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Abstract

This final report presents new algorithms for target detection, feature extraction,

and image formation with the synthetic aperture radar (SAR) technology. For target

detection, we consider target detection with SAR and coherent subtraction. We also

study how the image false alarm rates are related to the target template false alarm

rates when target templates are used for target detection. For feature extraction from

SAR images, we present a computationally efficient eigenstructure-based 2D-MODE

algorithm for two-dimensional frequency estimation. For SAR image formation, we

present a robust parametric data model for estimating high resolution range signatures

of radar targets and for forming high resolution SAR images.



1. Introduction

This final report presents new algorithms for target detection, feature extraction,

and image formation with the synthetic aperture radar (SAR) technology.

In Chapter 2, we consider target detection with SAR and coherent subtraction.

We shall show with some limited experimental data that the coherent subtraction

technique may be used to suppress outliers and obtain approximate Gaussian distri-

butions for clutter and noise. We shall also derive generalized likelihood ratio (GLR)

detection algorithms that may be used with SAR images that have Gaussian distribu-

tions. We shall analytically compare the performance of a) a single pixel detector, b)

a detector using complete knowledge of the target signature information and known

orientation information, c) a detector using incomplete knowledge of the target sig-

nature information and known orientation information, d) a detector using unknown

target signature information and known orientation information, and e) a detector

using unknown target signature information and unknown orientation information.

In Chapter 3, we study how the image false alarm rates are related to the target

template false alarm rates when target templates are used for target detection. In

particular, we shall show a simple way of determining the probability of false alarm

of a target template when a low constant false alarm rate is desired for an image and

when the image size is much larger than the size of the target template.

In Chapter 4, we present a computationally efficient eigenstructure-based 2D-

MODE algorithm for two-dimensional frequency estimation or feature extraction from

SAR images. We derive the theoretical performance of the 2D-MODE estimator

and show that it is asymptotically statistically efficient under either the assumption

that the number of temporal snapshots is large or the signal-to-noise ratio is high.

Numerical examples showing the performance of this algorithm and comparing it with

the computationally efficient subspace rotation algorithms are also given. We show

that the statistical performance of the 2D-MODE algorithm is better than that of



the subspace rotation methods, whereas the amount of computations required by the

former is usually no more than a few times of that needed by the latter.

In Chapter 5, we present a robust parametric data model for estimating high res-

olution range signatures of radar targets and for forming high resolution SAR images.

This paper also presents an estimation algorithm for the data model. The algorithm is

referred to as the APES (Amplitude and Phase Estimation of a Sinusoid in unknown

colored noise) algorithm. We shall describe how the APES algorithm can be used to

estimate range signatures and to form SAR images. We shall show, with both numer-

ical and experimental examples, that our modeling and estimation approach yields

better resolution and lower sidelobes than the conventional nonparametric FFT (fast

Fourier transform) method. We shall also show that our approach is more robust

than modeling the radar data as a certain number of complex sinusoids in noise and

estimating the frequencies, amplitudes, and phases of the sinusoids with one of the

best sinusoldal parameter estimation methods.

Each of the afore-mentioned chapters is self-contained with its own introductions,

formulations of the problems of interests, approaches, conclusions, and references.

The results we present in this report are obtained with the partial support from

WL/AARA, Wright Laboratory, Wright Patterson Air Force Base as a subcontract

from the Ohio Aerospace Institute. Our work is also supported in part by the 1993

and 1994 AFOSR Summer Faculty Research Programs, by the National Science Foun-

dation, and by the G6ran Gustafsson Foundation.

Those who contributed to this report include Dr. Jian Li, Mr. Syed M. Rahman,

Dr. Petre Stoica, Mr. Edmund G. Zelnio, and Mr. Dunmin Zheng.
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2. Target Detection with Synthetic Aperture Radar and Coherent
Subtraction

2.1 Introduction

Synthetic aperture radar (SAR) technologymay be usedto detect radar targets

of interest. High resolution SAR technologyis especiallyuseful for detecting small

radar targets embeddedin strong ground clutter suchas in foliage. In this paper,

we shall considertarget detection algorithms that may be used with high resolution

SAR.

Target detection from SAR or optical imageshas beenconsideredby many au-

thors. For example, Novak, Burl, and Irving [1] consideredtarget detection with a

polarimetric SAR. The threeoutput imagesof the polarimetric SAR arefirst processed

by a polarimetric whitening filter, which is derivedby assuminga K-distribution for

clutter and noise. The output imageof the filter is next used with a two-parameter

detector for target detection. The target detection in [1] is performedone pixel at a

time eventhough the target may occupy more than one pixel; i.e., eventhough the

target sizemay be larger than the resolution of the SAR image.

Reed and Yu [2] consideredgeneralizedlikelihood ratio target detection from a

sequenceof optical images,which are first preprocessedby removing local meansso

that the clutter and noisewill approximately havethe Gaussian distribution. In [2],

each target in an image is described by a completely known template or signature

with an unknown gain, which is a scalar. The algorithm, however, may not work well

with SAR images. For example, for a target in foliage, the SAR target signature may

change due to the interaction between target and surrounding clutter.

Stotts [3] considered detecting several dim targets in an image simultaneously.

The image is also first preprocessed by removing local means so that the clutter and

noise will approximately have the Gaussian distribution. Each dim target is described



by a known template or signature with an unknown gain, which is a scalar. Stotts

hasshownthat simultaneous detection of multiple targets may perform better than

separate detection of individual target. In this paper, we shall extend this idea of the

simultaneous detection of multiple targets to the detection of a target with multiple

pixels in a SAR image.

We shall derive generalized likelihood ratio (GLR) detection algorithms that may

be used with multiple SAR images that are obtained with coherent subtraction or

have Gaussian distributions. We shall show with some limited and well calibrated

experimental data that we may eliminate Gaussian outliers of the clutter and noise

through coherent subtraction between two complex SAR images of the same area of

interest. One of the two SAR images is assumed to be target free and the other is to

be sought for the presence of target. In each image obtained with coherent subtrac-

tion, the target of interest is modeled with a target template, which is large enough

to cover the entire target. The size of the target template and the number of complex

unknowns in it are determined by the knowledge of the target orientation informa-

tion and the amount of target signature information known to the detector. Using

this unifying framework, we shall analytically compare the performance of a) a single

pixel detector, b) a detector using complete knowledge of the target signature infor-

mation and known orientation information, c) a detector using incomplete knowledge

of the target signature information and known orientation information, d) a detector

using unknown target signature information and known orientation information, and

e) a detector using unknown target signature information and unknown orientation

information. We shalI derive the probability of detection and the probability of false

alarm of each detector. To achieve a constant false alarm rate (CFAR), each detector

threshold is simply a function of the dimensional parameters of the detection problem

and the desired probability of false alarm.

In Section II, we discuss the effects of Gaussian assumption on target detection. In



SectionIII, weformulate the target detectionproblem. In Section IV and Appendices

A, B, and C, we assumethat the statistics of the clutter and noise are known and

derive a GLR detector under the assumptionand discussits performance. In Section

V and AppendicesD and E, weassumethat the statistics of the clutter andnoiseare

unknown and present a morepractical GLR detector. In Section VI, we apply the

more practical detector to the experimental data. Finally, Section VII containsour

conclusions.

2.2 Gaussian Assumption

A key problem in radar target detection is the description of the statistical prop-

erties of radar clutter and noise. In general, radar clutter and noise do not satisfy

the conditions of a Caussian distribution. Many statistical models, such as the well-

known log-normal, Weibull, and K-distributions, have been proposed to describe the

clutter and noise statistics. Although these distributions may provide better statis-

tical models for the clutter and noise than the Gaussian distribution, the detectors

that are derived based on these models may be very complicated and may involve

an expensive multidimensional search over the parameter space. It is also difficult

to analyze the performance of these detectors. It is difficult, if not impossible, to

derive the probability of detection and probability of false alarm for such a detector.

It is thus difficult to analytically determine the correct threshold for a prescribed

probability of false alarm.

Alternatively, the SAR images may be preprocessed so that the Gaussian assump-

tion for clutter and noise is approximately valid. For example, Hunt and Cannon

[4] and Reed and Yu [2] considered removing local means as such a preprocessing

technique. The detectors obtained from Gaussian assumptions may avoid the multi-

dimensional search over the parameter space. It is also quite tractable to analyze the

performance of such detectors and many Gaussian assumption based results exist in



the literature. "_%tif the distribution of the preprocessedimagesis still non-Gaussian,

then the detectorsobtained under the Gaussianassumptionwill suffer performance

degradation. The selectionof a detector, therefore,must balance these tradeoffs.

In this paper,weconsidertarget detectionby assumingthe radar clutter and noise

in a SAR imagehavea Gaussiandistribution. Sucha SARimage may beobtained by

taking the differencebetweentwo SAR imagesof the samearea,with oneassumedto

be target freeand the other is to besoughtfor the pri_senceof target. We showbelow

that the coherentsubtraction method cansuppressGaussianoutliers when the SAR

imagesareobtained by moving the radar antennaalonga fixed rail. Theserail SAR

images can be used in many applications including monitoring the environmental

changesof a cetain areaof interest. For an airborne SAR, however,we do not know

how the coherent subtraction method may perform. The presenceof errors suchas

the flight path errors and the existenceof atmosphericturbulence can degrade the

performance of the coherent subtraction.

The limited and well calibrated experimental data we have are obtained by ERIM

(Environmental Research Institute of Michigan) with a portable rail SAR that has

foliage penetration capabilities [5]. More specifically, a horizontal 36 feet long alu-

minum truss was used to support a rail and an antenna carriage. The data was

collected by moving an antenna along a fixed rail to obtain the synthetic aperture.

The rail SAR is an FM-CW radar system based on an HP-8501 network analyzer

[5]. Our results are, therefore, tentative and the effectiveness of coherent subtraction

needs to be further studied with more extensive experimental data obtained under

more operational conditions.

The data we shall use were obtained when both the transmitter and receiver

of the SAR are horizontally linearly polarized. Figures 2.1(a) and (b) show the 3-

dimensional (3-D) plots of the magnitudes of two complex SAR images obtained with

two identical synthetic apertures. The frequency band used for the image is between



400and 1300MHz and the depressionangleis 30°. We havedownsampledthe original

imagespresentedin [5] by a factor of two in rangeand by a factor of six in crossrange

since the original imagesare oversampled.The range and crossrange resolutionsin

the SAR imagesare 0.34and 3 meters, respectively. Figure 2.1(a) shows the 3-D plot

with foliage only. The peaks in the figure correspond to the radar returns from tree

trunks. Figure 2.1(b) shows the 3-D plot of a target in foliage. The target is a pickup

truck rotated 24 ° counterclockwise from end-on. Figure 2.1(c) shows the 3-D plot

of the magnitude of the coherent subtraction between the two complex SAR images.

Figure 2.2 is similar to Figure 2.1 except that the truck is broadside. Thus the target

return in Figure 2.2 is much stronger than in Figure 2.1.

We note that coherent subtraction can effectively suppress the large clutter returns

due to tree trunks, which result in false alarms and causes CFAR detectors to fail.

The large returns left in Figures 2.1(c) and 2.2(c) are due to the target and its

surroundings. For example, the darkened peak to the left of the target in Figure

2.2(c) occurs in Figure 2.2(a) but not in Figure 2.2(b). This result occurs because the

main response of a tree comes when the radar energy bounces off the tree onto the

ground and returns to the radar or vice versa. The presence of the target interrupts

this path and results in no tree return in the image in Figure 2.2(b). Subtracting

the image in Figure 2.2(a), which contains the tree return, from the image in Figure

2.2(b), which does not contain the tree return, results in a tree return not canceled

by the subtraction process thus yielding the darkened peak. The presence of the

darkened peak in Figure 2.2(c) is additional information showing the presence of a

target because its presence is due to the interaction between the target and clutter.

This information may be especially useful when the target return is weak.

Figure 2.3 shows the magnitude of the correlation coefficient of the clutter and

noise (i.e., the target-free) pixels in Figure 2.1(c) as a function of the spatial distance

(as measured by the number of pixels) between two pixels. An unbiased autocorrela-

S



tion estimator [6] wasusedto estimate the correlation coefficient. We note that the

clutter and noisepixels are approximately independentof eachother.

Considernext the testof normality of the clutter and noisepixels beforeand after

coherentsubtraction. Let xi, i = 1,2,...,Q, denote a 2 × 1 vector containing the

real and imaginary parts of the ith pixel used for the test. Let

1 ,

where (.)T denotes the transpose,

and

1 xi, (2.2)
__,

1 Q

For true Gaussian random vectors, the variance of fli is approximately equal to 4/(Q-

1) 2. Thus the test of normality of xi may be performed by comparing the sample

variance of fli with 4/(Q - 1) 2 [7]; i.e., by comparing how close e is to 1, where ¢

denotes the ratio between the sample variance of fli and 4/(Q - 1) 2. For the clutter

arid noise pixels in Figure 2.1, the ¢ is equal to 7.97 before coherent subtraction. This

large e is caused by the large tree trunk returns. After coherent subtraction, however,

the e is equal 1.10 and is much closer to 1. The histogram of the clutter and noise

pixels after coherent subtraction can also be shown to match a zero-mean complex

Gaussian probability density function well.

Finally, since broadcast stations often occupy low frequency bands, SAR images

of the same area may be formed with two or more separate frequency bands instead

of one wide frequency band. The separate bands may be chosen to avoid the jamming

from the radio stations. The clutter and ng!se pixels in different images obtained with

different frequency bands can also be show n tobe approximately independent of each

other.
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The problem formulation belowwill take theseresults into account.

