendered images. In addition to using data sets those are available for research

purposes, we have developed a fluid simulation framework using Smoothed Particle

Hydrodynamics (SPH) to produce flow fields. SPH is a widely used method for fluid

simulations, and used to generate data sets that are difficult to interpret with direct vi-

sualization techniques. A moderate improvement for the performance and stability of

SPH implementations is also proposed with the use of fractional derivatives, which are

known to be useful for approximating particle behavior immersed in fluids.
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Görselleştirme

Özet

Fizik tabanlı simülasyonlar ile üretilen akış alanları, çok-değişkenli uzam-zamansal ver-

ilerin alt kümesi olup, bu verilerden sıvı davranışlarını yorumlamayı sağlayan görsellerin

çıkarılması veri karmaşıklığından dolayı zordur. Bu tez içerisinde, vektör akış alanlarıın

görselleştirme ve analizine yardımcı olmak üzere, Bilgi Kuramı’ndan faydalanılarak en-

tropi haritaları çıkarılmaktadır. Ana katkı olarak, her örneklem penceresi için Temel

Bileşen Analizi ile bulunan, polar koordinat düzleminde en yüksek yönsel varyasyonu

veren projeksiyon kullanılarak yansıtılmış 3 boyutlu vektör alanlarının histogramları

hesaplanmış ve geleneksel metotlardan daha az hatayla sonuçlar elde edilmiştir.

Entropi haritaları üretilmesi için önerilen metodun değerlendirilmesi için, entropi

rehberliğinde farklı veri setlerinin görselleştirilmesi sunulmuştur. Oluşturulan imgelerde

yüksek entropili alanlar ve uyumlu yönsel bileşenler karışıklığa yol açmadan görünür

haldedir. Araştırma amaçlı hazır veri setlerine ek olarak, geliştirilen Yumuşatılmış Parça-

cık Hidrodinamiği (YPH) simülasyon altyapısı ile üretilmiş akış alanları da kullanılmıştır.

YPH akışkan simülasyonları için yaygın olarak kullanılan bir metot olup, doğrudan

görselleştirme teknikleri ile yorumlanması zor veri setleri oluşturmaktadır. Sıvı içerisinde

batmakta olan parçacık davranışına yakınsama hesabında faydalı olduğu bilinen kesirli

türevler kullanılarak, YBH uygulamasının performans ve kararlığını artıran iyileştirme

de sunulmaktadır.
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1 INTRODUCTION

There are many applications that produce multivariate spati-temporal data sets using

physically based simulations, and those data sets share certain characteristics. It’s a

challenging problem to visualize varying large data sets having vector attributes defined

on a grid covering 3D domain in order to reveal the underlying behavior. In this work,

we experiment on every stage beginning from the simulation to the visualization, and we

introduce improvements on certain tasks until proposing a novel method for histogram

generation to calculate entropy and aid visualization.

1.1 Motivation

Time-varying multivariate spatio-temporal data sets are produced by physically based

simulations of many natural phenomenon, however fluid simulations producing flow

fields are the most common ones that are frequently used for practical applications.

From weather forecasts to water flow analysis in turbines of power plants, many simula-

tions are performed at several scales producing flow fields at different complexities and

characteristics in daily life. Analyses of those large data sets is difficult without assist-

ing visualization techniques, and revealing the fluid behavior under flow field is difficult

with simple visualization methods.

Information Theory is a promising field of research, already applied to many areas

in Computer Graphics including scientific visualization for many years. However, there

are still many problems unexplored in the field, due to the variety of spatio-temporal

multivariate data characteristics, and the broad perspective of Information Theoretical

approaches bringing many opportunities to evaluate the information content in several

ways.
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1.2 Problem Statement

In this thesis, a fluid simulator using Smoothed Particle Hydrodynamics is developed in

order to experiment analysis and visualization techniques of flow fields, while fractional

derivatives are also explored for the possibility of enhancing simulation performance and

stability. Ultimate goal of this thesis is finding methods and techniques to assist analysis

and visualization of multivariate data sets using Information Theoretical approaches.

Our main contribution is;

• The utilization of PCA to generate histograms of 3D vector fields by polar coor-

dinate transformation.

We also accomplished to have additional contributions during our work including;

• Proposing a histogram generation method for 3D vector fields taking magnitudes

and directions into account.

• Introducing vSKL distance for generating representational images of 3D polygo-

nal meshes[50] in collaboration with Ekrem Serin,

• The development of an SPH framework utilizing fractional derivatives[38] in col-

laboration with Oktar Ozgen,

1.3 Outline

Previous work related to multivariate spatio-temporal data visualization is reviewed in

Chapter 2. Methods for the visualization of flow fields are mentioned as well as Infor-

mation Theory related approaches.

Preliminaries for Physically Based Simulation, and Information Theory are briefly

summarized in Chapter 3.

In chapter 4, Smoothed Particle Hydrodynamics (SPH) is introduced for generating

flow fields using physically based simulations. Standard SPH model is defined with
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the governing equations, and our model based on fractional derivatives is explained.

Fractional Derivatives are used for particle motion in viscous fluids. Fractional SPH

is compared with standard SPH in terms of validity, performance and stability. The

necessity of using special visualization techniques for flow rendering is discussed at the

end.

Visualization methods existing in literature for flow fields are experimented using our

simulation results as well as publicly available data sets for research purposes in Chapter

5. We introduce Information Theory to generate representative images for 3D polygonal

meshes while preserving salient features, and propose a new method for calculating

entropy to aid visualization of flow fields.

In Chapter 6, our contributions are revisited and summarized for a conclusion.
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2 PREVIOUS WORK

In this chapter, previous work on multivariate spatio-temporal data visualization is re-

viewed as well as relevant approaches for flow visualization and Information Theory

related scientific visualization methods. In order to put the relevant work together and

have a structural organization, we group the approaches according to their main area of

interest. In each category, reviewed publications are in chronological order.

Topology Based

Flow Visualization
Scientific Visualization

Non-Information

Theoretic or General

Approaches

Pobitzer et al. [40],

McLoughlin et al. [30].

Kehrer et al. [24],

Burger et al. [6],

Tong et al. [58].

Information Theoretic

Approaches

Tao et al. [55],

Ma et al. [28],

Chen et al. [8],

Xu et al. [65],

Marchesin et al. [29].

Sbert et al. [47],

Wang et al. [64],

Chen et al. [9],

Ruiz et al. [46],

Guoqing et al. [16],

Bramon et al. [5],

Tao et al. [56],

Chaudhuri et al. [7].

Table 2.1: Table of reviewed previous work is given, and categorized by the use of
Information Theory.

2.1 Non-Information Theoretic or General Approaches

for Multivariate Data Visualization

General approaches for multivariate data visualization methods that are not involving

Information Theory are briefly reviewed. Flow fields are a subset of multivariate time-
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varying data, and most the techniques are referred in survey papers for topology based

visualization. Rest of the work dealing with multivariate data visualization without in-

volving Information Theory are reviewed as scientific visualization techniques.

2.1.1 Topology Based Flow Visualization

A state of art report in topology based unsteady flow visualization is published by Pob-

itzer et al. [40]. In this report, topology based and topology inspired visualization meth-

ods for unsteady flow fields are grouped as Lagrangian methods, space-time domain

approaches, local methods, stochastic and multifield approaches. The goal of classical

vector field topology is defined as segmenting the flow domain into regions where the

trajectories show the same behavior for steady flows, since flow behavior can be deter-

mined at an arbitrary instance of time. Extending this approach, and keeping track of

topology in time applying classical vector field topology for each time frame is classified

under the category named tracking of topology. The shortcoming of approaches in this

category is given as the difficulty of finding nearly stable velocity fields for unsteady flow

fields. Feature extraction methods that use trajectories of particles in fluid are defined

as Lagrangian based methods. The finite-time Lyapunov exponent feature detectors are

in this category, which are measuring the stretching of an infinitesimal neighborhood

along a finite segment of flow trajectory such as separation and repulsion boundaries.

