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ABSTRACT

This paper reviews and compares three different linear al-

gebraic signal subspace techniques for broadband direction

of arrival estimation — (i) the coherent signal subspace ap-

proach, (ii) eigenanalysis of the parameterised spatial corre-

lation matrix, and (iii) a polynomial version of the multiple

signal classification algorithm. Simulation results comparing

the accuracy of these methods are presented.

1. INTRODUCTION

For broadband direction of arrival (DoA) estimation, power-

ful narrowbandmethods such as the multiple signal classifica-

tion (MUSIC) algorithm [4], are not directly applicable, and

approaches e.g. based on performing MUSIC in independent

frequency bins are likely to result in poor performance, par-

ticularly if signal frequencies do not coincide with frequency

bins [1].

Amongst dedicated broadband DoA estimation algo-

rithms, the coherent signal subspace method (CSSM) [6]

combines covariance matrices at different frequency bins

coherently by means of focussing matrices whose determi-

nation has most recently been address by an auto-focussing

approach in [7]. A parameterised spatial covariance (PSC)

approach [2, 5] scans for possible DoAs using what will later

in this paper be termed broadband steering vectors. In [1], we

have exploited a polynomial matrix decomposition in [3] to

generalise MUSIC to the case of spatio-temporal polynomial

covariance matrices.

In this paper, we want to analyse the above three ap-

proaches and compare them for a number of example scenar-

ios. To accomplish this, Sec. 2 introduces the data model,

with narrow- and broadband approaches to DoA approaches

outlined in Secs. 3 and 4. A comparison between CCSM,

PSC and polynomial MUSIC (P-MUSIC) is then performed

in Sec. 5.

Notation. Matrix and vector quantities are represented by

upper- and lowercase bold variables, e.g. A and a. The Her-

mitian transpose of A is denoted as AH. Polynomial vectors

and matrices are written as a(z) and A(z), with the para-

hermitian Ã(z) = AH(z−1). A transform pair a[n] and
A(z) =

∑

∞

n=−∞
a[n]z−n is abbreviated as a[n] ◦—• A(z).

2. BROADBAND ARRAY DATAMODEL

This section aims to describe the model behind multichannel

data collected in a vector x[n] ∈ CM by anM -element array.

We assume that K far-field sources illuminate the array and

contribute to x[n] in addition to isotropic white noise v[n],

x[n] =
K
∑

k=1

sk[n] +v[n] =
K
∑

k=1

ak[n] ∗ sk[n] + v[n] , (1)

where sk[n] is the kth source signal, ak[n] the correspond-

ing broadband steering vector, and ∗ the convolution opera-

tor, which thereby forms the contribution of the kth source to

the array. The model including the steering vector in (5) only

considers the angle of arrival, but neglects any attenuation in

the medium.

For an arbirary array configuration, whereby rm describes

the coordinates of themth array element, the broadband steer-

ing vector consists of delays

ak[n] = [δ[n− τk,0] . . . δ[n− τk,M−1]]
T
, (2)

with the normalised delay

τk,m =
tHk rm

cTs

, (3)

whereby tk is the normal vector to the planar wavefront em-

anating from the kth source, c the propagation speed in the

medium, and Ts the sampling period.

For sk[n] in (1), describing the contribution from the kth

source to x[n], the first sensor signal can be taken as refer-

ence, and the relative delays of the remaining sensor signals

can be characterised as

sk[n] =











sk[n]
sk[n−∆τk,1]

...

sk[n−∆τk,M−1]











, (4)

with∆τk,m = τk,m−τk,0. For a narrowband source with nor-

malised angular frequencyΩ, with a reference signal sk[n] =



ejΩn, the time delays∆τk,m collapse to simple phase shifts

sk[n] =











1
e−jΩ∆τk,1

...

e−jΩ∆τk,M−1











ejΩ = aΩ,ϑk
ejΩ , (5)

where aΩ,ϑk
is termed the narrowband steering vector. For

further detail, the reader is referred to [1].