2.3 Formulation of the Target Detection Problem

Consider Y high resolution SAR images obtained with coherent subtraction in

which a target may be present. The J images may be obtained from polarimetric

SAR, different frequency bands, and/or different aspect angles. For each image, the

target may be modeled with a template consisting of Nj pixels, j = 1,2,.-., J. The

shape of the templates may be arbitrary and the templates may consist of areas that

are not connected. Among the Nj pixels, I(j (Kj < Nj) pixels are assumed to be

deterministic and arbitrary unknown complex scalars that correspond to the bright

returns of target scatterers. The remaining Nj - I(j pixels are assumed to contain

clutter and noise only; i.e., they correspond to the areas of the target that does not

generate radar returns.

The locations of the Kj pixels may be assumed known, not completely known,

or unknown. If the locations of the unknown scalars are not known exactly, the

dimension I(j (and Nj correspondingly since Nj > Kj) may be increased to include

all possible locations of the scalars. If the locations are unknown and we only know

the approximate size of a target, we may choose a template large enough to cover the

target and assume that all pixels in the template are unknown, i.e, I(j = Nj. Yet

increasing I(j decreases the detection performance due to the increased/mmber of

unknowns in the target template. This result will be shown in the following sections.

Let z denote an N x I vector consisting of the pixels of such templates in the

presence of clutter and noise, where N = N1 + N2 +... + Nj. Under hypothesis H1,

the target presence hypothesis, the z may be written

z=Sb+n. (2.4)

The b is the/( x i vector consisting of the K deterministic unknown complex scalars

10



in the target templates, whereK - K1 + I(2 + "" + I(j. The b may be written

b- by ... , (2.5)

where bj, j = 1, 2,..., J, is the I(j x 1 vector consisting of the Kj deterministic

unknown complex scalars in the target template of the jth image, or the jth template.

The S is a full-rank N x K matrix describing the locations of the unknown scalars.

Only one element in each row and each column of S is one and the remaining of the

elements are zero. Thus we have

SHS = Ix, (2.6)

where (.)H denotes the complex conjugate transpose and I_- denotes the identity

matrix of dimension K. The S may be written

S

Sl 0

$2

0 Sa

(2.7)

where Sj, j = 1,2,..., J, is a full-rank Nj × I(j matrix describing the locations of

the unknown scalars of the jth target template and

sTs =IK,, (2.8)

The n denotes the N x 1 clutter and noise random vector and may be written

n--- n T n_r ... n_ , (2.9)

where nj are N./ x 1 clutter and noise vectors of the jth image and are assumed

zero-mean complex Gaussian with covariance matrix 2cr3I,\ _ and are statistically in-

dependent of each other. Under hypothesis//0, the target absence hypothesis, the z

11



may bewritten

z = n. (2.10)

The problem of interest is to develop a (?FAR detector for the data model (2.4). We

shall consider the generalized likelihood ratio (GLR) target detection algorithms for

the purpose. We shall consider both a detector, where the clutter and noise variance

is assumed known, and a more practical detector, where the clutter and noise variance

is unknown. The effects of the dimensional parameters such as N, K, and J on the

performance of the detectors will also be considered through performance analysis of

the detectors.

\¥e remark that the above detection problem is a generalized version of the ap-

proach of considering one pixel at a time and the approach of using the complete

knowledge of the target signature. When we consider detection by using one pixel

at a time, we have Nj = Kj = 1, j = 1,2,...,J. When the complete knowledge

of the target signature is known except for a complex gain, the Sj becomes the

signature vector §./ whose elements are arbitrary except that its Euclidean norm is

constrained to be 1. Also, the bj becomes the unknown complex scalar gain Dj and

Kj = 1, j = 1, 2,-. -, J. The elements of §j describe the locations and relative return

strengths and phases of the scatterers of a target.

We next remark on the knowledge of Sj and §j, which may be obtained through

experiments or simulations with software packages similar to XPATCH [8]. The target

signature vector §j may be easily altered by the surrounding environment of a target,

but the location matrix Sj is more robust to the target surroundings. For a given

target, a set of signature vectors or location matrices may be obtained for different

orientation angles of the target relative to the radar. These vectors or matrices may

be used with GLR detectors to form a filter bank.

For example, consider detecting the target shown in Figures 2.1 and 2.2. Since

J = 1, for example, we drop the subscript j for simplicity. For this example, we may

12



use four different S's to form a filter bank: (i) when the target is oriented broadside

(or +180° due to symmetry), (ii) when the target is oriented end-on, (iii) when the

target is oriented head-on,and (iv) for the rest of the target orientations. We note

from Figure 2.1 that for Case (i,:), the target return consists of only one bright pixel

and hence we should let S = 1, which results in a single pixel detector.

When a filter bank is used for target detection, the probability of false alarm

may be increased as compared with using a single filter; i.e., a single §j or Sj, for

target detection. When a set of Sj's is used, for example, the increase will depend

on how similar the Sj's are. The more non-overlapping elements in Sj's, the larger

the increase of the probability of false alarm. Yet the increase is no more than the

number of filters times the probability of false alarm of using a single filter. It appears

that the exact probability of false alarm of using a filter bank for target detection

cannot be determined analytically in general and must be obtained with Monte-Carlo

simulations. In other words, although a constant false alarm rate can be achieved by

using a filter bank, we may not know exactly what the achieved false alarm rate is.

The design of a filter bank is more flexible using Sj than using §j. We may increase

the template size Nj and the number of unknown template pixels I(j to reduce the

number of filters in the filter bank. Increasing the number unknown template pixels

Kj has the effect of decreasing the sensitivity of the target detector to target signature

information. Increasing the template size Nj has the effect of decreasing the sensitivity

of the target detector to target aspect. By selecting appropriate Kj and Nj for each

image based on the amount of the a priori knowledge about the target, we may use

a single filter instead of a bank of filters for target detection. The next paragraph

illustrates these issues with several examples using different combinations of Kj and

Assume that we have J = 1 image and we drop the subscript j for simplicity.

Consider, for example, the four scenarios shown in Figure 2.4. In Figure 2.4(a),

13



we assume we have the complete knowledge of the target signature except for the

unknown gain. Also, the target orientation is assumed known. For this case, we have

K = 1 unknown in the target template and we should use g/_ instead of Sb to model

the target return. In Figure 2.4(b), we assume that we have the incomplete knowledge

of the target signature; i.e., we assume that we know the locations of the unknown

scalars that represent the bright returns from the target scatterers. The number of

the unknown scalars in the target template is assumed to be K = 10 for this case.

We also assume that the target orientation is known and the number of pixels in the

target template is, say, N = 100. For this case, then, S is a 100 × 10 matrix and b

is a 10 × 1 vector. In Figure 2.4(c), we assume that the target orientation and the

target approximate size are known. For this case, all pixels in the target template are

assumed unknown and we assume that there are K = 100 unknowns in the target

template. For this case, then, S is a 100 × 100 identity matrix and b is a 100 × 1

vector. In Figure 2.4(d), we assume that only the approximate size of the target is

known. Since the target orientation is unknown, we choose a target template that is

large enough to cover all possible target orientations and all pixels in the template

are assumed unknown. We assume that there are K = 1000 unknowns in the target

template. For this case, then, S is a 1000 × 1000 identity matrix and b is a 1000 × i

vector. In the following sections, we shall show how the target detection performance

is affected by the use of these target templates.

2.4 A CFAR Detector Based on Known Clutter and Noise Variance and

Its Performance

We shall present below a generalized likelihood ratio (GLR) detector under the

assumption that the clutter and noise variance in each image; i.e., _, is known, and

also present its performance. This detector is referred to as Detector A below and its

performance is easy to analyze.

14



It is shown in Appendix A that Detector A has the form

(2.11)
j=l 0.j I"i"°

The threshold parameter 3` is determined according to a given probability of false

alarm and thus the detector is a CFAR detector.

It is shown in Appendix B that the probability of false alarm of Detector A is

K-1 3`K- l-k

PF = _ (I( -- 1 _ k)[ exp(--3`). (2.12)
k=0

We note that the PF depends only on K, the sum of the numbers of unknown param-

eters in the target templates, and the threshold parameter 3'. The PF is independent

of Nj, the sizes of the templates. For a given probability of false alarm, the _, in

the detector (2.11) is obtained with (2.12). It is also shown in Appendix B that the

probability of detection of Detector A is

c_ 5 i i+K-l___ 3`i+K-l-k

PD = exp(--5 -- 7) _ _. (i + 1- k),'i=0 =

where

J b_bi
5=_-

j=l 0"2

(2.1s)

(2.14)

The 5 is the sum of the signal-to-clutter-and-noise ratios (SCNRs) of the templates.

Note that 5 is the sum of the signal-to-clutter-and-noise ratios of the non-zero pixels

in all templates. We also note that the PD is also independent of the template sizes

Nj. The PD depends on K, SCNR 5, and the threshold 3'.

In most of the following examples, we consider PF = 10 -l° for the target templates.

This is because we intend to achieve a false alarm rate of 10 -4 per km _, where km

denotes the kilometer. (ARPA's goal is to achieve a false alarm rate of 10 .3 per

km_.) For a SAR image with range and cross range resolutions of 0.34 and 3 meters,

respectively, the probability of false alarm of a single pixel detector is approximately

15



10-1°. When the target template size is much smaller than the image covering the

one km 2 area, the template false alarm rate should also be approximately 10 -l° [9].

To compare the performance of using different target templates with the Detector

A, let us consider the effect of K on the performance of Detector A. Figure 2.5 shows

the probability of detection as a function of SCNR for different K when PF = 10 -1°-

When we have one image; i.e., J = 1, for example, the four performance curves shown

in Figure 2.5 could correspond to the four scenarios shown in Figure 2.4. It is shown

that for the given PF and a fixed SCNR 5, the PD of the detector in (2.11) decreases

as K increases. We note from Figure 2.5 that the best performance occurs when we

use the complete knowledge of the target signature except for the unknown gain and

when the target orientation is known. The worst performance occurs for the case of

unknown target signature and unknown target orientation. This result occurs due

to the non-coherent integration loss [10, p.71] since as may be seen from (2.43) in

Appendix B, the energies of the template pixels are summed up non-coherently.

Note also that for SCNR = 15 dB in Figure 2.5, the average SCNR per pixel is

15 dB for K= 1 and is5 dB for K= 10. Thus Figure 2.5 also shows the effect of

smearing a given amount target energy among more pixels and hence lowering the

SCNR per pixel.

Figure 2.6 shows the extra SCNR needed to achieve PD = 0.5 for different proba-

bilities of false alarm PF. We note that we have similar curves for different probabil-

ities of false alarm PF. The extra SCNR needed decreases slightly as PF decreases.

We also note that the extra SCNR needed increases slowly as K increases.

Although it is the best to use the complete knowledge of the target signature for

target detection, the target signature may not be completely known for SAR images

and even when known, the signature may change due to the interaction between the

target and clutter and other factors. The change of signature may result in severe

detector performance degradation. Let gj and gj be the assumed and true target

16



signaturevectors, respectively,where both _j and _j have Euclidean norm 1. It is

shownin Appendix C that the probability of falsealarm for this caseis the sameas

(2.12) with K = J. The probability of detection for this case has the form of (2.13)

with I( : Y and

6 = (2.15)
j=l 0.2 P3'

where pj (0 _< pj <_ 1) are the SCNR loss factors as a result of the signature mismatch;

i.e.,

cj = I f jl (2.t6)

Figure 2.7 shows the SCNR loss as a function of pl when J = 1.

We now make the comparison between using the incomplete knowledge of the

target signature information and the approach of using the complete knowledge of the

target signature information except for the unknown gain. The comparison may be

made most easily with J = 1. For J = 1, we drop the subscript of p and K. Consider

the example where J = 1 and we use an incomplete target signature described by K =

20 unknown parameters. The extra SCNR needed to achieve the same probability of

detection as when using the complete target signature information (K = 1) is about 3

dB, as shown in Figure 2.6. If we know that the mismatch between the assumed and

true target signatures is small (possibly through experiments), or more specifically,

if the mismatch will not result in p < 0.5, then it is better to use the complete

knowledge of the target signature information in the detector. Otherwise, it is better

to use the incomplete signature information and assume K = 20 unknowns in the

target template for this example.

The comparison between considering one target template at a time and one pixel

at a time is also clear. As shown in Appendix C, for the same target SCNR, the

performance of assuming the complete knowledge of the target signature is the same

as IQ = 1, j = 1,2,..., J, in our problem formulation. For J = 1 and a template

with K = 20 unknown parameters, for example, the extra SCNR needed to achieve
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the same probability of detection as for K - 1 is about 3 dB, as shown in Figure

2.6. Then for the case where the target return is a single bright pixel, the net loss of

using the target template is about 3 dB, as compared with using one pixel at a time.

If the template SCNR 5 is at least 3 dB larger than the $CNR of the highest pixel

in the template, then, using the target template model is better than the single pixel

detector. For the best possible case where all K = 20 pixels in the target template

have equal magnitude, the template SCNR is about 13 dB more than the individual

pixel SCNR. Thus the net gain of using the target template for target detection is

about 10 dB because of the 3 dB loss due to the increased number of unknowns.

We now compare the performance of using a bank of target templates at a time

and using a single pixel at a time for target detection. Note that the maximum

probability of false alarm of using a filter bank for target detection is the number of

target templates or filters times the probability of false alarm of using a single target

template or filter. Thus we may set the probability of false alarm of each target

template to be the desired probability false alarm divided by the number of filters.

The probability of false alarm of the single pixel detector, however, is the same as the

the desired probability false alarm. Thus we encounter an additional SCNR loss when

using a bank of target templates for target detection due to the decreased probability

of false alarm for each target template. Yet when the number of filters in a filter bank

is small, this SCNR loss is negligible. When the number of filters is 4, for example,

this SCNR loss is much less than 1 dB. (See Figure 2.10 for example.)

