62 research outputs found

    Comparative study for broadband direction of arrival estimation techniques

    Get PDF
    This paper reviews and compares three different linear algebraic signal subspace techniques for broadband direction of arrival estimation --- (i) the coherent signal subspace approach, (ii) eigenanalysis of the parameterised spatial correlation matrix, and (iii) a polynomial version of the multiple signal classification algorithm. Simulation results comparing the accuracy of these methods are presented

    Filter bank based fractional delay filter implementation for widely accurate broadband steering vectors

    Get PDF
    Applications such as broadband angle of arrival estimation require the implementation of accurate broadband steering vectors, which generally rely on fractional delay filter designs. These designs commonly exhibit a rapidly decreasing performance as the Nyquist rate is approached. To overcome this, we propose a filter bank based approach, where standard fractional delay filters operate on a series of frequency-shifted oversampled subband signals, such that they appear in the filter's lowpass region. Simulations demonstrate the appeal of this approach

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations

    Polynomial subspace decomposition for broadband angle of arrival estimation

    Get PDF
    In this paper we study the impact of polynomial or broadband subspace decompositions on any subsequent processing, which here uses the example of a broadband angle of arrival estimation technique using a recently proposed polynomial MUSIC (P-MUSIC) algorithm. The subspace decompositions are performed by iterative polynomial EVDs, which differ in their approximations to diagonalise and spectrally majorise s apce-time covariance matrix.We here show that a better diagonalisation has a significant impact on the accuracy of defining broadband signal and noise subspaces, demonstrated by a much higher accuracy of the P-MUSIC spectrum

    Maximum likelihood DOA estimation in unknown colored noise fields

    No full text
    Direction-of-arrival (DOA) estimation in unknown noise environments is an important but challenging problem. Several methods based on maximum likelihood (ML) criteria and parameterization of signals or noise covariances have been established. Generally, to obtain the exact ML (EML) solutions, the DOAs must be jointly estimated along with other noise or signal parameters by optimizing a complicated nonlinear function over a high-dimensional problem space. Although the computation complexity can be reduced via derivation of suboptimal approximate ML (AML) functions using large sample assumption or least square criteria, nevertheless the AML estimators still require multi-dimensional search and the accuracy is lost to some extent. A particle swarm optimization (PSO) based solution is proposed here to compute the EML functions and explore the potential superior performances. A key characteristic of PSO is that the algorithm itself is highly robust yet remarkably simple to implement, while processing similar capabilities as other evolutionary algorithms such as the genetic algorithm (GA). Simulation results confirm the advantage of paring PSO with EML, and the PSO-EML estimator is shown to significantly outperform AML-based techniques in various scenarios at less computational costs

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target Identification in Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood (ML) estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar (SAR) data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations (exponentials frequencies) are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as (1) stationary noise, (2) autoregressive (AR) noise and (3) autoregressive moving-average (ARMA) noise and in two dimensions as (1) stationary noise, and (2) white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood (IQML) methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation (MODE) techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target in Identification Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood ML estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar SAR data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations exponentials frequencies are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as 1 stationary noise, 2 autoregressive AR noise and 3 autoregressive moving-average ARMA noise and in two dimensions as 1 stationary noise, and 2 white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood IQML methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation MODE techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Synthetic aperture radar target detection, feature extraction, and image formation techniques

    Get PDF
    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images
    corecore