As a specific case of (1), for a narrowband scenario with

L narrowband sources sl[n] characterised by pairs {Ωl, ϑl}
the array vector is given by

x[n] =

L
∑

l=1

aΩl,ϑl
sl[n] + v[n] , (6)

with independent and identically distributed white noise v[n],
such that E

{

v[n]vH[n− τ ]
}

= δ[τ ]σ2
vI.

3. NARROWBANDMUSIC

3.1. Narrowband Covariance Matrix

For narrowband signals with frequency Ω, only correlations

for lag zero need to be considered in the covariance matrix

R = E
{

x[n]xH[n]
}

∈ CM×M , where E{·} is the expecta-

tion operator. This covariance matrix entirely describes the

data as modelled in the narrowband scenario (6), since in

the case of L independent source signals with power σ2
l , l ∈

(1, L),

R =

L
∑

l=1

σ2
l aΩ,ϑl

aHΩ,ϑl
+ σ2

vI . (7)

The maximum rank of R, rank{R} = M is achieved in the

case of linear independence of all steering vectors.

For data acquired over a data window of N samples, the

data matrix

Xn = [x[n−N + 1] . . .x[n− 1] x[n]] (8)

can be utilised to estimate the covariance matrix as R̂n =
1
N
XnX

H
n . Below, we assume an appropriate estimation pro-

cedure and for convenient continue to use R for the analysis.

3.2. Narrowband MUSIC Algorithm

Direct eigenanalysis of the covariancematrixR can only lead

to the correct angles of arrivals for sources, if all steering vec-

tors in (7) are orthogonal. Otherwise, the eigenvalue decom-

position (EVD)

R = [QsQn]

[

Λs 0

0 Λn

] [

QH
s

QH
n

]

(9)

is likely to extract the steering vector of only the strongest

source correctly, but otherwise contain orthonormalised basis

vectors of the signal subspace in Qs.

The idea of the MUSIC algorithm is to scan the noise-

only subspace Qn, which is spanned by eigenvectors corre-

sponding to eigenvalues close to the noise floor, Λn ≈ σ2
vI.

The steering vectors of sources that contribute to R will de-

fine the signal-plus-noise subspace Qs and therefore lie in

the nullspace of its complement Qn. Therefore, the vector

QH
naΩ,ϑ has to be close to the origin for aΩ,ϑ to be a steer-

ing vector of a contributing source. Therefore, in the MUSIC

algorithm the inverse of the squared Euclidean norm of this

vector, as proposed by [4].

PMU(ϑ) =
1

aHΩ,ϑQnQH
naΩ,ϑ

, (10)

is calculated as the MUSIC spectrum PMU(ϑ).

4. BROADBAND DOA ESTIMATION

4.1. Coherent Signal Subspace Method

The CSSM approach [6] calculates covariance matrices in a

number of frequency bins, which are then combined such that

their signal subspaces allign into one single correlation matrix

to which narrowband high resolution DoA techniques such as

MUSIC can be applied. The coherence across different fre-

quency bins is created by a frequency-dependent and unitary

focussing matrixT(ejΩ), such that

Rcoh =

N−1
∑

i=n

αnT(ejΩn )R(ejΩn)TH(ejΩ) , (11)

where αn a weighting for maximum ratio combination of

its coherently rotated contributions. In [6] and subsequent

derivative works, the focussing matrix T(ejΩ) is estimated

based on a set of steering vectors. A poor estimate of the an-

gle of arrival may also lead to poor results of this approach.

However, a recent auto-focussing method in [7] allows com-

putation based on the EVDs of R(ejΩn), n ∈ (0, N − 1), in
different frequency bins.

