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Abstract—In this paper we study the impact of polynomial or
broadband subspace decompositions on any subsequent process-
ing, which here uses the example of a broadband angle of ar-
rival estimation technique using a recently proposed polynomial
MUSIC (P-MUSIC) algorithm. The subspace decompositions are
performed by iterative polynomial EVDs, which differ in their
approximations to diagonalise and spectrally majorise s apce-time
covariance matrix. We here show that a better diagonalisation has
a significant impact on the accuracy of defining broadband signal
and noise subspaces, demonstrated by a much higher accuracy
of the P-MUSIC spectrum.

I. INTRODUCTION

For broadband angle of arrival (AoA) estimation, powerful

narrowband methods such as the multiple signal classifica-

tion (MUSIC) algorithm [5] are not directly applicable, and

approaches e.g. based on performing MUSIC in independent

frequency bins are likely to result in poor performance, par-

ticularly if signal frequencies do not coincide with frequency

bins [1].

Amongst dedicated broadband AoA estimation algorithms,

the coherent signal subspace method (CSSM) [7] combines

covariance matrices at different frequency bins coherently by

means of focussing matrices whose determination has most

recently been addressed by an auto-focussing approach in [9].

A parameterised spatial covariance (PSC) approach [2], [6]

scans for possible AoAs using a proper broadband approach,

but is only suitable at resolving single AoA. In [1], we

have exploited a polynomial matrix decomposition in [3] to

generalise MUSIC to the case of spatio-temporal polynomial

covariance matrices. The purpose of this paper is to highlight

the accuracy of the P-MUSIC by exploiting the impact of

the performance of different polynomial matrix decomposition

techniques in [3], [4].

In this paper, we analyse the impact of the decomposition

techniques for the polynomial space-time covariance matrix

on the performance of the polynomial MUSIC algorithm

introduced in [1]. To accomplish this, Sec. V reviews different

approaches for implementing a polynomial eigenvalue decom-

position such as the second order sequential best rotation

algorithm (SBR2) and the multiple shift maximum element

sequential matrix diagonalisation algorithm (MSME-SMD).

Sec. II introduces the data model, with narrow and broadband

approaches to AoA approaches outlined in Secs. III and IV.

Simulation results are provided in Sec. VI to demonstrate and

compare the accuracy of our proposed P-MUSIC approach

based on a PEVD utilising SBR2 or MSME-SMD. Conclu-

sions are drawn in Sec. VII.

Notation. Matrix and vector quantities are represented by

upper and lowercase bold face variables, e.g. A and a. The

Hermitian transpose of A is denoted as AH. Polynomial

vectors and matrices are written as a(z) and A(z), with the

parahermitian Ã(z) = AH(z−1). A transform pair a[n] and

A(z) =
∑

∞

n=−∞
a[n]z−n is abbreviated as a[n] ◦—• A(z).

II. BROADBAND ARRAY DATA MODEL

A. Data Model

Multichannel data from an M -element array is collected

in a vector x[n] ∈ CM . We assume that J far-field sources

illuminate the array and contribute to x[n] in addition to

isotropic white noise v[n],

x[n] =

J∑

j=1

sj [n] =

J∑

j=1

∑

ν

aj [ν − n]sj [ν] + v[n] , (1)

where sj [n] is the jth source signal, sj [n] its projection onto

the array, and aj [n] the corresponding broadband steering

vector, forming the contribution of the jth source to the array.

This model only considers the angle of arrival, but neglects

any attenuation in the medium.

B. Broadband Steering Vector

For an arbitrary array configuration, where rm describes the

coordinates of the mth array element, the broadband steering

vector consists of delays

aj [n] =

⎡

⎢
⎣

δ[n− τj,0]
...

δ[n− τj,M−1]

⎤

⎥
⎦ , (2)

with the time delay

τj,m =
kH
j rm

cTs
(3)

in samples. The slowness vector kj is orthogonal to the

planar wave front emanating from the jth source, with c the

propagation speed in the medium and Ts the sampling period.

The noise v[n] is assumed to be independent and identically

distributed, such that E
{
v[n]vH[n− τ ]

}
= δ[τ ]σ2

vI.