Finally, let us consider the advantages of using multiple SAR images for target

detection. Consider the example where J = 2 and K1 = I(2 = 20. For the best case

where the target template SCNRs for both images are assumed the same, the net

gain of using both images for target detection is about 2 dB because of the 1 dB loss

due to doubling the number of unknowns, as shown in Figure 2.6.
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2.5 A CFAR Detector Based on Unknown Clutter and Noise Variance

and Its Performance

In the previous section, we have studied the performance of a CFAR detector that

assumes that the clutter and noise variance in each image is known. In practice,

however, the clutter and noise variances are unknown. We present below a detector

for this practical situation. This CFAR detector is referred to as Detector B. Our

approach is similar to the one developed by Kelly [11] for target detection with a

phased array airborne surveillance radar.

The Detector B we shall present utilizes both primary and secondary data of a

SAR image for target detection. The data vector zj, from which the target presence

is sought, is referred to as the primary data. For the jth SAR image, the secondary

data vectors are denoted zj(1), zj(2), ..-, zj(Lj). These vectors are assumed to be

target free; i.e., they represent the target free background of the jth SAR image.

They are assumed to have the same statistics as z j, the subvector of the primary

data vector z, under hypothesis Ho and are statistically independent of each other

and z. The secondary data are useful for estimating the clutter and noise variance in

Detector B.

It is shown in Appendix D that Detector B has the form

J [ H Cj (Lj+I)Nj
zj zj + E,=I zH(l)zj(1) H1

j=l

The threshold parameter ( is determined according to a given probability of false

alarm and thus Detector B is a CFAR detector.

In general, we simply set the number of the secondary data vectors to be equal to

each other; i.e., we let

L1 = L2 : "'" = Lj _ £o. (2.18)
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Taking the natural logarithm of the (to + 1)st root of (2.17) yields

= _ln _% (2.19)
[ -- H0

where 7 = (ln_)/[(Lo + 1)Nj].

It is shown in Appendix E that except for J -- 1, there are no closed form ex-

pressions for the probability of detection PD and probability of false alarm PF. It is

shown that under hypothesis H0, r/has the pdf

L(_IHo)=L_(_lHo)• L_(_IHo)*..., L,(_IHo), (2.20)

where * denotes the convolution and for j = 1,2,...,J,

[exp(r/)- 1] &-I (Mj + IQ 1)!

I'JO?IH°) = (IQ- 1)!(M i - 1)! exp[(Mj + h'j - 1)rl]'

with

Mj= N;(L0+ l) - Kj.

Under hypothesis HI, 7? has the pdf

(2.21)

(2.22)

f_(r/IH1) = f,,(_lH_) • f_=(r_lH_) ,..., f,,(_lHi), (2.23)

where for j = 1,2,--. , J,

6}[exp(r;)- l11"i+'-i(Mj + Kj + i- 1)!
f,,(_IH1) = exp(-_Sj) (2.24)

Z.., i[(Mj- 1)[(Kj +i- 1)! exp[(Mj + [(j + i- 1)71'i=0

where 5j is the SCNR of the jth template.

6j- bHbj (2.25)
4

The PF and PD may be obtained numerically from f_(r/lH0) and fn(r/lH1), respec-

tively; i.e.,

/7PF : f,(TllHo)drl, (2.26)
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and

/7PD = f,7(rl[H1)d,7 • (2.27)

The f_(r/]H0) given in (2.20) and fn(r/]Hx) given in (2.23) may be obtained more

efficiently by first calculating the characteristic functions of f,j (7?[//o) and f,_j(7/[//1)

with FFT (Fast Fourier Transform). For a given probability of false aIarm; i.e., to

achieve CFAR, the "7 in the detector (2.19) is obtained with (2.26).

We remark that the above analysis also holds when Lo is not an integer but a

rational number such that I_Lo, j = 1,2,..-, J, are integers since the number of

target free pixels in each image does not have to be the multiples of the size of the

corresponding target template. The detector (2.17) or (2.19) may be changed slightly

to accommodate the fact that L0 is not an integer.

Consider next J = 1, where we have the closed form expressions for PD and PF.

For this case, we drop the subscripts of z, z(l), _, M, K, and N. Taking the (L + 1)st

root of (2.17) yields the detector for J = 1:

z + Ek-1
z H (IN -- SSH)z + EL=,zH(1)Z(I) "o>_'" (2.28)

It is shown in Appendix E that the probability of false alarm of the above detector is

PF = __, ((-- M+K-k-2
¢M+K-k-1 . (2.29)k=0 K-/c-1

We note that for J -- 1, the PC of Detector B depends on the dimensional parameters

M and K and the threshold parameter (. For a given probability of false alarm, the

in the detector (2.17) is obtained with (2.29).

It is also shown in Appendix E that the probability of detection of the above

detector when J = 1 is

M-1 M-k-I ( M + A'_ k_ 2 ) (5/(')i ((_ l)K+iPD = 1 - exp(--6/() _ _ i! (M+K-k-, " (2.30)
k=0 i=o K + i -- 1
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We note that for d = 1, PD depends on the dimensional parameters M and K, the

SCNR 5, and the threshold {.

We now examine how the different dimensional parameters affect the performance

of the detector in (2.17). These effects of the parameters may be most easily explained

with the case of J = 1. The effects are then generalized to the case of J > 1. Let

J = 1 and consider M = NL + N - K, the total number of target free pixels in

the primary and secondary data vectors. The larger the number of target free pixels

M, the better the estimate of the clutter and noise variance, and hence the closer

the performance of Detector B to that of Detector A. This result may be observed

from Figure 2.8, which shows the probability of detection as a function of SCNR for

different M when d = 1, I( = 2 and PF = 10 -1°.

Consider next the effect of K, the number of unknown parameters in the target

template, on the performance of Detector B. We first explain that the larger the K,

the more number of target free pixels M is needed by Detector B to achieve similar

performance as Detector A. We shall consider J = 1 and drop the subscript j for

convenience. As shown in Appendix B, we may rewrite Detector A in (2.11) as

=H= H1

r/= ZAZ_""" X 7'. (2.31)
K n0

Under hypothesis Ho, _A has the complex Gaussian distribution with zero-mean and

covariance matrix I/_-. Under hypothesis//1, _A has the complex Gaussian distribution

with mean b/o" and covariance matrix IK. Thus under hypothesis H0, the mean and

variance of r/ are 1 and I/K, respectively. Under hypothesis H1, the mean and

variance of r/are 1 + 8/K and 1/K + 8/K, respectively, where 5 is the SCNR given

in (2.14). As shown in Appendix E, we may rewrite Detector B in (2.17) as

// ..- >ptt

rh [zsH_'s + EL1 zU(t')z(/)]/:1,7 _o s • (2.32)

The statistical properties of the numerator of r/_' is the same as the properties of r/in
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(2.31). Sinceunder both hypotheses,the _([) has the complexGaussiandistribution

with zero-meanand covariancematrix IN, the meanand varianceof the denominator

of r_[ are 1 and l/M, respectively. We note that for large K and small M, the

performance of (2.32) will be affected by the variance 1/M of the denominator of rill'.

Thus for large K, M must also be large in order for Detector B in (2.32) to achieve

similar performance as Detector A in (2.31) that assumes that the clutter and noise

variance is known. We found through numerical examples that for 1 _< K < 1000,

the performance differences between Detectors A and B are similar for different K

when M is proportional to K 2/a. Figure 2.9 shows the probability of detection as a

function of SCNR for different K when J = 1, M = [48K2/3J and P_. = 10 -l°, where

[xJ denotes the integer part of x. The figure also shows the performance of Detector

A for comparison. Note that Detectors A and B have similar performances.

Figure 2.10 shows the probability of detection as a function of probability of

false alarm; i.e., the receiver operating characteristic of Detector B, for different K

and SCNR when J = 1, M - i18, and PF = 10 -l° • We note that the 5 dB

change in SCNR or the change in the number of unknowns K from i to I0 has a

significant effect on the Pr for a given Pz). This significant change is due to the

exponentially decreasing tail associated with the assumed Gaussian model for the

clutter distribution.

The discussions for the case of a single image (J = 1) may be easily generalized to

the case of multiple images (J > 1). Consider J = 2, for example. To achieve similar

performanc e as Detector A, the number of target free pixels in each image must be

large for Detector B. Figure 2.11 shows the probability of detection as a function of

SCNR for different M1 = M2 when J = 2, K1 = Ks = 2 and PF = 10 -l°. We note

that the larger the M1 and M_, the closer the performance of Detector B to that of

Detector A, which is expected.
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2.6 Target Detection with Experimental Data

We considerfirst the performanceof Detector B whenusedwith the experimental

data shown in Figure 2.1. Figure 2.12 shows the detection results before and after

coherent subtraction when M = 48, N = K = 1, and PF = 10 -1°. Figure 2.12 shows

the generalized likelihood ratio (GLR) obtained with the left side of (2.28) when it

is above the detection threshold and zero when it is below the threshold. We note

that before coherent subtraction, although the presence of the target is detected, the

large tree trunk returns also result in a false alarm. Thus in the presence of large tree

trunk returns, Detector B is no longer a CFAR detector and its probability of false

alarm is also determined by the number of large tree trunk returns. With coherent

subtraction, however, the false alarm due to the large tree trunk return is eIiminated

and Detector B is truly CFAR.

Consider next the experimental data shown in Figure 2.2. We note that the target

occupies more than one pixel. Let us assume that the target orientation is known

and use an incomplete target signature described by K = 20 unknowns. (Note that

the incomplete target signature may be determined by simulation softwares such as

XPATCH [8] or by experiments in a laboratory. They should not be determined from

images from which the target presence is sought. When the target SCNR is small,

determining target templates from such images is impossible.) Then the template

SCNR for the target is approximately 35 dB for the data shown in Figure 2.2(c). The

largest pixel SCNR for the target is about 25 dB. Thus compared with using each

single pixel for target detection, using the template with K = 20 unknowns results

in a net gain of about 7 dB because of the 3 dB loss due to the increased number of

unknowns.

Finally, we could add noise to the data shown in Figure 2.1 to simulate a weak

target in clutter and noise. Assume that with the added noise, the template SCNR

for the target is approximately 20 dB and the largest pixel SCNR for the target is
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about 10dB. Then from Figure 2.9, wenote that the probability of detectionof using

the target template is 1 while the probability of detection of using the single pixel

detector is approximately 0.

2.7 Conclusions

"VVehave consideredtarget detection with synthetic aperture radar. We have de-

rived generalizedlikelihood ratio (CLR) detectionalgorithms that may be usedwith

SAR imagesthat are obtained with coherent subtraction or have Gaussian distri-

butions. Through performance analysis, we have analytically compared the perfor-

mance of a) a single pixel detector, b) a detector using a complete knowledge of the

target signature information and known orientation information, c) a detector using

an incomplete knowledge of the target signature information and known orientation

information, d) a detector using unknown target signature information and known

orientation information, and e) a detector using unknown target signature information

and unknown orientation information.

Acknowledgments

The first author gratefully acknowledges Maj. R. Williams for sponsoring her

for the AFOSR Summer Faculty Research Program. The authors sincerely thank

S. Wei for her expert help with the ERIM data. The authors are also grateful for

the helpful discussions with R. Schindel, M. Minardi, and J. Leonard. The detailed

and constructive comments from the reviewers and the editor, especially those from

the AES Editor for Radar, have improved the quality of the paper and are deeply

appreciated.

25



Appendix A: Derivation of Detector A

Under hypothesisH1, the probability density function (pdf) of the complex Gaus-

sian random vector z may be written

J 1 [ (z; - Sjbj)H(zj - Sjbj)
fl(z)= I_ N 2N, exp[-- 2

3=1 71" _O'j O'j

(2.33)

Under hypothesis H0, the pdf of the complex Gaussian random vector z may be

written

j=l lrN'-°'2Y_ exp [-----2-7--aj] "

maxb f_

foThe generalized likelihood ratio has the form

to bj yields

(2.34)

• Maximizing fl with respect

13j = S_zj, (2.35)

and
J 1

rn_x fl(z)= II 7ryj_2N_ exp
j=l

z54 (INj --SjSH)zj]

q J'

where we have used (2.8). Then the generalized likelihood ratio test becomes

(2.36)

II exp

HI

>_. (2.37)
H0

Taking the natural logarithm of both sides of the above test yields the optimal detector

J zHsjSHzj "1
2 XT,

j=l 0"3 H0
(2.38)

where 7 = In4.

Appendix B: Performance of Detector A

Consider the GLR test in (2.11). Let _j = zj/oj. Then under hypothesis Ho,

r:j has the complex Gaussian distribution with zero-mean and covariance matrix I_v,.
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Under hypothesis H1, zj has the complex Gaussian distribution with mean Sjbj/o'j

and covariance matrix Iy_. The GLR test in (2.11) may now be written

J H I

E eysN% Xz. (2.a9)
j=l Ho

Since SHSj = IN_, there exists a unitary matrix Uj such that

(2.40)

Let _j = Uj_j. Then under hypothesis H0, _j still has the complex Gaussian dis-

tribution with zero-mean and covariance matrix IN_. Under hypothesis //1, _j has

the complex Gaussian distribution with mean UjSjbj/oj and covariance matrix INj.