4.2. Parameterised Spatial Correlation Matrix

The idea of the broadband DoA estimation method in [2, 5]

is based on testing the zero-lag coherence of a spatial corre-

lation matrix calculated from appropriately pre-steered array

data. Knowing the array configuration, a broadband steering

vector similar to (2) can be defined for a specific DoA. As-

suming a linear array which only resolves a single angle ϑ,

the covariance matrix of the pre-steered data is given by

Rϑ = E
{

yϑ[n]y
H
ϑ [n]

}

(12)

yϑ[n] =







x[n− τ0(ϑ)]
...

x[n− τM−1(ϑ)]






= Γϑ[n] ∗ x[n] (13)



with the delay τm(ϑ) calculated akin to (3) and the diagonal

pre-steering system

Γϑ[n] = diag{δ[n− τ0(ϑ)] . . . δ[n− τM−1(ϑ)]} . (14)

The proposed method then evaluates the maximum eigen-

value of Rϑ in (12) for a range of angles ϑ, with the best

match indicated by ϑopt = argmaxϑ{maxi λi(Rϑ)}, where
λi(Rϑ) indicates the ith eigenvalue ofRϑ.

4.3. Space-Time Covariance Matrix and Polynomial

Eigenvalue Decomposition

To generalise (10) to the broadband case, we first define a

polynomial space-time covariance matrix. This matrix can be

decomposed by McWhirter’s polynomial EVD [3], followed

by an appropriate selection of a broadband steering vector to

probe its noise-only subspace.

Different from the narrowband case, in a broadband sc-

neario time signal wavefronts travelling across the array at

finite speed must be characterised by time delays rather than

just phase shifts. This motivates the definition of a polyno-

mial space-time covariance matrixR(z) •—◦ R[τ ],

R[τ ] = E
{

x[n]xH[n− τ ]
}

,

which includes a time delay in form of the lag value τ . This

power spectral matrix can be decomposed by an iterative al-

gorithm [3] to yield a polynomial EVD

R(z) = Q(z)Λ(z)Q̃(z) =
M−1
∑

m=0

λm(z)qm(z)q̃m(z)

with paraunitary Q(z), i.e. Q(z)Q̃(z) = I. The diagonal

matrix Λ(z) contains the polynomial eigenvalues λm(z).
Thresholding the latter reveals the number of independent

broadband sources contributing to R(z), and permits a dis-

tinction between signal-plus-noise and noise only subspaces,

R(z) = [Qs(z)Qn(z)]

[

Λs(z) 0

0 Λn(z)

] [

QH
s (z)

QH
n (z)

]

(15)

similar to the narrowband EVD in (9). To probe the nullspace

of Q̃n(z),

Q̃n(z) =







q̃L(z)
...

q̃M−1(z)






(16)

a broadband steering vector is required instead of the narrow-

band one in (5).

4.3.1. Broadband Steering Vector

To accurately reflect the time delays required to describe (4),

a polynomial vector containing fractional delay transfer func-

tions is proposed here. One possibility to implement these

fractional delays is by means of an appropriately sampled sinc

function, such that

al[n] = sinc(nTs −∆τl) . (17)

WithAl(z) •—◦ al[n], a broadband steering vector can be de-
fined as

aϑ(z) =







A0(z)
...

AM−1(z)






. (18)

The parameter ϑ on the l.h.s. of (18) indicates the dependency

of∆τl on the angle of arrival. This vector is equivalent to the

main diagonal of the parameterised spatial correlation matrix

approach in (14).

4.3.2. Polynomial MUSIC Algorithm

Based on the concept of the narrowband MUSIC algorithm,

the generalised quantity

Γϑ(z) = ãϑ(z)Qn(z)Q̃n(z)aϑ(z)

is no longer a norm measuring the vicinity of aϑ(z) to the

nullspace of Q̃n(z), but a power spectral density. This has

motivated two versions of the a polynomial MUSIC (P-

MUSIC) algorithm [1] outlined below.