Streamlines and pathlines are categorized in space-time domain approaches, taking time

as another dimension and applying steady case for each time frame. Also the feature

flow fields, which are capturing topological information in 4D space-time domain are

in this category. Methods that are using only point-wise information are categorized as

local methods such as extracting edges or ridges of images. Stochastic and multifield

approaches are looking at multiple features or multiple definition of same feature to get

an understanding of the underlying field. Interactive visual analysis and fuzzy feature

detectors are under this category. Note that those categories specified by Pobitzer et al

[40]. are not mutually exclusive.
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McLoughlin et al. [30] published a survey on integration based geometric flow

visualization techniques to review and classify geometric flow visualization literature.

They classify vector field visualization approaches into four categories as direct, dense

texture-based, geometric, and feature based approaches. Then they focus on Integration-

based, geometric flow visualization and review them under a classification based on

dimensions such as integral curve objects in 2D, surface-based integral objects, and vol-

ume integral objects. So that their classification allow streamlines and their variations

like streamsurfaces to be named according to domain and dimension of associated ge-

ometries, and fall into different categories.

2.1.2 Scientific Visualization

In a recent survey by Kehrer et al. [24], multivariate spatio-temporal data evaluated as

multifaceted in terms of having many data models and sources from different scenarios.

Thus many techniques for multifaceted data is categorized according to data model as

well as the analysis approach from visual mapping to computational analysis.

Burger et al. [6] categorizes visualization techniques for multivariate scientific data,

according to the specific states at the visualization pipeline, and separates data type as

scalars, vectors, and tensors. Processing, filtering and visualization mapping is catego-

rized as one visualization pipeline stage, while rendering and image stages are consid-

ered separately.

Salient Time-steps

Tong et al. [58] proposes an approach by minimizing the information loss for select-

ing arbitrary number of time frames from time-varying data sets. They apply dynamic

programming, and define dissimilarity matrix before selecting salient time steps. Al-

though they claim to minimize the information loss, this approach is not classified as an

Information Theory based approach.

6



2.2 Information Theoretic Approaches for Multivariate

Data Visualization

Wang et al. [61] presents a survey on information and knowledge assisted visualiza-

tion, and creates a taxonomy by grouping approaches in categories named information

assisted visualization, knowledge assisted visualization, intelligent visualization and vi-

sualization interface. Under information assisted visualization, subcategories are visual-

ization enabled by statistical information, geometric information, topological informa-

tion and semantic information. After briefly introducing approaches in each category,

concludes that the future of visualization lies in development of information and knowl-

edge assisted solutions.

2.2.1 Information Theory Assisted Topology Based Flow Visualiza-

tion

Tao et al. [55] performs Information Theory guided streamline selection, and addi-

tionally do best viewpoint selection in a similar manner. They propose solutions to

streamline clustering and viewpoint partitioning as well.

Ma et al. [28] present an importance driven and a view-dependent streamline selec-

tion methods using Information Theory considering amount of information shared by

3D streamline and its 2D projection. A large number of seeds are used to generate pool

of streamlines, then their streamline selection methods eliminate excessive amount of

streamlines by using view-dependent or view-independent importance measures to avoid

cluttering. Coherent update of selected streamlines is also maintained while changing

the viewpoint. Their shortcomings are the need of generating many streamlines than the

flow-guided streamline generation methods, and selecting relatively more stream-lines

in comparison with the feature driven approaches. Also their entropy measure is not

sensitive to small-scale features.

In article named illustrative framework for 3D vector fields, Chen et al. [8] intro-
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duces streamribbons or streamtapes, in which twist and width are determined according

to local flow torsion. They also apply entropy based seeding, and perform streamline

clustering with k-means algorithm before generating streamtapes for illustrative render-

ing. They follow the same approach with Xu et al. [65] for histogram generation and

entropy calculation. While clustering they don’t take viewpoint into consideration, and

they experimented only with steady flows.

Xu et al. [65] utilizes Information Theory for streamline placement to visualize 2D

and 3D flow data. An entropy field generated to locate seeds and generate streamlines

in regions with high information content. They use spherical partitioning to discretize

3D vectors and generate histograms for entropy calculation only considering directional

components.

Marchesin et al. [29] proposes a method for view dependent streamline selection

using occupancy buffers to minimize occlusion and cluttering. Although they have fast

GPU implementation, their method is not interactive and considers single time frame for

steady vector flows.

2.2.2 Scientific Visualization

In course notes prepared by Sbert et al. [47], Information Theoretical methods and

their applications for computer graphics and visualization are summarized. Information-

theoretic measures such as Shannon entropy, Kullback-Leibler distance, Jensen-Shannon

inequality as well as divergence measures are reviewed. A framework for polygonal

models with viewpoint selection and mesh saliency is introduced. In addition, applica-

tions to global illumination, shape recognition and image processing in computer graph-

ics are exemplified. Methods utilizing Information Theory in Scientific Visualization

are briefly reviewed with a focus on volume visualization.

Wang et al. [62] reviews the use of Information Theory in scientific visualization.

Concepts of Information Theory are explained from entropy to distance measures and

mutual information. View selection for volumetric data, streamline seeding and selec-
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tion, designing transfer functions for multimodal data, selection of representative iso sur-

faces, multi-resolution volume visualization, and time-varying multivariate data analysis

are the application areas mentioned in Scientific Visualization as well as the applications

of Information Theory in Imaging and Graphics.

Wang et al. [63] proposes to utilize transfer entropy for analyzing causal connec-

tion between variables in time-varying multivariate data sets. They use information and

scientific visualization techniques to display information transfer, and define a new ap-

proach volumetric and particle data sets using time plot and circular graph. They also

define relative transfer entropy to generalize pair-wise transfer entropy to simultane-

ously handle multiple variables. Their limitation is being able to use transfer entropy

only on two scalar variables, and extending their approach to work on multiple variables

simultaneously should be further studied.

Chen et al. [9] presents an information theoretic view of visualization pipeline, and

evaluates usability of concepts in Information Theory for visualization. They conclude

that several aspects of Information Theory can be utilized for visualization.

Ruiz et al. [46] uses viewpoint information channel for illustrative rendering of

volumetric data sets. An information channel is constructed between the volumetric data

set and a set of viewpoints. An ambient occlusion value for each voxel is derived from

the information associated, and combined with assigned color for each viewpoint and

non-photorealistic effects, illustrative are obtained. Transfer function is also modulated

with voxel information for the transparency.

Wang et al. [64] presents a compression scheme for visualizing large-scale time-

varying data sets. They only perform scalar quantization, and consider scalar variables

of multivariate data sets.

Salient Time-steps

Guoqing et al. [16] presents an Information Theory assisted method to locate spatial

and temporal salient features for the visualization of large scale time varying data sets.
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They use Kullback-Leibler distance for measuring dissimilarity of different time steps,

and off-line marginal utility for surprising information at each newly added time step.

Spatial salient features are detected by entropy for scalar data sets.

Multimodal Data Sets

Multimodal visualization aims to combine different volumetric data sets into one. Bra-

mon et al. [5] present a framework for volume visualization that exploits Information

Theory to define a transfer function for multimodal data sets. First, they generate in-

formation maps between input data sets and compute fused colors. Then, they calculate

informativeness using two different information measures, global informational diver-

gence and viewpoint informational divergence to compute opacity values by minimizing

informational divergence. This approach is limited with two data sets both of which have

one scalar variable.

Viewpoint Selection

Tao et al. [56] introduces structure aware viewpoint selection for volume visualization

by defining shape view descriptor and detail view descriptor. Shannon’s entropy is used

to define shape view descriptor to measure the distribution of the relative view angle be-

tween the gradient direction and viewing direction. The detail view descriptor measures

the visible detail in terms of variances between the shape volume and original volume.

Their limitation is the working only with volumetric data sets having scalar variables,

and they are not taking time-varying data into account to measure structure difference

between consecutive time steps.

Histogram Generation

Chaudhuri et al. [7] proposes a histogram generation approach for large scale data

sets. Their method is suitable for distributed computation, and they’re able to produce

multi-level histograms efficiently. They use geodesic grid instead of a sphere like [65],
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since their multi-resolution approach requires patches at different resolutions to have

parent-child relation, and they don’t take vector magnitudes into account. They propose

weighted vertex method, which is faster than sampling to increase data resolution be-

fore histogram generation. A histogram estimator proposed by Rudemo [45] is used for

determining number of bins for the histogram with a fixed bin size.
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3 PRELIMINARIES

In this chapter, preliminary definitions as well as simple derivations used in following

chapters are introduced.