C. Narrowband Steering Vector

For sj[n] in (1) describing the contribution from the jth

source to x[n], the first sensor signal can be taken as reference,

and the relative delays of the remaining sensor signals can be

characterised as

sj [n] =

⎡

⎢
⎢
⎢
⎣

sj [n]
sj [n−∆τj,1]

...

sj[n−∆τj,M−1]

⎤

⎥
⎥
⎥
⎦

, (4)

with ∆τj,m = τj,m − τj,0. For a narrowband source with

normalised angular frequency Ω and a reference signal sj [n] =
ejΩn, the time delays ∆τj,m collapse to simple phase shifts

sj[n] =

⎡

⎢
⎢
⎢
⎣

1
e−jΩ∆τ,1

...

e−jΩ∆τj,M−1

⎤

⎥
⎥
⎥
⎦
ejΩn = aΩ,ϑj

ejΩn , (5)

where aΩ,ϑk
is termed the narrowband steering vector.

III. NARROWBAND SUBSPACE DECOMPOSITION

A. Narrowband Covariance Matrix

For the narrowband case, with J sources sj [n] characterised

by pairs {Ωj, ϑj} the array vector in (1) simplifies to

x[n] =
L∑

l=1

aΩj ,ϑj
sj [n] + v[n] . (6)

The covariance matrix for this narrowband scenario only

needs to capture instantaneous correlation, such that R =
E
{
x[n]xH[n]

}
∈ CM×M , with E{·} the expectation operator,

sufficiently describes the array’s second order statistics. In

the case of J uncorrelated and mutually independent source

signals with power σ2
j , j ∈ (1, J),

R =

J∑

j=1

σ2
jaΩ,ϑj

aHΩ,ϑj
+ σ2

vI . (7)

The maximum rank of R, rank{R} = M is achieved in the

case of linear independence of all steering vectors.

B. Subspace Decomposition

The eigenvalue decomposition of the covariance matrix

R = QΛQH (8)

= [Qs Qn]

[
Λs 0

0 Λn

] [
QH

s

QH
n

]

(9)

leads to a factorisation with a diagonal matrix Λ and a unitary

modal matrix Q. The eigenvalues in Λ split into a noise floor

Λn ≈ σ2
vI and into a part Λs ∈ R

R×R with eigenvalues

above the noise threshold. Thus, the data is know to contain R
linearly independent sources which lie in the signal-plus-noise

subspace spanned by the columns of Qs, while Q spans the

noise-only subspace.

C. Narrowband MUSIC

When trying to estimate the AoA of sources in R, an idea

is to investigate the signal-plus-noise subspace Qs. However,

since Q is unitary, scanning Qs with steering vectors for

maxima is likely to extract the steering vector of only the

strongest source correctly; otherwise the results will contain

orthogonalised basis vectors of the signal subspace in Qs,

which are unlikely to match the directions of weaker sources.

Therefore, the idea of the MUSIC algorithm is to scan the

noise-only subspace Qn, which is spanned by eigenvectors

corresponding to eigenvalues close to the noise floor, Λn ≈
σ2
vI. The steering vectors of sources that contribute to R will

define the signal-plus-noise subspace Qs and therefore lie in

the nullspace of its complement Qn. Therefore, the vector

QH
n aΩ,ϑ has to be close to the origin for aΩ,ϑ to be a steering

vector of a contributing source. Thus the MUSIC algorithm [5]

evaluates its reciprocal,

PMU(ϑ) =
1

aHΩ,ϑQnQH
naΩ,ϑ

, (10)

with PMU(ϑ) also termed the MUSIC spectrum.

IV. BROADBAND SUBSPACE DECOMPOSITION

A. Space-Time Covariance Matrix

Different from the narrowband case, in a broadband scenario

signal wave fronts travelling across the array at finite speed

must be characterised by time delays rather than just phase

shifts. This motivates the definition of a polynomial space-

time covariance matrix R(z) •—◦ R[τ ],

R[τ ] = E
{
x[n]xH[n− τ ]

}
,

which includes the explicit lag value τ . Its z-transform

R(z) •—◦ R[τ ] is the cross-spectral density (CSD) matrix,

which is parahermitian i.e. R(z) = R̃(z) = RH(z−1).