The GLR test in (2.39) may now be written

J H 1

=H .... HuH _ (2.41)zj _j_j_j j j _ _.
j----I HO

Let

[]_j -- ZjA

ZjB

(2.42)

where _jA and _js are I(_j x 1 and (Nj - Kj) x 1 vectors, respectively. By using (2.40)

and (2.42), (2.41) may be written

J H l

r/ E =H: (2.43)= ZjAZjA > 7"

j=l _o

Under hypothesis Ho, _jA has the complex Gaussian distribution with zero-mean

and covariance matrix IKj. Under hypothesis H1, _'jA has the complex Gaussian

distribution with mean bj/o'j and covariance matrix IK_. Thus under hypothesis Ho,

2r] has the central X2 distribution with 2K degrees of freedom since K = K1 + I(2 +

• .. + K j; i.e.,

r/"-' exp(-r/) (2.44)
f,(vIHo) = (K- i)!
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Then the probability of falsealarm is

CPr = f,_OTlHo)d77

IX_ I _[ K -1 - k

k=0 (K:---1 : k)! exp(-7)" (2.45)

Under hypothesis//1,277 has the noncentral X 2 distribution with 2K degrees of free-

dom and noncentrality parameter 5 J H 2.= Ej=l bj bi/aj, i.e.,

oo ¢_i 7]i+K-1

f_(_lH_)= e×p(-_- _)_.__ (i + K- 1)!" (2.46)

Then the probability of detection is

/?P_ = f,7(rlIH1)drl

oo _i i+K-1 ,Ti+K-l-k

= exp(-5 - "/) i=o__" k_o= (i + If - 1 - k)t" (2.47)

Appendix C: Effect of Target Signature Mismatch

When the target signatures §j are used in the GLR test in (2.11), (2.11) becomes

J _._gj_yzj "1
E : >7, (2.48)
j=l O'j H 0

where _y§j = I. Under hypothesis H0, zj has the complex Gaussian distributionwith

zero-mean and covariance matrix a2INj. Under hypothesis HI, zj has the complex

Gaussian distributionwith mean §jbjand covariance matrix _r_INj.

Through similartransformations as in Appendix A, the test(2.48)may be written

J H,

r/= _ [_jA[ 2 > 7" (2.49)
j=l R°

Under hypothesis Ho, }jA has the complex Gaussian distribution with zero-mean and

variance 1. Under hypothesis H1, _jA has the complex Gaussian distribution with

mean g_g.iDy/oj and variance 1. Thus under hypothesis Ha, 2r] has the central X 2
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distribution with 2 degreesof freedom. Under hypothesisHI, 27/has the noncentral

X 2 distribution with 2 degrees of freedom and noncentrality parameter

J - 2

IbjI ... (2.50)= E --_--{sj Nil .

j=l ijj

We note that in the absence of target signature mismatch; i.e., when gj = §j, the 6

in (2.50) becomes

a i;ji2 (2.51)
5=E 2 '

j=l °'7

which is the SCNR for the case where the target signature is known completely.

Appendix D: Derivation of Detector B

The derivations below are both a specialization (due to the uncorrelated clutter

and noise pixels) and a generalization (due to multiple images) of [11]. Under hy-

pothesis/-/1, the probability density function (pdf) of the complex Gaussian random

vectors zj, zj(1), .-., zj(Lj), j = 1,2,... ,J, may be written

J 1

fl (zj,zj(1),...,zj(Lj),j = 1,2,..-,J)= 1-I U 7:Nj exp --
j=l L_ .,o-j \ o3/J

, (2.52)

where

Tlj - (zj - Sjbj)H(zj -- Sjbj) + zrf (l)zj(1) . (2.53)
Lj

Under hypothesis H0, the pdf of the complex Gaussian random vectors zj, zj(1), ...,

zj(Lj), j = 1, 2,--., J, may be written

J 1

fo(zj,zj(1),...,z;(Lj),j = 1,2,...,J)= II 2Nj exp - , (2.54)
j=1 _'N_rj \ crj ]

where

Toj- Lj + 1 z_fzj + Ez_(1)zj(1) . (2.55)
/=1
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The generalizedlikelihood ratio has the form

respect to o'] yields

Thus

maxa2 _2 h fl

max_,...,_ f0

crj = . Toj.

max f0 = II Nj
2 2

a 1 ,...,or j j=l

Maximizing fl with respect to a] yields

Maximizing fo with

(2.56)

(2.57)

^2 1
= --Tlj

oj Nj "
(2.58)

Thus

(4)2 ... 2
O"1 , _O'j

Minimizing Tlj with respect to bj gives

(Lj+I)Nj

(2.59)

l_j = STzj,

and

[. 1 z H (INj -- SiS H) zj +
n_:n Tlj - Lj + 1 z=i

Then the generalized likelihood ratio test becomes

(2.60)

zH(I)zj(l)] . (2.61)

J [ ZfZj + _"_,IL___IZT(1)zj(l ) ](L,+I)Nj I11

>_.
1_ zf (INj SjSH) zj + Z2, zf(I)zj(1)J //°j=l

(2.62)

Appendix E: Performance of Detector B

The derivations below are again both a specialization (due to the uncorrelated

clutter and noise pixels) and a generalization (due to multiple images) of [11].

J=l:

Consider first J = 1 and the GLR test in (2.28). Let

' =77' (2.63)ql - 1.
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Note that q[ is a monotonically increasing function of 7/'. Then (2.17) may be rewritten

zHSSHz H1

7/11
z H (IN -- SSU)z + _L=, zH(1)z(1) >_<of

I. (2.64)

Let

and

Cz

- , c_.ooj
O"

_(z)_ us(z), z= 1,2,... ,L, (2.66)
O"

where U is a unitary matrix that satisfies (2.40). Then under hypothesis Ho, _"

has the complex Gaussian distribution with zero-mean and covariance matrix IN.

Under hypothesis /-/1, _ has the complex Gaussian distribution with mean USb/o"

and covariance matrix IN. Under both hypotheses, the 5(l) has the complex Gaussian

distribution with zero-mean and covariance matrix IN. By using (2.65) and (2.66),

(2.64) becomes

where

_AH_A HI

<¢-1, (2.67)
Ho

[,A]= , (2.6s)
_B

with _'A and _s denoting K × 1 and (N-K)× 1 vectors, respectively. Under hypothesis

H0, _a has the complex Gaussian distribution with zero-mean and covariance matrix

In-. Under hypothesis//1, _'A has the complex Ganssian distribution with mean b/_r

and covariance matrix IK. Under both hypotheses, _B has the complex Gaussian

distribution with zero-mean and covariance matrix IN-K. Let

t = _AH_A, (2.69)

and
L

_-= _-_, + E r¢"(O_(O. (2.70)
/=1
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Then (2.67) becomes
H1

t _ (¢- 1)T. (2.71)
a-o

Under hypothesis Ho, 2t has the central X 2 distribution with 2K degrees of freedom.

Under hypothesis ttl, 2t has the noncentral X 2 distribution with 2[( degrees of free-

dora and noncentrality parameter _ = bHb/a 2. Under both hypotheses, 2r has the

central X 2 distribution with 2(NL +N- K) = 2M degrees of freedom. The t and T

are independent of each other. Thus under hypothesis Ho, _7[M/K = Mt/(Kr) has

the central F-distribution with 2K and 2M degrees of freedom. Under hypothesis

111, rl[l]/I/K = Mt/(Kr) has the noncentral F-distribution with 2K and 2M degrees

of freedom and noncentrality parameter _.

The probability of false alarm may now be calculated as

= P(t > (¢- 1),IHo)

_l)_ fi(t[Ho)dt f._(_-)d_-

_ ¢'_-:_]((-1) K-k-' (M+K-k-2)[
- ¢M+K-_-I (K - k - 1)!(M - 1)!'k=O

(2.72)

where ft(tlHi ) and f, lH,(r) denote the conditional probability density functions of t

and % respectively, under hypothesis Hi, i = 1,2.

The probability of detection may be calculated as

PD = 1-- fi(tlH,)dt

M-1 1)-(M-k-I)= 1-exp(-_) _ (¢-
k=o (M-k-l)!

__,_ 3'(M + Ig+i-k-2)' (¢-¢ l) M+r'+'-k-1, (2.73)
,o= i[ (i+h'-l)!

D

Using the finite sum expression derived by Kelly in [12], we have

M-1 M-k-, ( M + K_ k_ 2 ) (,/()i (¢_ l)K+iPo = 1 - exp(-6/() _ _ i! _,w+tv-k-_" (2.74)k=0 i=0 K + i - 1
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Considerbelow J > 1 and the GLR test in (2.19). Let (2.19) be rewritten as

J /'I1

7 = _In(q_ + 1) ><ln¢, (2.75)
j=l S'/°

where

_fs_sf_ (2.76)
qJ = zy (INj - SjSf)zj + Z_=°I zf(1)zj(1)"

Note that the qj is similar to r/_ in (2.64). Thus under hypothesis Ho, qjMj/I(j has

the central F-distribution with 2Kj and 2Mj degrees of freedom; i.e.,

qf-'(Mj + X,'_- 1)!
f_,(qjiHo)= (Kj - 1)!(_/j - 1)!(1 + qj)m_+i] •

(2.77)

Under hypothesis HI, qj_fj/I(_ has the noncentral F-distribution with 2I(j and 2Mj

degrees of freedom and noncentrality parameter 8./; i.e.,

_ z';+'-1(M./+Kj + i- i)!
L,(q./IH1) = e×p(-5./)E i[?-]l/IJ°./qjti=o - 1)!(Kj + i- 1)!(1 + qj)Mj+K_+i"

(2.78)

Note also that ql, q2, "" ", qs are statistically independent of each other. Let

7j=ln(qi+l), j = 1,2,...,J. (2.79)

It is easy to show that

[exp(rLi ) - 1] A5-1 (Mj + I(./- 1)[

f_ (r/./lH°)= (I(j - 1)!(M./- 1)! exp[(M./+ It'./- 1)7j1' (2.80)

and

5}[e×P(7./)- 1]fJ+i-1(M./ Jl- I(./ ++7. i-- 1)! . (2.81)
f_, (7jIH1) = exp(-Sj) _ i!(M} -- _ + -i _-_)V. ex-_M./-+ I_ q--i _ 1)7j]

i=0

The 71, 72, "" ", r]j are also statistically independent of each other. Thus

f,(71Ho)= f,, (71_o)• f,=(7IHo)• ..., f,_(7lHo), (2.s2)
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and

f (,Tinl) = f,, ( IH1)* f,j(,TIH,). (2.83)
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Figure 2.1: 3-dimensional plots of the magnitudes of complex $AR images when the

target is oriented 24 ° from end-on and frequency band between 400 and 1300 MHz.

(a) Foliage only. (b) Target in foliage. (c) After coherent subtraction.

35



Target

5°°1 ^
'001
:o:t

40 30_

(a)

40

30

10

500 -

400 -

300 -

200 -

100-

0:
40

3O
2O

(b)

10

30

20

Target

30
20

10

(c)

Figure 2.2: 3-dimensional plots of the magnitudes of complex SAR images when the

target is oriented broadside and frequency band between 400 and 1300 MH.z. (a)

Foliage only. (b) Target in foliage. (c) After coherent subtraction.
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Figure 2.4: Target template examples for (a) complete knowledge of target signature

information except for the unknown complex gain and known orientation informa-

tion, (b) incomplete knowledge of target signature information and known orienta-

tion information, (c) unknown target signature information and known orientation

information, and (d) unknown target signature information and unknown orientation
information.
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PF = 10 -1°. (a) Before coherent subtraction. (b) After coherent subtraction.
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3. On Image and Template False Alarm Rates When Using Target

Templates for Target Detection

3.1 Introduction

Due to the availability of high resolution synthetic aperture radar (SAR) and

optical images, ground targets such as trucks and tanks are often described by target

templates with each template consisting of one or more pixels in an image. As a

result, target templates are used for target detection [1, 2]. It has been shown in [1]

that when a target is described by more than one bright pixe], using an appropriate

target template for target detection may give better performance than using one pixel

at a time.

For a given probability of false alarm of a target template, generalized likelihood

ratio detectors may be derived to achieve the constant false alarm rate (CFAR) [1, 2].

Yet achieving CFAR for each target template may not be what a radar designer is

asked to achieve. For example, a radar designer may be asked to achieve a constant

false alarm rate per kilometer squared. For this case, the size or dimension of an image

that covers an area of one kilometer squared is determined by the image resolution.

Thus a CFAR detector should be derived to achieve CFAR for the image rather than

for the target template.

However, there does not appear to exist an analytical expression that shows how

the false alarm rate of a target template is related to the false alarm rate of an image

except for a couple of special cases. One of the special cases is when the size of the

image is equal to the size of the target template. For this case, the two false alarm

rates are the same. The other special case is when the target template is a single

pixel and the pixel false alarm rate is small. For this case, the image false alarm rate

is approximately equal to the template or pixel false alarm rate multiplied by the

number of pixels in the image.
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In this letter, we shall showwith computer simulations how the falsealarm rate

of a target template is related to the falsealarm rate of an image when we wish to

achievean image CFAR, which is much lessthan 1. We shall show that for the case

where the radar clutter and noise pixels are independently and identically distributed

and the image size is much larger than the target template size, the image false alarm

rate is also approximately equal to the template false alarm rate multiplied by the

number of pixels in the image. This case is often encountered in practice. For the

example where each image covers an area of one kilometer squared, the image size

is easily much larger than the target template size for most ground targets such as

trucks and tanks.

3.2 Simulations Results

The simulation results below are obtained for the following target detection prob-

lem [1]. Let z denote an N x I vector consisting of the pixels of a target template in the

presence of clutter and noise. Under hypothesis//1, the target presence hypothesis,

the z may be written

z=Sb+n.