3.1 Physically Based Simulation

Derivation of governing equations in Smoothed Particle Hydrodynamics for fluid simu-

lations are briefly given in the following section.

3.1.1 Navier-Stokes Equations and Smoothed Particle Hydrodynam-

ics

Governing equations that are supposed to hold for fluid simulations are incompressible

Navier-Stokes equations. Equation 3.1 is called momentum equation, while Equation

3.2 is called incompressibility condition.

∂~u

∂ t
+~u ·∇~u+ 1

ρ
∇p =~g+ν∇ ·∇~u (3.1)

∇ ·~u = 0 (3.2)

For the symbology,~u is used for the velocity of the fluid. ρ stands for density, and p

stands for pressure. ~g is used for body forces, including acceleration due to gravity. ν is

used to represent kinematic viscosity of the fluid.

There are two approaches for simulating fluids, using the Eulerian viewpoint gov-

erning equations are supposed to hold on regular grid points fixed on the domain. On
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the hand, the Lagrangian viewpoint treats fluid as a free mesh moving in the domain.

It’s possible to use particles to keep track of fluid in Lagrangian approaches. Smoothed

Particle Hydrodynamics (SPH) is a method that allow to represent the attributes of fluid

in the continuum using smoothing kernels which are used in Chapter 4. In order to use

smoothing kernels, governing equation for SPH is derived from conventional Navier-

Stokes equations in Equation 3.3 after diving Equation 3.3 by ρ .Kinematic viscosity

coefficient is also replaced by dynamic viscosity coefficient using ν = µ
ρ .

ρ

(

∂~u

∂ t
+~u ·∇~u

)

=−∇p+ρ~g+µ∇2~u (3.3)

By the definition of material derivative in Equation 3.4, the left hand side of Equation

3.3 can be replaced by substantial derivative.

~a =
D~u

Dt
=

∂~u

∂ t
+~u ·∇~u (3.4)

Since for the Lagrangian viewpoint, substantial derivative of the velocity field is

equal to the time derivative, there’s no need to have a convective term in particle systems.

ρ~a =−∇p+ρ~g+µ∇2~u (3.5)

From Equation 3.5, the terms −∇p for fpressure, µ∇2~up for fviscosity, ρ~g for fexternal

can be derived and used in governing equations for SPH. For the conservation of mass

Equation 3.6 is derived from Equation 3.2.

∂~u

∂ t
+∇ · (ρ~u) = 0 (3.6)

In a particle system, there are constant number of particles and each particle has a
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constant mass, so Equation 3.6 can be omitted.

3.2 Information Theory

In this section, Information Theoretical concepts that are used but not explained in Chap-

ter 5 are given briefly.

3.2.1 Entropy

The entropy [51] of a discrete random variable X with values in the set {x1,x2, ...xn} is

defined as

H(x) =−
n

∑
i=1

p(xi) logb p(xi) (3.7)

Even though the entropy is expressed as a function of the random variable X, it is actually

a function of the probability distribution p of the variable X over the number of distinct

symbols N. Entropy function has following two important properties [4];

1. For a given number of symbols N, the maximum entropy occurs for the distribu-

tion peq, where {p0 = p1 = ...= pN−1 = 1/N}.

2. Entropy is a concave function, which implies that the local maximum at peq is also

the global maximum. It also implies that as we move away from the equal distribution

peq, along a straight line in any direction, the value of entropy decreases (or remains the

same, but does not increase).

3.2.2 Viewpoint Entropy

The properties of the entropy function expressed above give us that the calculated view-

points in extracted regions will be the global maximum points where the object surface

is perceived equally.
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Viewpoint entropy [59] using Shannon Entropy is defined as

I(S, p) =−
N f

∑
i=0

Ai

At
logb

Ai

At
(3.8)

where Ai is the projected area of face i over the sphere, At is the total area of the

sphere and b is the base of logarithm which is taken as b = 2 in this case the result

is bits/symbols. In other terms the formula shown above can be translated into where At

can denote the number of pixels in the image, and Ai can represent the number of pixels

that belongs to each face of the object. A0 is a special case for the projected model or

scene onto the screen. For the closed scenes A0 is taken as 0 and for open scenes A0

is considered as the number of pixels that belong to the background color. With the

contribution of A0 for open scenes we can have a viewpoint entropy definition that is

consistent with Shannon’s entropy where ∑
n
i=1 pi = 1.

3.2.3 Viewpoint Kullback-Leibler

The relative entropy or Kullback–Leibler distance is defined between two probability

distributions p = {p(x)} and q = {q(x)}. In this metric, the distance is interpreted as the

divergence between true probability distribution p and target probability distribution q.

Kullback–Leibler distance is defined as,

KL(p | q) = ∑
x∈X

p(x) log
p(x)

q(x)
(3.9)

For the continuity the convention that 0 log0 = 0, p(x)log
p(x)

0 = ∞ if p(x) > 0, and

0log0
0 = 0 is used [48]. The minimum value 0 means that the true probability distribu-

tion is equal to the target probability distribution, where KL(p | q) ≥ 0. The viewpoint

Kullback–Leibler distance is defined by

KLv =
N f

∑
i=1

ai

at
logb

ai

at

Ai

At

(3.10)
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where ai is the projected area of polygon i, at = ∑
N f

i=1 ai. Ai is the actual area of

polygon i and At = ∑
N f

i=1 Ai is the total area of the 3D object. In order to select high

quality views KLv should be minimized.
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4 SMOOTHED PARTICLE
HYDRODYNAMICS

In order to generate flow fields, we implemented our own fluid dynamics solver using

Smoothed Particle Hydrodynamics (SPH). It’s mesh-less method suitable for large dis-

placements, and we’re able to produce chaotic flow fields at interactive frame rates.

SPH has a long history in physics, developed in 1977 by Gingold and Monaghan [15]

to model astrophysical phenomena, and extended to solve many problems in continuum

mechanics. There are many uses of particle systems in Computer Graphics, however

discrete formulation of continuous fields by particles was first introduced by Desburn

et al. [13] for simulating highly deformable bodies. Muller et al. [34] reached very

promising results in particle-based fluid simulation for interactive applications using the

SPH method. A very detailed study of SPH since its first emergence is presented by

Monaghan [33].

The method of Smoothed Particle Hydrodynamics (SPH) has become a popular

particle-based approach for fluid simulation because results incorporating complex in-

teractions (e.g., splashes, coupling, etc.) can be obtained with relatively modest compu-

tational costs [13, 34, 35, 2, 52]. Key to the quality of the results obtained is the deter-

mination of an appropriate number of particles achieving sufficient volumetric density.

While better results are, in principle, obtained with high concentrations of particles, the

computational penalty is significant.

In recent years, new variations to the standard SPH models have also emerged. So-

lenthaler [52] proposed the PCISPH method for reducing the computation time of stan-

dard SPH and increasing the incompressibility of the fluid by employing a prediction-

correction scheme based on particle pressures. Raveendran [44] introduced a hybrid

approach that uses a Poisson solver along with a local density correction step to increase
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the stability of SPH method in higher time steps. Solenthaler [53] proposed a two-scale

simulation by merging the results from low and high resolution simulations running si-

multaneously. Adaptive time steps are employed by Ihmsen and Adams [22, 1] in SPH

methods to increase the stability of the simulations. SPH applications based on parallel

computing are also proposed by various groups [22, 21, 17].

In our work led by Oktar Ozgen[38], we present a novel approach to increase the

performance and stability of SPH with the introduction of fractional derivatives [36]

[41] to the viscosity term. In this work, the goal is producing results similar to the

ones obtained with high-resolution SPH simulations. In order to compare the results

of the proposed method with regular SPH, we employ some of visualization techniques

in addition to a direct numerical comparison and a well known standard test in fluid

dynamics.

Figure 4.1: Example of a typical SPH simulation scenario. As demonstrated in several
evaluations, our fractional SPH model will improve the realism of the simulation in a
chosen resolution. The colors represent velocity magnitudes in a scale ranging from red
(high), to green (medium), and to blue (low).

4.1 Standard SPH

The Smoothed Particle Hydrodynamics (SPH) model we employ is based on the scheme

presented by Muller [34]. SPH is a Lagrangian model where the fluid is represented by
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a set of particles that carry field attributes. An arbitrary attribute on a given particle’s

position is computed via smoothing kernels that only consider nearby particles within

the core radius h. The smoothing of attributes is modeled with:

AS(r) = ∑
j

m j

A j

ρ j
W (r− rj,h), (4.1)

where m j is the mass, r j is the position and ρ j is the density of a particle j within the

core radius h of the smoothing kernel W (r− r j,h). A j is the field attribute quantity at r j.