B. Subspace Decomposition

The CSD matrix R(z) can be factorised by means of a

polynomial eigenvalue decomposition (PEVD) [3], such that

R(z) ≈ Q(z)Λ(z)Q̃(z) =
M−1∑

m=0

λm(z)qm(z)q̃m(z) (11)

with paraunitary Q(z), i.e. Q(z)Q̃(z) = Q̃(z)Q(z) = I. The

definition of properties is tied to the subband coding problem

in [?], which demands Λ(z) to be diagonal,

Λ(z) = diag{Λ0(z) Λ1(z) . . . ΛM−1(z)} , (12)

and spectrally majorised such that power spectral densities

Λm(ejΩ) = Λm(z)|z=ejΩ fulfil

Λm+1(e
jΩ) ≥ Λm(ejΩ) ∀ Ω , m = 0 . . . (M − 2) . (13)

Thresholding the polynomial eigenvalues Λm(z) reveals the

number of independent broadband sources contributing to



R(z), and permits a distinction between signal-plus-noise and

noise only subspaces,

R(z) = [Qs(z) Qn(z)]

[
Λs(z) 0

0 Λn(z)

] [
QH

s (z)

QH
n (z)

]

(14)

similar to the narrowband EVD in (9).

C. Polynomial MUSIC Algorithm

The polynomial MUSIC algorithm [1] is an extension of

narrowband MUSIC to the broadband case. Similar to the nar-

rowband scenario, P-MUSIC probes the noise-only subspace

spanned by the columns of Qn(z),

Qn(z) =
[
qR(z) . . . qM−1(z)

]
. (15)

The probing requires the definition and implementation of the

broadband steering vector in (5) containing fractional delays.

One possibility to implement these fractional delays is by

means of an appropriately sampled sinc function, such that

am,j [n] = sinc(nTs −∆τm,j) . (16)

With Am,j(z) •—◦ am,j[n], a broadband steering vector in

the z-domain is given by

aϑ(z) =

⎡

⎢
⎣

Aj,0(z)
...

Aj,M−1(z)

⎤

⎥
⎦ . (17)

The parameter ϑ on the l.h.s. of (17) indicates the dependency

of ∆τj on the AoA. For the implementation of fractional

delays in (16), a truncation has to be introduced, leading to

an approximation error. More accurate implementations than

those based on sampled sinc functions are discussed in [11],

[12].

Based on the concept of the narrowband MUSIC algorithm,

the generalised quantity

Γϑ(z) = ãϑ(z)Qn(z)Q̃n(z)aϑ(z) (18)

is no longer a norm measuring the vicinity of aϑ(z) to the

nullspace of Q̃n(z), but a power spectral density. This has

motivated two versions of P-MUSIC algorithm [1] outlined

below.

Spatial P (SP)-MUSIC. The energy contained in the signal

vector Q̃n(z)aϑ(z) is related to the zero lag term γϑ[0]
of the auto-correlation-type sequence γϑ[τ ] ◦—• Γϑ(z) This

measure is only dependent on the angle of arrival ϑ, and

collects all energy across the spectrum. Instead of searching for

the steering vectors providing minimum energy, the reciprocal

PSP−MU (ϑ) =
1

γϑ[0]
. (19)

is maximised by the angle of arrival ϑ of signal sources.

Spatio-Spectral P (SSP)-MUSIC. With (18) describing a power

spectral density, spectral clues can be exploited in addition to

the spatial information extracted by (19). Therefore in addition

to spatial localisation of sources,

PSSP−MU (ϑ,Ω) =

(
∞∑

τ=−∞

γϑ[τ ]e
−jΩτ

)
−1

(20)

can determine over which frequency range sources in the

direction defined by the steering vector aϑ(z) are active.

SP-MUSIC was introduced in [1], but will be omitted from

the analysis below, since we will show the impact of the

implementation techniques used for PEVD on the performance

of SSPMUSIC for both AoA and the frequency ranges of the

broadband sources as well, while SP-MUSIC only retrieves

AoA information.

V. ITERATIVE PEVD ALGORITHMS

Polynomial subspace techniques such as the P-MUSIC

algorithm discussed on Sec. IV-C require a polynomial matrix

EVD to realise the factorisation of Sec. IV-B. Therefore,

this section addresses two iterative algorithms to determine a

PEVD and therefore the desired broadband subspace decom-

position.

A. Second Order Sequential Best Rotation Algorithm

The second order sequential best rotation algorithm (SBR2)

is an extension of the classical Jacobi algorithm [10] to

parahermitian matrices [3]. At each iteration SBR2 finds the

maximum element in the parahermitian matrix and transfers

its energy onto the diagonal using an elementary paraunitary

transformation. The paraunitary transformation includes two

operations: first the maximum element is brought onto the

zero lag R[0] with a delay matrix, then the energy from the

maximum element is transferred to the diagonal using a Jacobi

rotation.