The b is the K × 1 vector consisting of K deterministic unknown complex scalars

in the target templates. The S is a full-rank N x K matrix describing the locations

of the unknown scalars. Only one element in each row and each column of S is one

and the remaining elements are zero. The n denotes the N x 1 clutter and noise

random vector and is assumed zero-mean complex Gaussian with covariance matrix

o'2I, where I denotes the identity matrix. Under hypothesis Ho, the target absence

hypothesis, the z may be written

Z_---n.

It has been shown in [1] that the generalized likelihood ratio detector for the above
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target detection problem has the form

znSS_rz HI
>
<_.

o-2 H0

The threshold parameter 7 is determined according to a given probability of false

alarm of the target template PF(Target Template), where

K-1 7K-l-k

PF(TargetTemplate)= (K - 1-
k=0

To detect the presence of a target from a SAR or optical image, the target tem-

plate, to which 3.2 is applied, is shifted both horizontally and vertically and one pixel

at a time across the entire image. Note that as the target template moves across the

entire image, the areas covered by the template may overlap. When more than one

detections occur over a group of overlapping areas of the image, all detections are

combined together as one detection since targets do not overlap.

In the simulation examples below, the images from which the presence of a target is

sought are assumed to be L × L square images. The target templates are also assumed

to be square templates with N = K. Both the image and the target template false

alarm rates are assumed to be much less than 1. Also, the template false alarm rate

is assumed to be so small that the probability of two or more false alarms occuring

over non-overlapping areas of an image is negligible as compared to the probability

of one false alarm per image. Thus in the simulation examples below, the image false

alarm rates are computed as the number of images that contain false alarms divided

by the total number of independent images used in the Monte-Carlo simulations.

Figure 3.1 shows the image false alarm rate as a function of logl0(L ) when the

target is described by a 2 x 2 template (N = K = 4). The threashold "7 is determined

from 3.2 when the target template false alarm rate 1 satisfies Pv(Target Template) =

1 Note that if the target template were a single pixel, the image false alarm rate would be approxi-

mately 0.1 for all image sizes when PF(Target Template) = O.1/L 2.
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O.1/L 2. The results shown in Figure 3.1 are obtained with 10,000 Monte-Carlo simu-

lations. Note from Figure 3.1 that the image false alarm rate increases almost linearly

with logl0(L ) and approaches 0.1 when L >> 2, i.e., when the image size is much larger

than the template size.

Figure 3.2 is similar to Figure 3.1 except that PF(Target Template) is ten times

smaller, i.e., PF(Target Template) = 0.01/52. The results shown in Figure 3.2 are

obtained with 100,000 Monte-Carlo simulations. Note that a similar relation exists

between the image false alarm rate and the target template false alarm rate.

Figure 3.3 is also similar to Figure 3.1 except that the target is described by a

3 × 3 template (N = K = 9). Note again that a similar relation exists between the

image false alarm rate and the target template false alarm rate.

The implication we obtain from the above three simple simulation examples is

that when the image size is much larger than the target template size and a constant

image false alarm rate Py(Image) (PF(Image) << 1) is desired, the target template

false alarm rate PF(Ta:rget Template) may simply be chosen as PF(Image) divided

by the number of pixels in the image. The so obtained image false alarm rate will

be approximately the same as or slightly smaller than the desired image false alarm

rate.
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2 × 2. The "*" symbols denote the Monte-Carlo simulation results. The solid line
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4. An Efficient Algorithm for Two-Dimensional Frequency Estimation

4.1 Introduction

The two-dimensional (2-D) frequency/angle estimation algorithms, which have

beenstudiedrecently, include the minimum variancemethod [1], the linear prediction

methods [2, 3, 4, 5], the subspacerotation methods [6, 7, 8, 9, 10, 11, 12, 13, 14],

the nonlinear least squaresfitting method [15], and the maximum likelihood (ML)

methods [16, 17]. Thesealgorithms considerone of the following two data models.

The first data model assumes that the frequencies of the 2-D complex sinusoids occur

at arbitrary points of the 2-D frequency domain and the data model has the form

xm,_(t_) = E c_ ej(_m+"_' (4.1)
_=1

where {c_i} denote the complex amplitudes and {w_} and {#_} denote the 2-D fre-

quencies. For this data model, the number of unknowns is 4K. The second data

model assumes that the frequencies of the 2-D complex sinusoids occur at the inter-

sections of some unknown grid lines in the 2-D frequency domain and the data model

has the form

xm,_(t_) _ _,_ -it 5eJ(_°km+u_ r_) (4.2)
_k,kk n/ •

k=l k=l

For this data model, the number of unknowns is K+K+2KK. Depending on the true

distribution of the frequencies of the 2-D complex sinusoids, one model may result

in fewer unknowns than the other, which, according to the parsimony principle [18],

makes one model yield more accurate frequency estimates than the other. Consider an

example where the frequency locations of the complex sinusoids are shown in Figure

4.1. The numbers of unknowns in the first data model for the cases in Figures 4.1(a)

- (g) are 12, 16, 20, 24, 28, 32, and 36, respectively. The numbers of unknowns in

the second data model for these cases are the same and are 24.
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Figure 4.1: Locations of sinusoids in the two-dimensional frequency domain.

This paper considers the second data model, which is also considered in [3, 5, 13,

17]. This data model may be used when a vertical 2-D rectangular uniform linear

array is used to estimate the incident angle of a signal arriving from a low angle

relative to a smooth reflecting surface [19]. For this case, the signals arriving at

the array consist of both the original incident signal and the signal reflected from

the smooth surface. The same data model may also be used in synthetic aperture

radar (SAR) or inverse SAR (ISAR) imaging [20, 21] to estimate the locations of the

scattering centers of an object being imaged [5, 13]. These two cases will be further

addressed in the paper.

Among the previously studied methods, the subspace rotation methods, which

include the state-space [6, 7, 9], ESPRIT [8, 10], and matrix pencil methods [11,

13, 14], are known to be computationally efficient and have high resolution. Yet

their estimation performances are usually not as good as that of the ML methods.

The ML methods are asymptotically statistically efficient [17], but they require a

computationally intensive multidimensional search over the parameter space.
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This paper presents a computationally efficient eigenstructure-based 2D-MODE

algorithm for estimating the frequencies of 2-D complex sinusoids. Unlike the sub-

space rotation methods, the algorithm is statistically efficient under either the as-

sumption that the number of temporal snapshots is large or the signal-to-noise ratio

(SNR) is high. The statistical performance of the 2D-MODE algorithm is better than

that of the computationally efficient subspace rotation methods, whereas the amount

of computations required by the 2D-MODE algorithm is usually no more than a few

times of that needed by the subspace rotation methods.

The remaining of this paper is organized as follows. In Section 2, we describe the

problem of interest. In Section 3, we present the computationally efficient 2D-MODE

estimator. In Section 4, we describe the properties and the applications of the 2D-

MODE estimator. In Section 5, we establish the asymptotic statistical performance

of the estimator under either the assumption that the number of temporal snapshots

is large or the SNR is high. In Section 6, we provide several numerical examples

comparing the performance of the 2D-MODE algorithm with that of the subspace

rotation algorithms. To make the paper self-contained, the subspace rotation algo-

rithms we use are briefly described in the Appendix. Finally, Section 7 contains our

conclusions.

4.2 Problem Formulation

Consider the following model of 2-D complex sinusoids in additive noise:

K K

_,k,o,_,_. + e_-_(t,_), (4.3)
k---1 k=l

where m = 1,2,-..,M, _ = 1,2,...,M, and n = 1,2,...,N. We refer to M

(M > I() and _'U (M > I() as the numbers of spatial measurements, and to N as

the number of temporal snapshots. The additive noise e,,,_(t_) is assumed to be a
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complex Gaussianrandom processwith zero-meanand

E{em,m(tn,)e*_,_(t_2) } = _25_,,n2 , (4.4)

where (-)* denotes the complex conjugate and 5,_1,,_2 denotes the Kronecker delta. The

em,_(t,_), m = 1,2,..., M, _ = 1,2,..., M, are assumed to be independent of each

other and the complex sinusoids. The complex amplitudes ak,r.(t_), k = 1, 2, .. •, K,

= 1, 2,..-, A-_, may be modeled as zero-mean complex Gaussian random processes

that may or may not be correlated with each other. This model is referred to as the

stochastic (or unconditional) signal model [22, 23]. For the stochastic signal model,

the temporal signal snapshots aks(t,_ ) at different sampling times t,_ are assumed to be

independent of each other. The complex amplitudes o%-_(t,_) may also be modeled as

deterministic unknowns. This model is referred to as the deterministic (or conditional)

signal model [22, 23].

Let

y(tn)=[ yl,l(t_) "'" yl,_(t_) ...... yM,,(t_) "'" yM,-_(t_) IT, (4.5)

e(tn)_._ [ el,l(tn).., el,_(tn) ...... eM,l(tn) ... eM,_(t_)IT, (4.6)

s(tn)--[ O_l,l(tn)... O_l,_(tn) ...... C_/x.l(tn ) ... OQx._(tn)IT, (4.7)

A= [ a(wl) .-- a(wK) 1, a(wk) = [ e j_ ... e jM_k l T , k----- 1,2,'--,I£,

(4.s)
and

B = [ b(#l) .-- b(#_) ], b(#_-)= [ ei"_ ... eJ_7"_- ]T, _.= 1,2,...,'Kf,

(4.9)

where (.)T denotes the transpose. Then ((4.3)) may be rewritten as

y(t_) = (A ® B)s(t_) + e(t_), (4.10)
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where ® denotesthe Kroneckerproduct.

The problem of interest herein is to estimate wx, w2, ..', WK and /_a, P2, "" ",

#X: from y(t,_), n = 1,2,...,N. Once the frequency estimates are obtained, the

complex amplitudes of the 2-D complex sinusoids can also be estimated with a simple

least-squares method [3].

4.3 The Computationally Efficient 2D-MODE Estimator

The exact ML estimator of the 2-D frequencies requires a multidimensional search

over the parameter space [17]. Since the search over the parameter space is compu-

tationally prohibitive, computationally more efficient methods are attractive. We

describe below a computationally efficient eigenstructure-based technique, which is

an extension of a 1-D algorithm known as MODE [24] or, in a related form, WSF

[25]. This estimator is herein referred to as the 2D-MODE.

Let

1 N

R= -_ _,y(t_)yH(t_), (4.11)

where (.)H denotes the complex conjugate transpose and 1_ is the estimate of the

spatial covariance matrix R,

R= E{y(t_)yH(t,)}. (4.12)

It has been shown in [24, 25, 23, 26] that an asymptotically (for large N or high

SNR) statistically efficient estimator of the 2-D frequencies w = [wl,w2,... ,WK] T

and /z = [#i,/x2, -.., #_.]T can be obtained by minimizing the following function:

f(oa,/z) -- tr [P_®B(W,/z)]_sfi_A-1EH], (4.13)

where, for some matrix X, the symbol P:_ stands for the orthogonal projector onto

the null space of X, and where the columns in 1_ are the signal subspace eigenvectors
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of R that correspond to the/_" largest eigenvaluesof R, with/_" definedas

I( = min[N, rank(S)]. (4.14)

Here S is the signal covariance matrix,

s = (4.1s)

We assume that/-( is known. (If/_" is unknown, it can be estimated from the data as

described, for example, in [27].) Note that if no components of the signal vector s(t)

are fully correlated to one another and if N is large enough, then K = KK. Further,

in ((4.13)) A is a diagonal matrix with diagonal elements _1 _> _2 _>"" >_ ._K-, which

are the/t" largest eigenvalues of I5,., and

__. = ,i. - _2I, (4.16)

with i denoting the identity matrix and

1 MM

M_-T-/_'i=_. 1 MM--/_. tr(R)- i=1 i, . (4.17)

It is worth noting that the evaluation of ]_s, -_, and As introduced above requires

only the computation of the/-( principal eigenpairs of R. Since usually ff << MM,

the involved computational burden is of the order O(M2-M :) and hence much reduced

compared with what would be required for a full eigendecomposition. The orthogonal

projector PAoB may be written as (see [28] for the properties of the Kronecker

product)

= I-(A ® B)[(A n ® BH)(A ® B)] -1 (A n ® B r-r)

= I-[A(AHA)-IA H] ® [B(BHB)-'B "]

--- I- (I- P_) ® (I- P_)

= Ioe +PIoI-eJ, oe .
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Thus ((4.13)) may be rewritten as

f=tr[(l®P_) AEsASA^2*-IEy]+tr[(P_(gI) EsA]A-1E,H]-tr[(P_®P_)Es/ksA2 -IEs].H

(4.19)

It is shown in Appendix A that the third term above is a higher-order term for

both the case of large N and the case of high SNR. Thus minimizing ((4.19)) is

asymptotically equivalent to minimizing

f : tr [(I(_ P_)_]si/i-lI_f] + tr [(P_k Q I)]_,i2i-l_-]f] . (4.20)

We show below how to avoid the search over the parameter space needed to

minimize ((4.20)). The projector P_ above may be reparameterized in terms of the

coefficients c = [ Co . cl "" ct,- ]T of a polynomial defined as

K K

E cJ -k: coII (z- co o. (4.21)
k:0 k=l

Let C n be the following (M - K) × M matrix

C H =

C K • . . C 1 CO

0 CK • • • cl C0

(4.22)

Then P_ = Pc, where Pc denotes the orthogonal projector onto the range space of

C (see [24, 29]). By defining d and D for B similarly as c and C for A, we obtain

P_ = PD- Thus by using the reparameterization above, ((4.20)) may be rewritten

as

f = tr {[I ® (D(DHD)-'D")] I_A_/_-l]_f}+tr { [(c(cHc)-IC H) ® I] ]___-,]_H}.