At each timestep of the simulation, the density values of individual particles are

evaluated first:

ρi = ∑
j

m jW (|ri − rj|,h), (4.2)

then, the pressure is computed by the ideal gas state equation

p = k(ρ −ρ0), (4.3)

where k is a gas constant and ρ0 is the rest density. Once, the density and the pres-

sure fields are computed, the pressure and viscosity forces acting on particle pairs are

computed in a symmetric manner as proposed by Muller [34]:

f
pressure
i =−∑

j

m j

pi + p j

2ρ j
∇W (ri − r j,h), (4.4)

f
viscosity
i = µ ∑

j

m j

ẋ j − ẋi

ρ j
∇2W (ri − r j,h), (4.5)

where ∇W (ri − r j,h) is the gradient, ∇2W (ri − r j,h) is the Laplacian of the kernel,

µ is the viscosity constant, ẋi = vi and ẋ j = v j, are the velocity vectors of the particles i

and j, respectively.
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4.2 Fractional SPH

The subject of Fractional Calculus [36], or the mathematical analysis of differentiation

and integration to an arbitrary non-integer order, has recently attracted much interest es-

pecially in solid mechanics, rheology, electromagnetism, electrochemistry, and biology.

Fractional Calculus models, aside from their capability of modeling memory-intense

and delay systems, have been associated with the exact description of unsteady viscous

and viscoelastic phenomena. In [11, 27], definitive experimental evidence of fractional

history effects in the unsteady viscous motion of small particles in suspension is pre-

sented. This formulation is exact at low particle Reynolds numbers, but can be ex-

tended to include convective effects as illustrated in [39]. Furthermore, a rich literature

is available on the ability of non-integer derivatives to capture non-local behavior and

to interpolate between different dynamic regimes [36, 32, 41, 20, 19, 25], including the

fundamental modeling of viscoelastic behavior [42]and the unsteady drag for individual

particles moving through a viscous fluid [43].

Coimbra and Rangel [12] have showed that the Basset force is mathematically equiv-

alent to the half-derivative of the differential velocity between the particle and the far-

stream flow. These results indicate that the behavior of immersed particles can be well

represented with models based on fractional derivatives. The concept has been well

demonstrated by Ozgen et al. [37] on the problem of simulating cloth deformations with

underwater behavior.

Motivated by these fundamental results on the motion of the particles in unsteady

viscous fluids, we aim to increase the physical accuracy of simulating flow collisions

in low resolution simulations by utilizing a fractional derivative model. We thus pro-

pose a new SPH model with half-derivative viscosity terms to compensate the loss of

information in low resolution simulations.

As discussed in [38], to demonstrate the memory-laden characteristics of the fluid

body, we introduce the fractional viscosity term of order 1/2 to the motion of particles.

20



We achieve so by replacing the first time derivatives of positions by the half derivatives

of positions. As a result, the history-based viscosity is defined as:

f
viscosity
i = µ ∑

j

m j

D1/2x j −D1/2xi

ρ j
∇2W (ri − r j,h) (4.6)

where D1/2xi and D1/2x j are the half-derivatives of the positions of particles i and

j, respectively. Note that the viscosity force is now proportional to the difference of

the half-derivatives, achieving the memory-laden viscosity needed to define the motion

resulting from flow collisions.

The memory-laden viscosity is especially well-suited for fluid phenomena occurring

in intense flow collision regions. We recognize that most of the time, a fluid simula-

tion contains both flow collision regions and collision-free regions. Therefore, it is not

necessary to apply memory-laden viscosity to particles creating steady flows.

4.2.1 Computing the Half Derivative Terms

In Coimbra [10], a first-order accurate numerical solution to the history integral of Rie-

mann–Liouville differential operator is suggested. Following this solution, the 1/2 order

derivative of x can be expressed as:

D1/2xn =
h

6
√

π

n−1

∑
i=1

[

ẋi−1

(nh− (i−1)h)1/2

+
2(ẋi−1 + ẋi)

(nh− (i−1/2)h)1/2
+

ẋi

(nh− ih)1/2

]

+
0.15h√

π

[

ẋn−1

h1/2
+

2(ẋn−1 + ẋn)

(0.55h)1/2
+

ẋn

(0.1h)1/2

]

+
0.05h√

π

[

8
√

2

3

ẋn

(0.05h)1/2
− 4

3

ẋn

(0.1h)1/2

]

, (4.7)

where h is the timestep, i is the timestep index and n is the index of the most recent
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computed timestep. This formulation is also used in Ozgen [37].

In Coimbra [54], a more general and second-order accurate quadrature formula de-

rived using the product trapezoidal method is suggested for derivative orders q in the

0 < q < 1 range. This fractional-order differential operator reads

Dqxn =
h1−q

Γ(3−q)

n

∑
i=0

ai,nD1xi, (4.8)

ai,n =











(n−1)2−q −n1−q(n+q−2) if i = 0,

(n− i−1)2−q −2(n− i)2−q +(n− i+1)2−q if 0 < i < n,

1 if i = n,

where q is the derivative order and 0 < q < 1. n is the index of the most recently

computed timestep, ai,n is the weight of timestep index i at timestep n and D1xi = vi

is the velocity of a particle at timestep i. In comparison to the method employed by

Ozgen et al. [37], this formulation is relatively simpler and more accurate. In the pre-

sented simulations we have used this latter formulation with q = 0.5 to acquire the half

derivatives.

The fact that computing the half derivative of the position of a particle makes use

of all the past velocities of that particle seems to be a computational barrier at first.

However, as stated in Ozgen [37], an analysis on the evolution of the weights used for

the fractional derivative computation shows that the most recent states have much more

influence on the final result of the equation. Thus, we only consider ten last timesteps

when computing the half-derivative.

4.2.2 Comparison of SPH and FDSPH

We validate both our standard and Fractional SPH implementations with a standard test

known as Shear Driven Cavity Test in Fluid Dynamics [14]. In this test, flow is generated

by moving the top wall of a square box full of fluid while the other three walls are

stationary. The top wall of the box moves in the x direction with a constant speed,
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Figure 4.2: The figure shows the results of the Shear Driven Cavity Test: Low reso-
lution standard SPH is on the left, low resolution Fractional SPH is on the middle, and
high resolution standard SPH is on the right.

and the flow reaches a steady state after running the simulation for awhile.The visible

flow patterns and the time required to reach a steady state vary according to the Reynolds

Number, so we repeated the experiment with various viscosity parameters. We evaluated

the results by mapping the magnitude of the velocity vectors to colors and rendered the

velocity directions as vectors on top of the particles as shown in Figure 4.2.

All tests demonstrated that our fractional SPH model produced results closely match-

ing the results computed by a high-precision fluid solver. We compared our results

against the results generated by OpenFOAM, a grid-based solver widely employed by

the Computational Fluid Dynamics community [18]. One example of the obtained re-

sults are demonstrated in Figure 4.3. As it can be seen in the figure, standard SPH

and fractional SPH simulations with 40k particles follow the grid-based solution tightly,

showing that the viscosity behavior of both fluids are valid and that the use of fractional

derivatives in the viscosity formulation does not introduce any additional viscosity to the

standard formulation.

We have also evaluated our method by comparing low resolution regular SPH and

Fractional SPH simulations with a higher resolution regular SPH simulation. We have

measured velocities along a vertical axis of the simulation shown in Figure 4.4. The

errors introduced by using lower resolution regular SPH and Fractional SPH simulations
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Figure 4.3: Lid-driven cavity test comparing OpenFOAM’s grid-based Navier–Stokes
solution (black curve), standard SPH (blue curve), and fractional SPH (dashed red curve)
with 40k particles. The velocities along the vertical line x D 0:5 passing by the center
of the box are demonstrated at t D 5 s when the simulations are in steady state. The hor-
izontal axis in the graph represents the vertical coordinates along the line x D 0:5. The
similarity of the curves validate the viscosity behavior of the fractional SPH simulation
in a steady flow scenario.

are also presented in the same figure. The absolute values of the differences in the

velocities among line x = 0 are shown in the line chart on the bottom right for the

timestep t = 5.008. The errors are measured and compared for each time step during

the experiment in order to determine a comparison over several frames of simulation.