With S(0)(z) = R(z), the ith iteration begins by finding

the maximum off-diagonal element based on a set of modified

column vectors ŝ
(i)
k [τ ] ∈ CM−1, that contain all elements of

the k(i)th column of S[τ ] excluding the element on the diag-

onal. The lag, τ (i), and column, k(i) index of the maximum

off diagonal element are found using

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ . (21)

Based on τ (i) and k(i) the maximum element is then delayed

onto the zero lag using

S(i)′(z) = Λ̃
(i)
(z)S(I−1)(z)Λ(i)(z) , i = 1 . . . I , (22)

where

Λ(i) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} (23)

brings the k(i)th column of S(i−1)(z), shifting it by τ (i)

samples, and Λ̃
(i)

brings the corresponding k(i)th row onto

the zero lag by shifting it in the opposite lag direction.

A Jacobi rotation is then used to eliminate the maximum

off-diagonal element, and a unitary matrix Q(i) applies the

Jacobi rotation,

S(i)(z) = Q(i)HS(i)′(z)Q(i) . . (24)

The Jacobi rotation affects only two rows and columns of

the parahermitian matrix S(i)′(z) based on the column and

row indices obtained from the maximum off-diagonal element



search, (21). The energy from the maximum element found

using (21) is transferred onto the diagonal with the majority

of the energy going to the element which is higher on

the diagonal, doing so favours but cannot guarantee spectral

majorisation.

Convergence of the SBR2 algorithm has been proven in [3],

as the paraunitary operations do not affect the overall energy

in the parahermitian matrix, and at each iteration more energy

is transferred to the diagonal. The SBR2 algorithm continues

either until a fixed number of iterations have elapsed or

the maximum off-diagonal element falls below a pre-defined

threshold. The delay and rotation matrices can be combined

into a single paraunitary matrix,

Q(z) =
I∏

i=1

Q(i)Λ(i)(z) (25)

which performs the decomposition according to SBR2.

B. Multiple Shift Maximum Element Sequential Matrix Diag-

onalisation

The multiple shift maximum element sequential matrix

diagonalisation algorithm (MSME-SMD) [4] has two major

differences compared to the SBR2 method. First, rather than

using a simple Jacobi rotation to transfer energy from a single

element on the zero lag, as is used in SBR2, MSME-SMD

performs a full EVD of the zero lag which clears the energy

from all elements in the zero lag matrix S(i)[0] at each

iteration. Also where SBR2 brings a single maximum onto

the zero lag during each iteration MSME-SMD aims to shift

a total of (M − 1) maxima onto the zero lag at each iteration.

In addition to the two major differences mentioned above,

the MSME-SMD algorithm also has an initialisation EVD

step which ensures that all instantaneous correlations in the

parahermitian matrix are removed,

S(0)[0] = Q(0)HR[0]Q(0) , (26)

where S(0)[0] is diagonal and the EVD, Q(0), is applied to all

lags of the parahermitian matrix S(0)(z) = Q(0)HR(z)Q(0).

The ith iteration of the MSME-SMD algorithm starts the

same way as that of SBR2, using (21) to find the maximum

element in the parahermitian matrix S(i)(z). Rather than

immediately shifting the energy onto the diagonal as in SBR2,

MSME-SMD permutes the first maximum pair into the upper

left 2 × 2 sub-matrix as shown in Fig. 1(a). Next the search

space in Fig. 1(b) is used to find the second maxima, which

when brought onto the zero lag will not affect the first maxima

in the upper left corner. The second maxima pair is then

permuted such that it appears in the upper left 3×3 sub-matrix.

The process is then repeated for the third and fourth maxima

using the search spaces shown in Fig. 1(c) and (d). The

reduced search spaces shown in Fig. 1 are used to guarantee

that a total of (M − 1) maxima are brought onto the zero lag

at each iteration, by ignoring just the elements the previous

maxima appear in only guarantees a total of (M/2) maxima

can be brought onto the zero lag.

1
1

(a) (b) search
space

search
space

search
space

search
space

search space

se
a
rc
h
sp
a
c
e(c) (d)

Fig. 1. View of a 5 × 5 parahermitian matrix during the ith iteration, not
showing the lag dimension: (a) shows the first maxima being permuted into
the upper 2× 2 matrix, (b), (c) and (d) show the reduced search spaces used
in the 2nd, 3rd and 4th steps of the MSME-SMD serach.