(4.23)

Since ]_ is a consistent estimate of the true signal eigenvector matrix E_ and

the columns of E_ belong to the range space of A ® B, it can be shown [24] that
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minimizing ((4.23)) is asymptotically equivalent to minimizing

(4.24)

whereWl and Wa areconsistentestimatesof cHc and DHD, respectively. The 2D-

MODE algorithm minimizes ((4.24)), in the following two seeps. In the first step, let

W, = I and W2 = I in ((4.24)) and minimize ((4.24)) to obtain consistent estimates

_: and a of e and d [29]. In the second step, let Wl = _H_ and W= = DHI),

where C and 13 are formed from the _: and (t obtained in the first step, and minimize

((4.24)) again. The _: and a obtained in the second step are then used to compute

the 2-D frequency estimates by rooting the corresponding polynomials of the form of

((4.21)).

Let

^ ^2^_1^/.[= EsAsA Es =

Zll " " " Z1M

(4.25)

where Zij are M x M matrices. Then

and

tr(7,11)

tr( M1)

"'" tr(ZiM)

'" tr(ZMM)

(4.26)

a = rain tr
d

min tr {(DW_qD H) Ztt}. (4.27)
d

As shown in Appendix B, as either N or SNR increases, Ztt approaches a matrix Z_

whose rank is no more than }7. However, the rank of Ztt may be more than 7_-. To

improve the accuracy of the estimates of/_, we may replace Z/, with its nearest rank-

approximation in the Frobenius norm metric [30]. Similarly, Zoo may be replaced
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with its nearestrank-K approximation in the Frobeniusnorm metric since the rank

of the limiting matrix Zoois no more than K (as also shown in Appendix B). For

detailed implementation procedures of minimizing the quadratic functions ((4.26))

and ((4.27)), see [29, 31 t.

The polynomial coefficients in ((4.26)) and ((4.27)) can be constrained by making

use of the so-called conjugate symmetry conditions [29, 31]

ck = ch-_k, k = 0,1,...,K, (4.28)

and

d2 = d*- - k = 0, 1,... h', (4.29)K-k'

These constraints, considered in detail in the cited works, leads to the most parsi-

monious parameterization of the estimation problem under discussion, and hence can

yield enhanced estimation performance [18]. In the simulation examples given in Sec-

tion 6, we present results obtained by imposing the conjugate symmetry constraints

on the polynomial coefficients in ((4.26))and ((4.27)).

4.4 Applications and Properties of the 2D-MODE Estimator

We consider below the use and the properties of the 2D-MODE estimator in the

case where the number of temporal snapshots N is large and the case where the SNR

is high. Since in practical applications, particularly those involving sensor arrays, it

is less likely to have large M or M, we shall not consider such a case herein.

4.4.1 The Case of Large N

The case where the number of temporal snapshots N is "large" may occur when

estimating 2-D incident angles with a 2-D MxM rectangular uniform linear array. For

this application, the {a.'k} and {/_F} are the phase factors from which we can calculate

the 2-D incident angles (i.e., the azimuth and elevation angles). Equation ((4.3))
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modelscertain special caseswherethe incident anglesare related to eachother. For

example,such a special case occurs when a vertical 2-D rectangular uniform linear

array is used to estimate the incident angles of a signal arriving from a low angle

relative to a smooth reflecting surface such as the calm sea [19]. For this case, the

signals arriving at the array consist of both the original incident signal and the signal

reflected from the surface, i.e., the specular path, as shown in Figure 4.2. The incident

angle and its reflected angle are related to each other and can be shown to fit into

the data model in ((4.3)). For this application, N denotes the number of independent

snapshots taken at the output of the array. Furthermore,

2_r51 sin Ok sin Sk, (4.30)
aJk -- /_0

and

2_r52 cos Og, (4.31)
#r--- .Xo

where )_0 denotes the wavelength of the incident signals and Ok and Ck denote the

elevation and azimuth angles, respectively. Since q_l = q_2 and 0_ = 180 ° -01, we have

K = 1, K = 2, and #a = -#2 for this example.

We can also use the knowledge that #t = -#2 to obtain improved estimates when

minimizing ((4.27)). With #1 = -/*2, we can constrain the polynomial coefficients di

in ((4.27)) so that do = d2 = 1 and dl is real. Note that these conditions are more

strict than the conjugate symmetry condition in ((4.29)). Under these conditions, the

minimization of ((4.27)) may be carried out as follows. Let Z_Z_ denote the rank-2

approximation of Z_, where ZV is an M x 2 matrix. Let _ and _ be the first and

second columns of Z_, respectively. Then for _ = 1,2,

z_ _,# kl a
"_,[- + _-2,r. _-L["

[1 11 4.32)
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Figure 4.2: Direction-of-arrival estimation with a 2-D array.
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where 2_, i = 1,2,-.-,7_, denotes the ith element of _. Let

ReIW /2 I }

where g_, j = 1, 2, denotes the/th column of (_tt. Then minimizing ((4.27)) becomes

ll " [ ' where '[ " H den°tes the Euclidean n°rm' and

the solution is

dl = -[(ge)_] -_ (_e) r¢ _;e. (4.34)

In the case where the number of temporal snapshots N is large, similar to the

results obtained in [24, 23] for the 1-D angle/frequency estimation case, the compu-

rationally efficient 2D-MODE estimator can be shown to be statistically equivalent to

the stochastic maximum likelihood (ML) estimator (i.e., the ML estimator obtained

under the stochastic signal model). Since the stochastic ML estimator asymptotically

achieves the stochastic Cramer-Rao bound (CRB), it follows that the 2D-MODE es-

timator is an asymptotically (for large N) statistically efficient estimator.

We remark that the assumption that the temporal signal snapshots ak,_(t,_ ) are

independent of each other is not a necessary condition for the application of the

2D-MODE algorithm. In particular, the asymptotic accuracy of the 2D-MODE algo-

rithm is the same for both temporally correlated and temporally uncorrelated signal

snapshots (see Remark 3 on p. 1787 of [22]). For the temporally correlated sig-

nals, however, more accurate estimators may be devised if the temporal correlation

function is known or if it is known to have some parameterized functional form.
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4.4.2 The Case of High SNR

The case where the SNR is "high" and N is small may occur in synthetic aperture

radar (SAR) or inverse SAR (ISAR) imaging [20, 21, 13, 5]. In this application, the

radar usually transmits linear frequency modulated (chirp) pulses. Upon receiving

each pulse returned by an object being imaged, the radar mixes the pulse with a

reference chirp signal and low-pass filter the mixed signal. As a result, the scattering

centers of the object at different ranges correspond to different frequencies of the

output of this operation. Since either the radar or the object is moving or rotating,

the pulses received at different angles between the radar and the object are used to

form a synthetic aperture. The scattering centers of the object at the same range but

different cross-ranges correspond to different (Doppler) frequencies over the synthetic

aperture. Thus for this application, the {wk} and {#;} describe the locations, i.e.,

the ranges and cross-ranges, of the scattering centers of the object being imaged.

Similar to the results obtained in [26] for the 1-D angle/frequency estimation case,

the computationally efficient 2D-MODE estimator can be shown to be asymptotically

(for high SNR) statistically equivalent to the deterministic ML estimator. It has

been shown in [26] that for high SNR, the deterministic ML estimator achieves the

deterministic CRB. Thus the 2D-MODE estimator is an asymptotically (for high

SNR) statistically efficient estimator in this case also.

We remark that in the case of high SNR, the N may take any value greater than or

equal to 1. The case of N = 1 has a particular relevance for the SAR/ISAR application

mentioned previously [20, 21]. In such a case, we have t_s = y(tl)/lly(tl)ll and fi_s

and _4 are scalars. Thus for N = 1, minimizing ((4.13)) is equivalent to minimizing

f = yH(t,)P_®BY(tl ). (4.35)

We note that this function is exactly the one to be minimized by the deterministic

ML estimator given in [17]. Since the 2D-MODE algorithm determines an asymptotic
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realization of the minimizer of ((4.13)), it readily follows that the 2D-MODE and the

deterministic NIL estimatorsareasymptotically (for high SNR) equivalent. (We note

that showing this equivalencein the caseof N > 1 is a more complicated operation

[26].)

4.4.3 Parameter Identifiability Conditions

We note that our previous results are valid if M and M are constrained by the

parameter identifiability requirements [23, 32, 33]. Let rl denote a real-valued vector

containing all unknowns of the data model in ((4.3)). Then our problem is parameter

identifiable if

R=Ro _ _=V]o. (4.36)

As shown in Appendix C, the inequalities

M > 2K-- (4.37)

and if
_-f > 2I-(-- (4.38)

K'

are sufficient conditions for parameter identifiability.

By rearranging the elements of y(t,,), s(t,0, and e(t,0, we can rewrite ((4.10)) as

y(t, 0 = (B ® A)s(t, 0 + e(t, 0. We can then show similarly that

[(
_-I > 2I-(- -- (4.39)

M'

and
[(

M > 2K- _-;i' (4.40)

are also sufficient conditions for parameter identifiability.
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4.5 Statistical Performance Analysis

In this section, we establish the asymptotic statistical performance of the 2D-

MODE estimator for both the caseof large N and the case of high SNR.

4.5.1 The Case of Large N

As argued in Appendix D, the asymptotic (for large N) statistical distribution

of & is Gaussian with mean w and covariance matrix equal to the corresponding

stochastic Cramer-Rao bound (CRB), CRB_,. The ijth element of (CRB_.,) -x is

given by

(4.41)

where Ai = OA/Owi. Similarly, the asymptotic (for large N) statistical distribution

of fl is shown to be Gaussian with mean p and covariance matrix equal to the corre-

sponding stochastic CRB, CRB_t. The ijth element of (CRB_) -1 is (see Appendix

D)

(4.42)

where Bi = OB/O#i.

4.5.2 The Case of High SNR

It is shown in Appendix D that the asymptotic (for high SNR) statistical distribu-

tion of & is Gaussian with mean w and covariance matrix equal to the deterministic

CRB given by
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where
1 m

g = -_ _ s(t,OsH(t_). (4.44)

It is also shown in Appendix D that the asymptotic (for high SNR) statistical distribu-

tion of _ is Gaussian with mean tt and covariance matrix equal to the corresponding

deterministic CRB given by

[(CRB_) -1] 2NRe (BHp_B 0 }) (4.4.5)

4.6 Numerical Examples

In this section, we illustrate the performance achievable by the 2D-MODE algo-

rithm and compare it with the performance of the two-dimensional subspace rotation

methods (2D-SRMs). (The 2D-SRMs, both with and without spatial smoothing, are

briefly described in Appendix E.) The empirical performance of the algorithms is ob-

tained from 100 independent trials and it is compared with the theoretical statistical

performance given by the CRBs.

In the first three examples, we consider the case of large N. In particular, we

consider the scenario shown in Figure 4.2 where a vertical rectangular uniform linear

array with M = 8 and M = 10 is used to estimate the angles of arrival of an incident

signal arriving from (¢, 8) and of its reflected signal arriving from ($, 180 ° - 8). The

signal-to-noise ratio (SNR) of the direct signal used in the examples is assumed to be

-7 dB. The SNR of the reflected signal is assumed to be 3dB less than that of the

direct signal. The spacings 51 and 52 between two adjacent sensors in the array are

assumed to be a half wavelength. The CRBs of the estimates of ¢ and 0 are readily

obtained from the CRBs of the estimates of wk and /_ given in Section 5 and the

Equations ((4.30)) and ((4.31)) relating $ and 0 to wk and #_.

Figure 4.3 shows the root-mean-squared errors (RMSEs) of the angle estimates

as a function of the elevation angle 0 when ¢ = 45 ° and N = 60. The incident and
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reflected signalsare assumedto be uncorrelatedwith eachother, which may happen

when the rectangular array is well above the reflecting surface. For this example,

the 2D-SRM is used without spatial smoothing. We note that the performanceof

the 2D-MODE is alwaysbetter than that of the 2D-SRM. Figure 4.3 alsoshowsthe

asymptotic (largeN) statistical performance, corresponding to the CR-bound (CRB).

We note that the 2D-MODE estimator performance is very close to its asymptotic

statistical performance, which is also the best achievable performance in the class of

(asymptotically) unbiased estimators.

Figure 4.4 shows the performance of the 2-D estimators as a function of the cor-

relation coefficient between the incident and reflected signals when ¢ = 45 °, 0 = 85 °,

and N = 500. For this example, the 2D-SRMs are used both with and without

spatial smoothing. We note that the 2D-MODE algorithm has the most significant

advantage over the 2D-SRM without spatial smoothing when the signals are highly

correlated or coherent. When the incident signals are completely correlated with

each other or coherent, the 2D-SRM without spatial smoothing fails. For this case,

the 2D-SRM must be used with spatial smoothing. For the 2D-SRM with spatial

smoothing, we set both dimensions of the subarrays to L = L = 5. Figure 4.4 shows

that the 2D-SRM with spatial smoothing is also outperformed by the 2D-MODE. In

our implementations, the amount of computations needed by the 2D-MODE is about

7.1 times of that needed by the 2D-SRM with or without spatial smoothing.

Figure 4.5 shows the RMSEs of the angle estimates as a function of N when

¢ = 45 °, 0 = 85 °, and the incident and reflected signals are 99% correlated. For

the 2D-SRM with spatial smoothing, both dimensions of the subarrays are set to

L = T = 5. We note again that the 2D-MODE algorithm performs better than the

2D-SRM both with and without spatial smoothing. We also note that the larger the

N, the closer the 2D-MODE estimator performance to its CRB. Note from Figures 4.3

and 4.5 that for the 2D-MODE estimator to achieve its CRB, a larger N is needed for
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highly correlatedsignals than for uncorrelatedsignals. For N = 10,000, the amount

of computations needed by the 2D-MODE is about 4.0 times of that needed by the

2D-SRM with or without spatial smoothing.