In the end, Fractional SPH produced more precise results 59% of the time. A video is

also provided showing the evolution of the errors. It can be seen that the inclusion of the

fractional derivative terms does not influence the trajectories in this simulation and still

the overall error showed to be favorable.

In terms of performance, our method runs real-time for simulations with up to 5k

particles and runs with 4 FPS for simulations with 20k particles on a MD Athlon II X4

3.2 GHz computer. The use of half derivatives in the SPH implementation does not affect
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Figure 4.4: Lid-driven cavity test comparing the solution of a high resolution regular
SPH simulation with low resolution regular SPH and Fractional SPH simulations.

the complexity or the running time of the algorithm. In Equation 4.8, the weights are

always calculated based on the terms q and n− i. The value of q must always be equal to

0.5 to acquire the half derivatives. Given that we only use the three most recent terms of

the history terms, n− i terms always stay the same for all the three weights, except for

the first three timesteps. Because Equation 4.8 makes use of the past particle velocities,

we require some extra memory space to store the previous velocities. Therefore the

weights can be precomputed and used in combination with pre-recorded velocities.

Fractional SPH also proves itself useful by allowing larger timesteps in the integra-

tion. It is observed that Fractional SPH simulations are more stable when using large

timesteps especially for viscous fluids. In Figure 4.5, regular SPH and Fractional SPH

simulations are compared for different sizes of timesteps. In Figure 4.5, Fractional SPH

allows to use x2 larger timesteps, while regular SPH becomes unstable after a small

increase. We also noticed that our method performed better in the early stages of the

shear-driven cavity test, when the flows were not stabilized yet. This was observed in

25



Figure 4.5: Lid-driven cavity test for comparing the stability of regular SPH and Frac-
tional SPH simulations.

the 3D version of shear-driven cavity test and some results are presented in Figure 4.6.

4.2.3 Discussion

We have introduced a new methodology for fluid simulation, which is based on the use

of Fractional Calculus with Smoothed Particle Hydrodynamics. We have also demon-

strated in several experiments that our method can better simulate observed fluid be-

havior emerging from flow collisions. The fact that the memory-laden viscosity terms

modeled by fractional derivatives are able to increase the accuracy of low resolution

SPH simulations is promising as a technique to improve the quality and computational

efficiency of SPH.

Figure 4.6: The figure shows the average velocities and the velocity directions of parti-
cles in the context of Shear Driven Cavity Test. The figures correspond to 21k standard
SPH, 6k Fractional SPH and 6k standard SPH, respectively. Colors red, green and blue
represent high, medium and low velocities, respectively. The color distribution and re-
gional velocity directions of Fractional SPH simulation are similar to the ones of the
high resolution reference simulation.
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Flow fields we have generated also reveal that standard rendering techniques are

inadequate to represent fluid behavior for unsteady flows in 3D. It’s not possible to rec-

ognize colliding streams under the fluid surface due to occlusion, and it’s very difficult

to interpret direction and the magnitude of the flow even for the visible streams on the

surface. For the analysis of flow fields produced by physical simulations, automatically

created representative images would be useful to aid recognition.
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5 VISUALIZATION & ANALYSIS OF
MULTIVARIATE SPATIO-TEMPORAL

DATA

The simulation results we have produced in Chapter 4 can be classified as multivari-

ate spatio-temporal data. We used SPH to model fluid behavior in a container which

is limiting our spatial domain, and each particle has coordinates in 2D or 3D vector

space depending on the scenario. Whether the results are stored in a particle basis or

interpolated to the equidistant grid cells, they all have a spatial component. The results

are updated for each time step using a semi-implicit time integration solver. For each

particle or a grid cell, a scalar is stored to define the pressure, and a vector is stored to

define the velocity so that the simulation results are multivariate.

Although the flow fields are only a subset of multivariate spatio-temporal data, ma-

jority of the data studied in this category are provided from the simulations that are

producing flow fields in practice. A detailed overview of methods for integration based

geometric flow visualization are presented by McLoughlin et al. in their paper[30]. Po-

bitzer et al. [40] published a state of art report on topology based flow visualization for

unsteady flow. Reader should refer to Chapter 2 for previous work and a detailed litera-

ture review on flow visualization including integration and topology based visualization

as well as information theory assisted methods.

In this chapter, we briefly overview direct and integration based visualization meth-

ods for flow fields with applications to sample data obtained from our SPH simulations

as well as Hurricane Isabel data produced by Weather Research and Forecast (WRF)

model, courtesy of NCAR and the U.S. National Science Foundation (NSF) [3]. Next,

there will be a brief introduction to the use of Information Theory in visualization, and

we go over our viewpoint selection method considering salient features on 3D polygonal
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meshes as a case study. In an analogous manner, we mention the importance of locating

salient features in multivariate spatio-temporal data in order to determine transfer func-

tions for rendering, choosing viewpoints or apply hybrid methods involving direct and

integration based flow visualization methods. In addition to the direct approaches for

detecting salient features, we employ Entropy function used in Information Theory with

a histogram based method similar to Xu et al. [65]. Then we improve their histogram

binning method with a modification to take vector magnitudes into account in addition to

the directions for diversity. At last but not least, we propose a new histogram generation

method using singular value decomposition and principal components.

5.1 Visualizing Flow Fields

There are several methods in literature proposed for the visualization of flow fields as

already reviewed in Chapter 2. Depending on the characteristics of the flow fields, sim-

plistic direct visualization techniques would sometimes suffice, or even the most sophis-

ticated methods might be inadequate to make a good interpretation of fluid behavior in

some cases. Fluids are grouped into two categories depending on their behavior in time,

and unsteady flows are much difficult to interpret by a visual representation in compari-

son to steady flows. Dimensionality is another important issue, and visualization of 3D

flow fields are more challenging then 2D flow fields due to the occlusion. Size and com-

plexity of the data also matters, as well as the number of vector and scalar components.

In this section, generic methods for flow visualization are applied on SPH simulation

results and Hurricane Isabel data sets to discuss all those aspects before proposing our

approach for visualization.

5.1.1 Direct Methods for Visualization

Direct methods aim to present data as it is, without any modification to existing data or

generation of new attributes. Those methods are usually applied in a simplistic man-

ner, and easy to implement. They are also computationally inexpensive requiring less

29



Figure 5.1: Direct visualization of 2D Lid-driven cavity test using color codes for
velocity magnitude, and directional components separately.

resources. Although they might be sufficient for simple coherent flow fields in 2D, it’s

difficult have a good interpretation of large data sets.

Color Coding

Figure 5.2: Direct visualization of 3D fluid flow generated by SPH simulations, colors
are representing velocity magnitudes.

In color coding, scalar values are mapped to a color scale, and every pixels color is

linearly interpolated based on the corresponding scalar value on the grid. For the vector

fields, usually vector magnitudes are visualized and the direction information is omitted,

or each component rendered separately. It’s also possible to map each directional com-

ponent of the vectors to a color value in RGB color space after scaling and shifting, so

the visualization might give an insight for the directions and relative magnitudes from

the apparent colors. Several examples of color coding of flow fields are presented in

Figures 5.1, 5.2, and 5.3.
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Figure 5.3: A 2D slice from the simulation data of Hurricane Isabel, rendered using
color coding representing velocity magnitudes.

Arrow Glyph

Arrow glyph methods are able to represent directions as well as magnitudes. They’re

widely used in the community for simple flow fields having small date sets due to high

comprehensibility and ease of implementation. However, arrow glyph technique is vul-

nerable to cluttering and occlusion for large datasets and unsteady flow fields. As it can

be seen in Figure 5.4 and 5.5, use of arrow glyph produces more obscure results for flow

fields in 3D, then the ones in 2D.

In this method, vector magnitudes can also be color coded on the glyph, and nor-

malized unit vectors can be used instead of scaling to represent the relative size of the

real vector. Glyph geometry and density can also be adjusted in order to produce less

cluttered and more readable visualizations.
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Figure 5.4: Arrow glyph visualization of a 2D slice from the simulation data of Hurri-
cane Isabel on the left, and the use of arrow glyph technique in 3D for the whole dataset.

Figure 5.5: Visualization of 3D fluid flow generated by SPH simulations using arrow
glyph method.