In MSME-SMD the delay matrix Λ(i) combines the delay

and permutation operations,

Λ(i) = diag{1 z−τ (i,1)

. . . z−τ (i,M−1)

} P(i), (27)

where the P(i) combines the permutations used to send the

maximum elements unto the upper left corner. The lag values

used to find the maximum elements τ (i,m), m = 1 . . . (M−1)
form the delays for each column in (27).

The next step in the ith iteration of MSME-SMD is to

diagonalise the zero lag matrix, S(i)′[0], according to (22)

however in this case Q(i) is the modal matrix of an EVD

instead of the simple Jacobi rotation used in SBR2.

To finish an iteration of MSME-SMD algorithm, the zero

lag is ordered based on the diagonal entries to encourage

spectral majorisation. The stopping criteria for MSME-SMD

is either a fixed number of iterations or when the maximum

off diagonal element falls below a given threshold, identical to

that of SBR2. The convergence of the MSME-SMD algorithm

is given in [4] along with a more in-depth description of the

algorithm and its performance with respect to other PEVD

algorithms.

Compared to SBR2 the major advantage of the MSME-

SMD algorithm is the ability to diagonalise the parahermitian

matrix in fewer iterations, in addition the MSME-SMD al-

gorithm can achieve levels of diagonalisation that cannot be

achieved using the SBR2 algorithm. The main drawback of the

MSME-SMD algorithm is extra computational cost of both the

multiple element search and the application of the EVD modal

matrix, Q(i), to all lags.

VI. SIMULATIONS AND RESULTS

The iterative algorithms reviewed in Sec. V achieve different

levels of diagonalisation, and therefore different accuracies in

the way subspaces are identified. Therefore, below we test

the P-MUSIC algorithm as an example for a broadband signal

subspace technique to study the impact of diagonalisation, and

by implication, the subspace accuracy. In the example below,

an M = 8 element array is illuminated by two broadband



Fig. 2. Performance of SSP-MUSIC based on SBR2 for PEVD for a scenario
with two independent broadband sources located at ϑ1 = −20

◦ and ϑ2 =

30
◦ respectively [1].

sources with different AoA and partially overlapping with their

spectra:

• source 1 — located at ϑ1 = −20◦, and active over a

frequency range Ω1 ∈ [0.4688π, 0.9375π].
• source 2 — located at ϑ2 = 30◦ , and active over a

frequency range Ω2 ∈ [0.3125π, 0.7812π].

The array signals are corrupted by uncorrelated independent

and identically distributed complex Gaussian noise at 20dB

SNR. To exclude error sources other than inaccuracies in the

subspace identification, we have modelled the data as a sum of

closely spaced sinusoids with randomised phases, for whom

the individual and highly accurate narrowband steering vectors

can be used to simulate the data.

The performance of SSP-MUSIC algorithm with PEVD

based on the SBR2 and MSME-SMD approaches are shown in

Fig. 2 and 3 respectively, whereby SBR2 achieves a supression

of off-diagonal energy down to about -15dB, while MSME-

SMD achieves approximately -30dB. The simulations result

shows that the SSPMUSIC based on the MSME-SMD de-

composition outperform one using SBR2, demonstrating that

the accuracy of the EVD is crucial to the performance of any

subsequent polynomial subspace-based techniques.

VII. CONCLUSIONS

This paper has explored the impact of iterative polynomial

matrix eigenvalue decompositions — in particular the diag-

onalisation achieved by these algorithms — on subsequent

processing relying on subspace information. Specially, we

have studies the impact of an established algorithm called

second order sequential best rotation, and compared it to

a recent sequential matrix diagonalisation approach with a

better suppression of off-diagonal energy in the parahermitian

matrix. In simulations of a polynomial MUSIC algorithm for

broadband angle of arrival estimation, we have demonstrated

that better diagonalisation leads to a better identification of

Fig. 3. Performance of SSP-MUSIC based on MSME-SMD for PEVD for
a scenario with two independent broadband sources located at ϑ1 = −20

◦

and ϑ2 = 30
◦ respectively.

the relevant signal subspaces, such that e.g. P-MUSIC can

extract a cleaner estimate w.r.t. both angle and frequency of

the estimated sources.
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