In the next three examples, we consider the performance of the 2D-MODE fre-

quency estimator for the case of N = 1, which is the radar imaging case. We shall

consider the case where there are two complex sinusoids in each of the two dimen-

sions, i.e., K = K = 2, and all 2-D complex sinusoids have the same SNR. We also

assume that M = 8 and M = 10. The performance of the 2D-MODE estimator is

compared with that of the 2D-SRM with spatial smoothing (with L = L = 5). Note

that as for the case of coherent incident signals and large N, the 2D-SRM must be

used with spatial smoothing for this N = 1 case, no matter what the SNR is.

Figure 4.6 shows the RMSEs of the frequency estimates as a function of SNR

when (a_l,aJ2) = (2_- x 0.28, 2_r x 0.33) and (#1,#2) = (2_r x 0.30,2_r x 0.35). We note

that the performance of the 2D-MODE algorithm is always better than that of the

2D-SRM with spatial smoothing, especially when the SNR is around 0 dB. Figure 4.6

also shows the asymptotic (high SNR) statistical performance, corresponding to the

CR-bound (CRB). We note that the 2D-MODE estimator performance is very close to

its asymptotic statistical performance, which is also the best achievable performance

in the class of (asymptotically) unbiased estimators, when the SNR is greater than

or equal to 5 dB.

Figure 4.7 shows the RMSEs of the frequency estimates as a function of the fre-

quency separation A_/(2_r) when (wl,_a2) = (27r x 0.28,2:r x 0.28 + A_), (#1,#2) =

(2_" x 0.30, 2_" × 0.35), and SNR = 10 dB. Figure 4.8 shows the frequency estimates

as a function of frequency separation A#/(2_) when (_,w2) = (27r x 0.28,2_r x 0.33),

(#_, #2) = (27r x 0.30, 27r x 0.30 + A/_), and SNR = 10 dB. We note that the perfor-

mance of the 2D-MODE algorithm again is always better than that of the 2D-SRM

with spatial smoothing, especially when the frequency separation, either Aa.'/(2rr)
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or A#/(2_-), is small. We also note that as the frequency separation increases, the

2D-MODE estimator performance becomes closer to its asymptotic statistical perfor-

mance.

Because the eigendecomposition of 1_ is no longer needed for N = 1, the amount

of computations needed by the 2D-MODE for N = 1 is reduced to 0.35% of the

amount required by the example in Figure 4.4. The amount of computations needed

by the 2D-SRM with spatial smoothing for N = 1 is also reduced to 0.80% of the

amount required by the example in Figure 4.4. For g = 1, L = L = 5, M = 8, and

M = 10, the amount of computations needed by the 2D-MODE is about 3.1 times of

that needed by the 2D-SRM with spatial smoothing.

4.7 Conclusions

Vc'e have presented a computationally efficient eigenstructure-based 2D-MODE

algorithm for two-dimensional frequency estimation. We have shown that this esti-

mator is asymptotically statistically efficient under the assumption that either the

number of temporal snapshots is large or the signal-to-noise ratio is high. Numerical

examples showing the comparative performances of this algorithm and of the compu-

rationally efficient subspace rotation algorithms have also been given in this paper.

We have shown that the performance of the 2D-MODE algorithm is better than that

of the subspace rotation methods, whereas the amount of computations required by

the 2D-MODE algorithm is usually no more than a few times of that needed by the

subspace rotation methods.

Appendix A - The Simplification of the 2D-MODE Cost Function

We show below that the third term of ((4.19)) is a higher-order term and may be

neglected for large _\- or high SNR.

68



The Case of Large N

Consider first the case of N >> 1. Let fl, f2, and ]'3 denote the first, second, and

third terms, respectively, of the right side of ((4.19)). Let (.)' denote _he gradient of

(.) with respect to #.t. Since h minimizes ((4.19)), we have for N >> 1.

- #.z = _(f,)-I f,= _(f_, + f_,)-l(f_ -I- ]3).

The ith element of f_ is

[fl]: = tr {(I ® [P_]:) ]_sh2h-1]_sH } ,

where [25]

with

[ _]'=-BtH[B'v]:P_- (BtH[B_r]:p_) HP i

B t = (BHB)-I B.

(4.46)

(4.47)

(4.48)

(4.49)

Thus [f_]_ may be rewritten as

Since the columns of E, span the same signal subspace as the columns of A @ B and

e_B=0, wehave (I®P_)E,=O. Thus

^2 ^ -1 _H
If1]: = _2 Re (tr { [I ® (Bt"[BH]:P_)] (1_, - E,) A,A E,}). (4.51)

Since (1_ - Es) = O(I/v/N) [34, 35], we have {f,]:= o(1/47V). The ith element of

f_ may be written as

' - AsA - ,[fa]i= --2 Re (tr {[P_ ® (BiH[BH]:P_I)] (E_ E,) ^2"-1 (]_s EoH})

(4.52)
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wherewehave usedthe fact that (P_ ® I) Es = 0. Thus [f3]_ = O(1/N) is negligible

for N >> 1 as compared with [f_]_. It can be shown similarly that [fa]_ is also

negligible for N _> 1 as compared with [k]{}-

Thus for N >> 1,

_ [f1/_-1 fl- _ = wl J J1, (4.53)

which means that the third term of ((4.19)) is a higher-order term when estimating

/t and may be neglected asymptotically (for N >> 1). We can show similarly that

this result is also true when estimating w.

The Case of High SNR

Consider next the case of high SNR, i.e., o" << 1, where o- is the standard deviation

of the additive noise. For G << 1, Equation ((4.46)) also holds. Since (I ® P_) l_s =

obtain [k]{ = O(cr) from Equation ((4.51)) and = =) from Equation ((4.52)).

Thus [fa]_ is negligible for a << 1 as compared with If1]}. It can be shown similarly

that [fa]{_/ is also negligible for cr << 1 as compared with [fl] 5. Then the third

term of ((4.19)) is a higher-order term when estimating /t and may be neglected

asymptotically (for o << 1). It can be shown similarly that this result is also true

when estimating w.

Appendix B - The Ranks of Zcz and Ztt.

To determine the ranks of Zw and Z/t, let us consider

Z 2 -1 H= EsA_A Es =

Zn • • • Z1M

:

ZM1 • " • ZMM

(4.54)
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where Zij are _-I x _-f submatrices of Z. Note first that Es may be written as

Es = (A®B)Q, (4.55)

where Q is some (KK) x h" matrix of full rank/_" = min[N, rank(S)] with probability

1. Thus Z may be rewritten as

2 -1 H H
Z=(A®B)QAsA Q (A ®BH). (4.56)

Consider first the rank of Ztt. Note that

(A®B) =

Ball ... BalK

naM1 "'" BaMK

(4.57)

where aij denotes the ijth element of A. Thus Zii has the form B(-..)B H and

Ztt = _ Zmm = B('")B".
rn=l

(4.58)

Then the rank of Z/t is no more than the rank of B.

Consider next the rank of Zw. Using (A @ B) = (A ® I)(I ® B), we get

z = (A ® I)r(A H ® I), (4.59)

where

r = (I ® B)QA]A-1Q H(I ® B n) =

where Fij are M × M submatrices of F. Thus

tr(Zij) = tr ((a!r) ® I)F [[(a(-r))H3 ® I]} -- al _)

Fll

FK1

tr(r11)

• ° •

• • o

o, •

• o •

FKK

tr(F1K)

tr(r/,-_,-)

, (4.60)

(a_)) H,

(4.61)
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where _(_)denotesthe ith row vector of A. Hence Za_ has the form Zw = A(. •-)A H.a i

Then the rank of Zw is no more than the rank of A.

Appendix C - A Sufficient Condition for Parameter Identifiability

We prove below the sufficiency of the parameter identifiability requirements ((4.37))

and ((4.38)). Our proof follows closely the one for 1-9 angle/frequency estimation in

[32,331.

As in [32, 33], to prove the sufficiency of ((4.37)) and ((4.38)), we need to show

that ((4.37)) and ((4.38)) are sufficient conditions for A = A0, B = Bo, and Q = Qo

to be the unique solution of

(A ® B)Q = (A0 ® Bo)Qo, (4.62)

where Q is some (I(I- 0 x/_" matrix of full rank/-4. The Equation ((4.62)) may be

written as

(A ® I)(I ® B)Q = (Ao ® I)(I ® Bo)Qo. (4.63)

Let

(I ® B)Q = f_, and (I® B0)qo = f_o. (4.64)

The _ is of dimension (K3-7[) x/_" and is of full rank /_" since M > _; and B is a

Vandermonde matrix. Then ((4.63)) may be written as

(A ® I)a = (Ao ® I)ao. (4.65)

Consider first a solution A and _ of ((4.65)), which is such that the columns il,

i2, ..-, ic in A and A0 coincide, where 0 _< c < K. Since c < K, the solution A = Ao

and _2 = flo is excluded. Let A0 be the submatrix of A0 without the columnsil, i2,

• --, ic. Then (Ao ® I) is of dimension (M_-_7) x (KT_- c'-F[). Let _o be the submatrix

of _20 without the rows that correspond to the columns of (A ® I) which are missing
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in (tio ® I). Let Ft be the sameas_ except that the rowsof _tothat are missing in

_to aresubtracted from the correspondingrowsof Ft. Thus ((4.65)) can be written

as

Let

[(A®I) ('_°®I)] [ _t ]=0"-_0 (4.66)

71--dimlN"([ (A®I) (Ao_I)])}, (4.67)

where dim{if(.)} denotes the dimension of the null space of a matrix. Since A is a

Vandermonde matrix, the vectors in A for any M different values of wk are linearly

independent. Thus

(4.6s)

Let

72 = dim 7_ -_0 '

where dim{A(.)} denotes the dimension of the range space of a matrix. Our goal is

to prove that ((4.66)) has no solution under ((4.37)), or equivalently

71 < 72. (4.70)

If MM >_ (2I()_--T-c)_), then 71 -" 0 and ((4.70)) follows since "/z _ 1. If MM <

(2KM - c_-l), then 71 = 2KM-eM-M--M and from ((4.64)), we have 72 >--/_'- cM-.

From ((4.37)), we have 2I(-ff[- c-if[- M-if[ < _f( - c-M. Thus under ((4.37)), the

unique solution to ((4.65)) is A = A0 and a = Fro.

Consider next the solution of

(I ® B)Q = (I ® B0)Qo. (4.71)

We can show similarly that under ((4.38)), the unique solution to ((4.71)) is B = Bo

and Q = Qo.
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Thus the proof is finished.

Appendix D - Derivation of the Cramer-Rao Bounds

"vVe present the derivations of the Cramer-Rao Bounds (CRBs) for both stochastic

and deterministic signal models.

Stochastic CRB

It follows from [22, 23, 24] that the asymptotic (for large N) statistical distribution

of the parameter estimates [ &T ft T iT obtained with the 2D-MODE algorithm is

Gaussian with mean [ w T

CRB s. Let

A=A®B.

Using Equation (4.63) in [23], we obtain the ijth element of (CRBS) -1 as

2N

with A_ denoting the derivative of A with respect to the ith element of [ w T

We first show that the CRBs for & and /5 are decoupled.

derivative of A with respect to the kth element of ca. Then

liT iT and covariance matrix equal to the stochastic CRB,

(4.72)

(4.73)

liT iT

Let .Ak denote the

Ak = Ak ® B, (4.74)

where Ak = c0A/cOwk. Let A_ denote the derivative of ,4 with respect to the kth

element of li. Then

A_- = A ® B;, (4.75)

where B-%-- OB/O#;. Using ((4.18)), we obtain

Asp± ,t (A_ ® B") (I® P_ + P_ ® I- P_ ® P_)(A ® B;)k Ac'_k "

: (AHA)® (BsP_B_-) + (AHpkA)® (BHB_.) -(AHp_A) ® (BHP_B_.)
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= 0,

which showsthat the CRB ' is block-diagonal.

Next note that

H .l_
Ak2 P.4 Ak, = (A_®B H) (I®P_+P_®I-P_QP_)(Ak_®B)

= (Ak_P_Ak_)® (B"B).

Hence the (ki, ]c2)th element of (CRB_)-I is

[(CRB_.,)-']k,k 2 = -_--_--Re{tr ([(Ak_P_Ak,)® ]

(4.77)

(4.7s)

Thus using ((4.72)), we complete the proof of ((4.41)). The proof of ((4.42))is similar.

Deterministic CRB

It follows from [26] that for high SNR, the statistical distribution of the esti-

mate [ ¢5T /_T ]T obtained with the 2D-MODE algorithm is Gaussian with mean

[ ¢zT ttT IT and covariance matrix equal to the deterministic CRB, CRB d. Using

Equation (4.68) in [23], we obtain the ijth element of (CRBd) -_ as

[(CRBe)-_]i j = _ Re [sH(t_)Ar_p_A,s(t_) . (4.79)

Using ((4.76)), we can show the CRB e is also block-diagonal. Thus the CRBs for

and _ are decoupled for the deterministic signal model as well.

Using ((4.77)), we get the (kl, k2)th element of (CRB_) -1 as

_ 2 [sH(t,_) ((A_P_Ak_)® s(t,_)]}

= -_-Re{tr([(AkHp_A_,)® S)}. (4.80)

Thus ((4.43))is proven. The proof of ((4.45))is similar.

(4.7_)
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Appendix E - The 2D-SRM Algorithms

We briefly describe below the two-dimensionalsubspacerotation methods (2D-

SRMs) we used in the numerical examples. The methods are similar to the matrix

pencil method detailed in [13],which wasderived for N = 1.