Simple Future Selection

There are several direct rendering methods after filtering data with simple methods such

as applying thresholds or grouping data on selected intervals to represent features based
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on values. Such techniques include generating iso-lines and iso-surfaces based on vector

magnitudes or intervals of angles. These techniques are not suitable for unsteady flows,

and iso-surfaces are vulnerable to occlusions in 3D.

Figure 5.6: A 2D slice from the simulation data of Hurricane Isabel used to generate
iso-lines representing vector magnitudes is shown on the left, and iso-surfaces represent-
ing the same dataset are given on the right.

Transfer functions used in volume rendering also serves as a filter to eliminate or

emphasize some of the features. A scalar value can be mapped the transparency value,

and depending on the ranges of values some parts of the data contribute more on the

final rendering, while the rest might be completely hidden.

5.1.2 Integration Based Geometry Extraction Methods

There are many methods in literature for integration based geometry extraction, and the

majority of those methods are originated from streamlines. Streamlines and other deriva-

tions are commonly used by Computational Fluid Dyanmics community, and many com-

mercial and open source tools are already available.

Streamlines

Streamlines are the curves those are tangents of the vectors in the flow field. Pathlines

are the particle trajectories a mesh-less particle takes in the flow field in time, and streak-

lines are the curves connecting the particles which are seeded from the same location.

All those methods require choosing spatial locations to start integration, and defining
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Figure 5.7: Hurricane Isabel data volume rendered in 3D, a linear transfer function
scaled to vector magnitudes is used for transparency and color.

intervals in spatial or time domain. In Figures 5.8 and 5.9, SPH and Hurricane Isabel

data sets are used to illustrate streamlines.

Figure 5.8: Streamline generation for Hurricane Isabel data set along two different lines
used for seeding.

As it can be seen in Figures 5.8 and 5.9, geometry of the generated streamlines are

heavily depending on the locations to start integration. It’s shown that different locations

to seed the streamlines on the same data set cause having streamlines with different
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geometry and characteristics. Integration for the streamlines can be performed both on

forward and backward directions, and it’s also important to define the maximum length

of the interval to continue integration.

Figure 5.9: Streamline generation for SPH data set along two different lines used for
seeding.

Streamlines are also vulnerable to occlusion and cluttering based the seeding loca-

tions and integration intervals. For an unexplored flow field, it’s big challenge to find

the right location for seeding streamlines without causing occlusion or cluttering.

5.2 Use of Information Theory in Visualization

Information Theory is able to aid visualization in Computer Graphics by defining mea-

sures to quantify the information content of the data itself, and the amount of information

passed through the visualization pipeline after processing with or without losses. For the

flow fields, we use an Information Theory based approach to determine the information

content of data on a spatial domain and assist visualization. Existing approaches that are

using Information Theory for the visualization of the flow fields are already reviewed in

Chapter 2.
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Our motivation for involving Information Theory in the evaluation of 3D vector data

is emerged from the success of utilizing Information Theory in our approach used to

select viewpoints for 3D polygonal meshes [50]. In this approach, we measure the

information content before and after the visualization to find optimal viewpoints while

still keeping the salient locations visible.

5.2.1 Case Study and Inspiration: Viewpoint Selection for 3D Polyg-

onal Meshes

Information Theory helps us to quantify the two projected information of a 3D model,

the faces of the model and its salient features. In our work [50] Viewpoint Kullback-

Leibler distance introduced by Sbert et al. [48] is employed and Viewpoint Saliency

Kullback-Leibler (vSKL) is presented as a novel view descriptor.

VKL distance is an informational theoretical measure which is interpreted as the

difference between the normalized distribution of projected areas and the ideal projec-

tion. The ideal projection is given by the normalized distribution of the actual area of

the triangles. Viewpoint Kullback–Leibler distance measure depends on the concept

of Viewpoint Entropy introduced by Vazquez et al. [59] which is used to determine the

amount of information from a viewpoint using the projected faces of the model.

We introduce a novel view descriptor, vSKL distance, based on the idea by Lee et

al. [26]. It is an information of regional importance which is considered as the salient

feature of the model or the graphics meshes. We map the good or best definition as a

camera position where the perception of two defined information is maximized. Our

contributions are introduction of a novel view descriptor called vSKL distance and in-

tegrating N-Best View Selection with vSKL distance descriptor in view selection for

generating “good” representational images.

36



Mesh Saliency

Mesh Saliency is the concept of regional importance, which can be specified as distinc-

tion in pixel colors, or luminance or geometric attributes. In our approach we borrow

the techniques [23], and [26] to calculate curvature based mesh saliency. Curvature is

one of the important features of a vertex which can point-out its distinctiveness among

the other vertices. We use the Gaussian filtered mean curvatures of vertices proposed

by [26] using Taubin’s procedure to calculate mean curvatures [57]. Meyer et al. [31]

also provide a technique to calculate surface mean curvatures. Let N(v,σ) be the set

of points within a distance σ for vertex v therefore N(v,σ) = {x|||x− v|| < σ ,x is a

meshpoint}, and let S(v) denote the surface mean curvature, hence Gaussian-weighted

average of the surface mean curvature G(S(v),σ) can be defined as;

G(S(v),σ) =
∑x∈N(v,2σ) S(x)exp(− ||x−v||2

2σ2 )

∑x∈N(v,2σ) exp(− ||x−v||2
2σ2 )

(5.1)

In equation(5.1), a cut-off distance for the Gaussian filter is assumed to be 2σ . The

saliency for vertex v is the absolute difference between coarse and fine scales, where the

coarse scale standard deviation is twice of the fine scale. Then the saliency for vertex v

for multiple scales is,

Mi(v) = |G(S(v),σi)−G(S(v),2σi)| (5.2)

where σi is the standard deviation of the Gaussian filter at scale i. We used five scales

that are mentioned in [26] with this work. After the calculation of curvature saliency for

five different scales we linearly added those feature maps after the normalization method

proposed by Itti et al. [23] hence denote M(v). The calculated feature map for a hand

model is shown in Figure 5.10, where the hot colors show the high salient points.
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(a) (b)

Figure 5.10: Mesh saliency for a hand model shown in (a). HSV color model shown
in (b) is used to mark the saliency of the vertices. Hot colors(red) Hue=0 shows the
highest saliency, and Hue=240 for the lowest. Saturation and Value are kept fixed in
distribution.[50]

Viewpoint Saliency Kullback-Leibler

Viewpoint Saliency Kullback–Leibler distance is defined between true probability dis-

tribution p = {p(x)} and target probability distribution q = {q(x)}. Using the saliency

distribution, vSKL distance is denoted by

KLvs =
N f

∑
i=1

aisi

st
logb

aisi

st

AiSi

St

(5.3)

where si is the projected saliency amount of polygon i, st = ∑
N f

i=1 aisi. AiSi is the

actual saliency amount of polygon i and St = ∑
N f

i=1 AiSi is the total saliency of the 3D

object. In order to select high quality views using the saliency distribution KLvs should

be minimized. Because the minimization of vSKL distance is based on the visibility

and captures the maximum number of polygons with the maximal uniformity of the

projected areas as well as uniformity of the projected saliency.

The greedy best view selection technique [49] is extended to use newly introduced

vSKL distance as view descriptor. In Figure 5.11, we compare the output of viewpoints

for Stanford Bunny model are compared. The computed five viewpoints on top row are

from the approach presented in [48] and [60], and the bottom row presents the images

from our vSKL. This model has total 69743 faces. Figure 5.11.(a)-(e) cover the 68152
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faces of the model, Figure 5.11.(f)-(j) can cover 68251 faces, and our method covers

68149 faces of the model. We can observe that the face coverage perturbation is min-

imal in vSKL distance method. In our algorithm saliency information is also conveyed

along with the face coverage due to the definition of probability mass function in vSKL

distance.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.11: Stanford Bunny is displayed with five viewpoints using the approach
from [48] and [60] compared to greedy integrated vSKL method.