Spatial P-MUSIC. The energy contained in the signal vector

Q̃n(z)aϑ(z) is related to the zero lag term γϑ[0] of the auto-
correlation-type sequence γϑ[τ ] ◦—• Γϑ(z). This measure is

only dependent on the angle of arrival ϑ, and collects all en-

ergy across the spectrum. Instead of searching for the steering

vectors providing minimum energy, the reciprocal

PSP−MU (ϑ) =
1

γϑ[0]
. (19)

is maximised by the angle of arrival ϑ of signal sources.

Spatio-Spectral P-MUSIC. With (4.3.2) describing a power

spectral density, spectral clues can be exploited in addition to

the spatial information extracted by (19). Therefore in addi-

tion to spatial localisation of sources,

PSSP−MU (ϑ,Ω) =

(

∞
∑

τ=−∞

γϑ[τ ]e
−jΩτ

)

−1

(20)

can determine over which frequency range sources in the

direction defined by the steering vector aϑ(z) are active.

SSP-MUSIC was introduced in [1], but will be omitted from

the comparison below, since the benchmark method only

retrieves DoA information.

5. COMPARISON

The broadband steering vector for a linear uniform array sen-

sors separated by distances d = c
fs

takes on simple forms
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Fig. 1. Direction of arrival estimation for a single source lo-

cated at end fire (ϑ = −90◦) using different approaches.
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Fig. 2. Direction of arrival estimation for a scenario with

two independent sources of equal strength located at broad-

side and end fire positions.

for the broadside and end-fire directions, where for M = 4
sensors

aϑ=0◦(z) = [1 1 1 1]T (21)

aϑ=−90◦(z) = [1 z−1 z−2 z−3]T (22)

results, with the covariance matrix R(z) = aϑ(z)ãϑ(z) for
uncorrelated unit-variance sources.

Example 1. For a single source at end-fire position, the sim-

ulation results normalised to a spectrum peak value of one

are shown in Fig. 1, whereby the PCV approach fares worst.

Close to end-fire position, the CSS provide slightly higher res-

olution than P-MUSIC based on an estimate covariance ma-

trix and iterated decomposition. Knowing the covariance ma-

trix and its true noise subspace in the PEVD sense however

can achieve a much higher selectivity, with values quickly de-

scending towards -300dB away from end-fire.

Example 2. Assuming two independent sources at broad-

side and end-fire position, the space-time covariance matrix

is given by R3(z) = R1(z) +R2(z). The Spatial P-MUSIC

algorithm identifies two large polynomial eigenvalues, and

from the noise-only subspace derives the result in Fig. 2. The

DoAs and relative strengths of the sources are correctly ex-

tracted. CSS provide higher resolution towards broadside,

while the end-fire source is not detected equally. The PSC

approach fails to identify more than one source, and is only

able to provide a very poor estimate for the broadside source.

As for example 1, the spectra in Fig. 2 are normalised such

that the maximum is unity.

The simulations in Example 1 suggest that the proposed

P-MUSIC algorithm can outperform the other methods if an

idea polynomial eigenvalue decomposition is available. In

practical cases where this matrix is estimated and the de-

composition iteratively approximated, the performance of

P-MUSIC is often inferior to the coherent signal subspace

approach [6, 7], such as in the accuracy of detecting the

broadside source in Example 2. In contrast, the more recent

method in [2, 5] appears weaker and is unable to resolve more

than one source.

6. CONCLUSIONS

This paper has compared three linear algebraic broadband di-

rection of arrival estimation techniques, wherebya recently

proposed polynomial matrix decomposition approach to ex-

tend the MUSIC algorithm to the broadband case has been re-

viewed. Simulations indicate that the performance for the op-

timum decomposition works very well and outperforms other

algorithms. The performance degrades when based on esti-

mated values and an iterative approximate decomposition and

may therefore be enhanced by the develpment of a more ded-

icated decomposition algorithm.
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