5.2.2 Entropy Guided Visualization of Multivariate Spatio-Temporal

Data

Information Theory is a very powerful tool to quantify information content of the data,

and in addition to assisting viewpoint selection by providing distance measures, we no-

ticed that it’s also used for flow visualization as well as determining salient features in

3D data fields. Although the use of entropy to highlight important features of volumet-

ric vector fields is existing in the area of scientific visualization[62, 65], our approach

differs in evaluating vector directions and magnitudes while creating histograms to cal-

culate entropy. Revisiting Shannon’s Entropy [59] in Equation 5.4;
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H(x) =−
n

∑
i=1

p(xi) logb p(xi) (5.4)

Probability distribution function p(xi) is needed to be defined as the first step in

order to calculate an entropy field. Characteristics of the entropy field strongly depend

on underlying definition of probability distribution function. Having a variable x with a

set of possible values from x1 to xn, let C(xi) give count of values xi encountered in the

space. Probability of having value xi is defined as;

p(xi) =
C(xi)

∑
n
j=1C(x j)

(5.5)

It’s trivial to calculate p(x) when the variable is a scalar integer, and there are enough

samples in the subspace. For each bucket xi, we simply count how many samples are

falling inside the same bucket having equal integer values. When a variable is a float-

ing point number, a threshold needed to be defined in order to place the samples into

the same bucket within the threshold. Treating each distinct floating number separately

would cause the sample space to be too sparse. So the general approach is placing the

buckets uniformly, such as simply casting the floating point numbers to integer values.

As a convention, bin is the synonym of bucket and those words are used interchange-

ably while counting number of samples into bins to determine probability distribution is

referred as histogram generation.

For the vector fields, common approaches are converting 3 dimensional coordinates

to angle/magnitude pairs, they ignore the magnitudes or calculating entropy fields sep-

arately to join them later with a linear interpolation based on user defined weights. Our

method differs from the others in terms of histogram generation, and we propose two

different approaches to utilize angles and magnitudes together before and after entropy

calculation.
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Histogram Generation for 3D Vector Fields

The general approach is to calculate entropy for each voxel within a local neighborhood

determined by window size. For the boundary voxels, mirroring used to avoid problems

due to not having enough samples. Let va to vn represents a set of vectors representing

buckets for possible vectors, number of vectors in each bucket va for the neighborhood

W can be counted in Equation 5.6.

C(va) = ∑
i, j,k

[Wi jk
∼= v] (5.6)

Then C(v) or so called histogram function can be used in calculating probability

distribution of the vectors in 3D space in Equation 5.7.

p(va) =
C(va)

∑
n
b=1C(vb)

(5.7)

Equation 5.4 for entropy calculation remains intact, only probability distribution

function p(v) is replaced in Equation 5.8.

H(x) =−
n

∑
i=1

p(xi) logb p(xi) (5.8)

For the calculation of entropy, it’s important to choose right set and amount of repre-

sentative vectors va to vn, and how the congruence relation ∼= is defined to assign vectors

in the sample space to the buckets of the histogram represented by va to vn. Xu et al. [65]

partition the range of vectors represented by polar angle Θ, 0<Θ<= 2π for 2D vectors.

For 3D vectors, they decompose unit sphere into 360 patches of equal area to use cones

that connect sphere center and patches to quantize the vectors. This approach is ignoring

the magnitudes and has several other drawbacks. Wang et al. [62] mention the concept
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of multidimensional histograms, and offers calculating entropy fields separately to join

them later.

Figure 5.12: Sample vector field with varying directions and same magnitude is given
on the left, and vector fields with the same directional component, but varying magni-
tudes are given on the middle and the right.

As it can be seen in Figure 5.12, ignoring vector magnitudes would cause all three

distributions to have the same entropy. In case of calculating entropy of vector mag-

nitudes separately, the distributions on the middle and on the right will have the same

distribution since both have the variation in terms of the magnitudes. Our first approach

is to rearrange the buckets so that we can group the vectors into the same bucket accord-

ing to their directions and magnitudes. Instead of dividing the unit sphere into patches,

we put equidistant points on the unit sphere. Number of points are empirically set, and

each vector assigned to the closest point on the sphere like the other approaches. Instead

of using one set of points on the unit sphere, we scale the sphere according to the global

distribution of magnitudes and use the points on two spheres to represent the buckets in

addition to a point on the center as in shown in Figure 5.13.

Comparison of our first method with the existing approach is given in Figure 5.14.

As it can be seen from the figure, our approach can eliminate some of the high entropy

fields appearing on the regular method due to high directional variation at low magnitude
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Figure 5.13: Blue vector is assigned to a point on the outer sphere, while red one is
assigned to a point on the inner sphere.

fields. This might be desired behavior in some cases, while some low magnitude fields

with high directional variation might be also canceled out. In order not to misinterpret

the data, radiuses of the inner and outer spheres should be chosen carefully according

to magnitude variation and focus of the analysis. In our first method, we empirically set

this parameter, as well the bucket and window sizes, similar to the existing methods in

the literature.

Figure 5.14: Entropy is calculated on Hurricane Isabel data using buckets of varying
magnitude is on the left. Angular entropy field calculated with the regular approach is
on the middle, and entropy field calculated from magnitudes is on the right.

Setting the window size depends on characteristics of data and desired level of detail.

Unless there’s too few samples falling inside the window, it’s convenient to set windows

size small in order to get as much spatial detail as possible, although high entropy fields

might be less recognizable. During our calculations for 3D vector fields, we were able

to cubic windows down to three samples per dimension. It’s possible to make a visual

comparison in Figure 5.15, and it can be seen that different window sizes would be
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beneficial for different applications.

Figure 5.15: Entropy is calculated on Hurricane Isabel data using different window
sizes. Each dimension of the cubic windows are 3,5,7,9 samples wide.

Another important aspect is setting the bucket size, therefore the number of his-

togram bins. Effects of varying bucket sizes can be seen in Figure 5.16. Note that the

number of thin lines originated from the center of the storm are changing according to

the bin size. Those separating lines are appearing on low entropy fields when most of

the samples are grouped into the same bucket, few samples falling onto border of one

bucket may fall into neighboring bucket for the newt sampling window with a slight

change of direction.

Figure 5.16: Entropy is calculated on Hurricane Isabel data using different histograms
with varying bin sizes. We have used spheres with 180, 360 and 720 patches from left
to right.

We propose another approach to generate histograms for 3D vectors using Principal

Component Analysis (PCA). PCA is mainly used for transforming a set of observations

into a set of linearly uncorrelated variables called principal components in a way that the

first principal component has the highest variance, and next principal components have

to be orthogonal to the preceding components while having the highest possible variance

44



in a decreasing order. Motivated from PCA, we use Singular Value Decomposition

(SVD) to find a new coordinate system for each window, in which the projection of 3D

vectors onto the new XY plane produces highest directional variation among all possible

projections onto any 2D plane (Figure 5.17).

(a) (b)

Figure 5.17: Sample set of vectors, and the projection plane found by principal compo-
nent analysis.

In principal component analysis, eigenvectors corresponding to the largest eigen-

values are found which gives the directions of most variation in data. In order to find

principal components, we first mean center the set of vectors V in each window, and take

the transpose to find matrix X as given in Equation 5.9.

x ji = vi j −
1

n

n

∑
i

vsi j (5.9)

Using Singular Value Decomposition, we find the values of matrix U which is the

set of eigenvectors in the order of decreasing eigenvalues in Equation 5.10.

X =UΓV⊤ (5.10)

Then using first eigenvectors from U we find Ū , as the transformation matrix for

projecting every member of V to the new coordinate frame, where the most angular

variation occurs on XY plane. Note that we’re still on a three dimensional coordinate
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system after applying Equation 5.11.

Vpro jected = ŪV (5.11)

At the end, we use polar coordinate transformations to calculate Θ for angles, r for

radiuses and keep the transformed z values. After applying entropy calculation for each

scalar value using properly sized histograms, results can be seen in Figure 5.18. In Fig-

ure 5.18 we have used windows 7 samples wide in each direction. Histogram used for

angular component had 36 bins, and other components had histograms up to 50 bin ac-

cording to the range of the data. As it can be seen from the figure, results are pretty

consistent with the previously used entropy calculation methods. In addition, entropy

maps produced with our method produces more distinctive regional boundaries, not in-

terfered with thick lines due to histogram discretization as shown in Figure 5.19. Note

that, artifacts due to discretization are still present, but they’re not forming boundaries as

straight lines. Artifacts are curvilinear due to rotating coordinate frames of the histogram

bins, after performing PCA and applying coordinate transformation.

Figure 5.18: Entropy calculated with our method on Hurricane Isabel dataset; entropy
calculated with angle of direction on the projected plane is given on the left, entropy
calculated with the magnitudes, and z coordinate after projection are given on the middle
and left.

Second entropy map is calculated from r for radiuses of vectors in corresponding

windows, and reveals important information about vector magnitudes which can also

be used in analysis as a whole, or weighted averaging with the directional entropy field

as an existing approach in entropy calculation. Third entropy map is produced with z
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values in transformed coordinate systems for variation maximization, and corresponds

to the components with less directional variation. Although low entropy values observed

in the map verifies this assumption, this entropy map can also be used in visualization

and analysis.

Figure 5.19: Directional entropy calculated after utilizing PCA is given on the left, and
directional entropy calculated using unit sphere for discretization is given on the right.

We have also experimented with various bucket and window sizes. Like the previous

methods, having too many buckets cause high entropy and less distinctive fields due to

under sampling. On the opposite, having too few buckets cause vectors to fall into

same buckets and produce low entropy fields with more artifacts due to discretization.

Window size may also cause under sampling, and having small windows as much as

possible without causing under sampling produce sharper boundaries.

Results and Discussion

We have utilized Information Theory to calculate entropy for the purpose of aiding visu-

alization and analysis of vector flow fields. Entropy is used to measure the uncertainty of

a random variable, and high entropy regions indicate the areas of high directional varia-

tion in vector flow field. On the opposite, low entropy field is an indicator of order, and

entropy map of the directional component reveals the areas where the vector directions

are coherent.
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In order to demonstrate the utilization of entropy fields generated with the proposed

approach, different direct rendering methods are merged to visualize SPH simulation

and Hurricane Isabel data sets in 3D. In Figures 5.20 and 5.21, we have used volume

rendering for the entropy field, and due to the transfer function linearly correlated with

the entropy value, low entropy regions are transparent. Since we have used directional

entropy map, high entropy regions are chaotic in terms of vector directions, while the

directions are coherent in low entropy areas. Due to this reason, we utilized arrow glyph

method on low entropy regions to reveal flow behavior without cluttering.

Figure 5.20: SPH simulation data is rendered using color coding for the entropy values
and arrow glyph for the velocity vector where the entropy value is below the threshold
to reveal fluid behavior.

Since SPH simulation data in figure 5.20 has very high variation in three dimensions,

proposed approach produces much more readable and informative visualizations than

the direct rendering techniques described in previous sections. Reader is advised to
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revisit Figures 5.1 and 5.5 for a direct visual comparison.

Figure 5.21: Simulation data of Hurricane Isabel is rendered using color coding for the
entropy values and arrow glyph for the velocity vector where the entropy value is below
the threshold to reveal fluid behavior.

Hurricane Isabel data rendered in Figure 5.21 with the proposed approach also re-

veals important information, such as high entropy areas like the center of vortex, as

well as the directional information around it. Note that the resolution of the data set is

much higher than the SPH simulation data set, and visualization technique used in our

approach produces a representative view of the whole field in a single picture.

Further Investigations

Information Theory guided visualization of multivariate spatio-temporal data is a promis-

ing field to explore for further investigations using our approach. Our approach for

generating entropy fields using principal component analysis can be used to fuse other

attributes. Many scalars and vectors can be fused while finding principal components

with a joint or cascaded manner, and/or entropy maps can be joined later. It would also
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be interesting to investigate the use of Information Theory and entropy fields to navigate

through different time frames. Creating a representative image with the joint information

extracted from the whole data set might be useful as well. Although re-sampling of large

data sets could be cumbersome, creating local histograms from higher resolution vector

fields created by interpolation might avoid problems due to sparsity for small windows.

Entropy based level-of-detail rendering for the visualization would be possible for large

data sets.
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6 CONCLUSION

In this thesis, we presented a framework for visualization of multivariate spatio-temporal

data sets generated by physically based simulation, and we mostly focused on vector

flow fields. Our main contribution is;

• Utilizing PCA to generate histograms of 3D vector fields by polar coordinate

transformation.

To the best of our knowledge, this is the first work to use PCA for generating his-

tograms of the 3D vector fields with polar coordinate transformation in order to calculate

entropy fields, and perform entropy guided visualization. Our method is less prone to

discretization errors than the previous methods used for histogram generation by group-

ing 3D vectors into the buckets with fixed geometry in 3D space, since dimensional

reduction allows us to use less number of buckets oriented in space according to the

variation of data, and avoids sparsity. After projection, entropy field from the direc-

tional component is generated as well as the entropy fields those are generated from

vector magnitudes, and z-coordinates in cylinder coordinate system as the remaining

components. Those entropy fields can be investigated separately or joined together for

investigation.

We have also evaluated entropy fields generated by using our method, and we per-

formed entropy guided visualization of flow fields for demonstration. Note that for en-

tropy guided visualization, it’s possible use any combination of the topology based flow

visualization methods [40, 30] with our approach, and choose different methods accord-

ing to characteristics of vector fields in local regions partitioned by entropy. Regions of

interest can also be defined according to the entropy ranges, and entropy field itself can

reveal the characteristics and behavior of underlying flow field.
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In addition, entropy fields can be used to monitor information content of other data

sets rather than flow fields, and multivariate data sets having 3D vector components can

take advantage of using our method for histogram generation.

Our additional contributions involving Information Theory for the visualization can

be listed as;

• A histogram generation method for 3D vector fields taking magnitudes and direc-

tions into account,

• Motivated from Information Theory, introduction of vSKL distance for generating

representational images of 3D polygonal meshes.

For the previous methods performing histogram generation by using fixed buckets

in 3D space, we proposed to involve directional components of 3D vectors. We revised

the existing strategy for assigning vectors into buckets those are defined on a unit sphere

as equi-areal patches. Instead, we used equidistant points on multiple spheres to repre-

sent buckets, and assigned vectors according to proximity. Like the previous methods,

number of buckets and radiuses of spheres are set empirically according to the statistical

variation of data.

While exploring Information Theory, we started from generating representational

images of 3D polygonal meshes using Information Theoretical distance metrics. A well

known metric for measuring information loss after 2D projection of a 3D polygonal

mesh is called viewpoint Kullback-Leibler (vKL) distance, and previous approaches in-

volve vKL to generate representative images by maximizing viewpoint information. We

added curvature based mesh saliency as a local attribute to consider while finding best

viewpoints, and proposed using viewpoint Saliency Kullback-Leibler (vSKL) distance

as another contribution.

We developed our own framework to generate flow fields by physically based simu-

lation in addition to using data sets available for research purposes. During the process

of our work, we also contributed to;
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• The development of an SPH framework utilizing fractional derivatives to improve

performance and stability.

We proposed to introduce fractional derivatives to the viscosity term of governing equa-

tions, and produced results similar to the ones obtained with high-resolution SPH simu-

lations. Our experiments with the results also revealed that standard visualization tech-

niques are not adequate for the visualization of chaotic flow fields. On the other hand,

we managed to apply our entropy guided visualization approach on the same data sets

successfully, and we present representative images to reveal flow behavior.

6.1 Future Work

Visualization and analysis of spatio-temporal data is a challenging problem that has

many other aspects for further investigation, and many improvements motivated from

Information Theory might be possible in addition to our contributions.

In terms of utilizing PCA for histogram generation, our approach can be extended to

allow fusing other vector and scalar attributes of the same data set. In addition, multi-

modal data sets are in interest of many researchers, and our method can also be involved

in fusing those data sets with vector or scalar attributes.

Although it can be seen by visual comparison that our histogram generation method

produces fewer artifacts than the conventional methods, a quantitative analysis of our

work can be performed as a future work. Our method might be improved by allowing

variable bucket sizes instead of fixed intervals, in that case a quantitative analysis will

be a necessity to investigate small differences.

Entropy fields are used for determining most informative time frames for naviga-

tion as well as compression in time. Our histogram generation method can be further

evaluated by generating entropy fields to assist time navigation while visualization.

It will also be beneficial to evaluate entropy guided visualization of flow fields to-

gether with the conventional methods that are already being used by Computational
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Fluid Dynamics (CFD) community to determine areas of interest.

We believe Information Theoretical approaches in scientific visualization will be

a hot topic for a while because of having many existing and new application areas,

producing interesting problems to investigate for many researchers.
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