The 2D-SRM without Spatial Smoothing

For uncorrelated or slightly correlated signals and large N, the following method,

which we refer to as the 2D-SRM without Spatial Smoothing, may be used to estimate

the 2-D frequencies.

Let Y(t,,) be an M x _-I matrix whose (rn,m)th element is ym,_(t_). To estimate

w, let

_w : [yW j(yW)*], (4.81)

where J denotes the exchange matrix (with ones on the antidiagonal and zeros else-

where) and

yW= [Y(tl) Y(t2) "" Y(tN)]. (4.82)

Let the columns of the M x K matrix U_ be the left singular vectors of _w that

correspond to the largest singular values of _w. Let U_I and Us2 denote the (M -

1) x K submatrices of Us consisting of the first and last (M - 1) rows of Us. Then

the eigenvalues of H -1 _ , . .(U,1U_I) UslU82 are the estimates of e j_', e_'_ -., e j_'_¢ From

these eigenvalues, we obtain the estimate of w.

The steps of estimating _u are similar to those of estimating w. The main difference

is that the Y(t,_), n = 1,2,..-,N, in ((4.82)) above are replaced by yT(t,). The

parameters M and K are also changed to M and K, respectively.
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The 2D-SRM with Spatial Smoothing

For highly correlatedsignalsor small N, the following method, which we refer to

as the 2D-SRM with Spatial Smoothing, may be used to estimate the 2-D frequencies.

To estimate w, let

Y,, = Y,, J Y,s ,

where

with

Y_ = [ Y_(tl) Y,_(t2) "'" Y_(tN) ], (4.84)

F ]

Y_(t,_) = [ Y_l(t,_) Ys_2(t_) "'" Y_s(M-L+I)(t,_) J, (4.85)

and Y_i(t,_), i = 1,2,..., M - L + 1, denoting the submatri× of Y(t,_) that consists

of the ith to (i + L - 1)th rows of Y(t,_). The remaining steps of the 2D-SRM with

Spatial Smoothing are similar to those of the 2D-SRM without Spatial Smoothing.

The steps of estimating/z are again similar to those of estimating w. The main

difference is that the Ys_i(t_), i= 1,2,..-,M- L+ 1, in ((4.85)) above are obtained

as submatrices of yT(tn). The parameters M, K, and L are also changed to M, K,

and L, respectively.
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Figure 4.3: Root-mean-squared errors of angle estimates as a function of the elevation

angle 0 when the direct and reflected signals arrive from (45 °, 0) and (45 °, 180° - 0),

respectively. The SNRs for the direct and incident signals are -7 dB and -10 dB,

respectively. The signals are assumed to be uncorrelated with each other. Further,

M = 8, _-7 = 10, and N = 60. (a) For the estimates of the azimuth angle ¢. (b) For

the estimates of the elevation angle 0.
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Figure 4.4: Root-mean-squared errors of angle estimates as a function of the correla-

tion coefficient between the direct and reflected signals when the direct and reflected

signals arrive from (45 °, 85 °) and (45 °, 95°), respectively. The SNRs for the direct

and incident signals are -7 dB and -10 dB, respectively. Further, M = 8, M = 10,

L = T = 5 (for 2D-SRM with spatial smoothing), and N = 500. (a) For the estimates

of the azimuth angle ¢. (b) For the estimates of the elevation angle 0.
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Figure 4.5: Root-mean-squared errors of angle estimates as a function of the number

of temporal snapshots N when the direct and reflected signals arrive from (45 °, 85 °)

and (45 °, 95°), respectively. The SNRs for the direct and incident signals are -7 dB

and -10 dB, respectively. The correlation coefficient between the direct and reflected

signals is 0.99. Further, M = 8, _A-7/= 10, and L = T = 5 (for 2D-SRM with spatial

smoothing). (a) For the estimates of the azimuth angle _. (b) For the estimates of

the elevation angle 0.
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Figure 4.7: Root-mean-squared errors of frequency estimates as a function of

frequency separation Aw/2zr when (wl,w2) = (27r x 0.28,27r × 0.9.8 + Aw),

(#1, #2) = (27: × 0.30,2_ x 0.35), SNR = 10 dB, M = 8, M = 10, L = L = 5

(for 2D-SRM with spatial smoothing), and iV = 1. (a) For the estimates of wl/(2Tr).

(b) For the estimates of/_1/(27r).
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Figure 4.8: Root-mean-squared errors of frequency estimates as a function

of frequency separation A/_/2_- when (wl,w2) = (2_" x__0.28,2_" x _0"33)'

(#1, #2) = (2_- x 0.30,2_r x 0.30 + A#), SNR = 10 dB, M = 8, M = 10, L = L = 5

(for 2D-SRM with spatial smoothing), and Y = 1. (a) For the estimates of wl/(2_).

(b) For the estimates of #1/(2_r).
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5. High Resolution Range Signature Estimation and Synthetic
Aperture Radar Imaging

5.1 Introduction

This paperproposesa robustparametric data model for estimating high resolution

rangesignaturesof radar targets and for forming high resolution synthetic aperture

radar (SAR) images. For the range signatureestimation, estimating the radar cross

section (RCS) of the scatteringcenterof a radar target at a certain range is modeled

asestimating the amplitude and phaseof a complex sinusoid with known frequency

in unknown colored Gaussian noise. For the SAR imaging application, estimating the

complex intensity of a pixel in an SAR image is modeled as estimating the amplitude

and phase of a two-dimensional complex sinusoid with known frequency in unknown

colored Gaussian noise. This new modeling approach models the thermal noise and

the interferences from other scattering centers of a radar target or other pixels in a

SAR image as unknown colored noise.

This paper also presents a parameter estimation algorithm for the data model.

The algorithm is referred to as the APES (Amplitude and Phase Estimation of a

Sinusoid in unknown colored noise) algorithm. We shall describe how the APES

algorithm can be used to estimate the range signatures and to form SAR images.

The APES algorithm avoids the search over the parameter space and requires only

simple matrix multiplications and matrix inverses.

We will show that our modeling and estimation approach yields better resolution

and lower sidelobes than the conventional nonparametric FFT (fast Fourier trans-

form) method. We will also show that our approach is more robust than modeling

the radar data as a certain number of complex sinusoids in noise and estimating the

frequencies, amplitudes, and phases of the sinusoids with one of the best sinusoidal

parameter estimation methods. We will present both numerical and experimental
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examplescomparing the performanceof our approachwith the two afore-mentioned

approaches.

In Section 2, we considerhigh resolution range signature estimation. We shall

formulate the problem of interest, present the APES algorithm, and demonstrate

the performance of our approachwith both simulated and experimental data. (In

Appendix A, we derive a computationally and asymptotically statistically efficient

largesamplemaximum likelihood estimator for estimatingthe complexgain of a signal

with known waveformand knownsteeringvector in unknown coloredGaussiannoise,

which the APES estimator mimics.) In Section3, we considerhigh resolution SAR

imaging with the APES method. We shall formulate the problem of interest, describe

how to use the APES method for SAR imaging, and demonstrate the performance

of our approach with XPATCH (a computational electromagneticssoftware) data.

Finally, Section4 containsour conclusions.

5.2 High Resolution Range Signature Estimation

In this section, we proposea parametric data model and present an estimation

algorithm for estimating high resolution rangesignaturesof a radar target. High reso-

lution rangesignaturesareusefulfor many applicationsincluding the non-cooperative

target identification (NCTI).

5.2.1 Problem Formulation

The rangeresolution of a radar is determinedby the radar bandwidth. To achieve

high resolution in range, the radar must transmit wideband pulses, which are often

linear frequencymodulated (chirp) pulses. Upon receiving eachpulse returned by a

radar target, the radar demodulatesthe pulse by mixing the pulse with a reference

chirp signal and low-passfilter the mixed signal. As a result, the scattering centers
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of a radar target at different rangescorrespondto different frequenciesof the output

of this demodulation operation.

Let z denotean Mx i vector containing the samples of the output of this operation.

We assume that the radar bandwidth is moderate so that the radar cross sections

(RCSs) of the scattering centers of the radar target do not change with frequency.

Then z may be written as
K

z = _ _krk + no, (5.1)
k----1

where 7k, k = 1,2,...,K, denotes the RCS of the kth scattering center of the radar

target, no denotes the additive noise vector, and

[fk e-Jtk ¢-j(M-1)tk (5.2)
= t 1 ... ,

with (.)r denoting the transpose and tk denoting the time delay proportional to the

range of the kth scattering center.

A simple nonparametric method of estimating 7k and tk is to use FFT (Fast

Fourier Transform), which is both computationally efficient and robust to model

errors. However, FFT is known for its high sidelobes and poor resolution. Many

different types of windows may be applied to z to reduce the sidelobes. Yet using

windows with FFT further reduces the already poor resolution of FFT.

When the number of scattering centers K of a radar target is small, one may

use many existing frequency estimation methods, such as the computationally and

asymptotically (for high signal-to-noise ratio) statistically efficient MODE method

[1, 2, 3], to estimate the tk. Once tk are estimated, the straightforward least-squares

fitting method may be used to estimate the corresponding 7k.

However, there are two cases where the above parametric modeling approach may

result in poor performance. First, for a complicated radar target such as an airplane,

the number of scattering centers K may be very large and may even be larger than

the number of samples M in z. For this case, the frequency estimation methods
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cannot be usedsince to uniquelydetermine the time delaystk, even in the absence of

the additive noise no, the K must be less than (M - 1)/2 [4, 5]. Second, when two

or more scattering centers are very closely spaced, the frequency estimation methods

may not be able to resolve all of the scattering centers. When this result occurs, the

least-squares fitting method yields poor RCS estimates. As a result, the estimated

range signature, i.e., _'_ versus tk, may be distorted.

_Ve consider below a more robust parametric data model. To estimate the RCS

"),(t) of a scattering center whose range corresponds to a time delay t, we model the

received data z as

z = 7(t)f(t) + n(t), (5.3)

where f(t) is defined in ((5.2)) with tk replaced by t and n(t) denotes the additive

noise. The n(t) is assumed to be circularly symmetric complex Gaussian random

vector with zero-mean and unknown covariance matrix Q(t). The unknown Q(t)

models both the thermal noise and the interferences from other scattering centers.

The Q(t) is assumed to be a positive definite and Toeplitz matrix.

The problem of interest herein is to determine the range signature 7(t) from z.

We remark that to compute a discrete range signature with Ms samples, we set

t = 2zc(m - 1)�Ms for the ruth sample. We shall show below that the Ms RCS

estimates in the signature can be computed in parallel.

5.2.2 The APES Algorithm

We present below an algorithm that may be used to estimate the unknown 7(t)

in model ((5.3)). We note that the amplitude and phase of';,(t) may be considered as

the amplitude and phase of the complex sinusoid with frequency t described by f(t).

Thus we refer to our estimator below as the Amplitude and Phase Estimation of a

Sinusoid in unknown colored noise, or simply the APES, method.
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The APES algorithm is obtained by mimicking the computationally and asymp-

totically statistically efficient large sample maximum likelihood estimator obtained in

Appendix A for estimating the complex gain of a signal with known waveform and

known steering vector in unknown colored noise. To obtain the APES algorithm, we

first divide the measurement vector z into N overlapping subvectors i(n) of dimen-

sion M x 1, where N = M-/_I + 1. The nth subvector _(n) contains the nth to

the (n + 2kI - 1)th element of z. Let fi(t, n) be formed fl'om n(t) in the same way

_(n) are formed from z. The fi(t,n) are assumed to be circularly symmetric complex

Gaussian random vectors with zero-mean and the same unknown covariance matrix

Q_(t), which is a submatrix of Q(t). Then _(n), n = 1,2,...,/V, may be written as

_(n) = _/(t)ao(t)y(t,n) -t- fi(t,n), (5.4)

where ao(t) is referred to as the steering vector and has the form

ao(t) = 1 e it ... e i(_-1)_ ,

and

(5.5)

y(t,n) = eJ(_-_)_, n = 1,2,... ,_?. (_.6)

Let J be the 3:/ × 37/ exchange matrix (with ones on the antidiagonal and zeros

elsewhere). Let

_(n)= J_'(_- n+ i), (5.7)

where (-)*denotes the complex conjugate. Let

fi(t,n) = Jfi'(t,/f/"- n + 1), (5.s)

where fi(t,n) are assumed to have the same statistics as fi(t,n). Then f_(n) may be

written as

_(n) = "_'(t)_(t)ao(t)y(t,n) + fi(t, n), (5.9)
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where

]3(t) ----e -j(N-1)t. (5.1o)

Let 9
i

= Z (5.11)
n=l

where (.)H denotes the complex conjugate transpose for matrices and complex con-

jugate for scalars. Let ÷yu(t), R_,_, I_2z, and _zy(t) be defined similarly as _y(t).

Note from ((5.6)) that _yy(t) = 1. Note also that as may be seen from ((5.11)),

the mth element of f'_y(t) is the discrete-time Fourier transform of the ruth sequence

{2m(1),''',2m(zV)} divided by N, where 2re(n) denotes the ruth element of _(n).

Thus to compute a discrete range signature with M, samples, where M, is a power of 2,

the _'_y(t), and similarly the _y(t), may be computed with the FFT method and zero-

padding. The amount of computations required for each sequence is O[M, log2(M_)].

Since the 2nd through the l_-th elements of the mth sequence are the 1st through the

(N - 1)th elements of the (m + 1)th sequence, the FFT of the (m + 1)th sequence

may be updated from the FFT of the ruth sequence with O(M_) operations.

Let l_(t) = 7(t)ao(t). Applying the results in Appendix A to _(n), we obtain the

estimate of l_(t) as

_" tb(t) r_y(). (5.12)

Similarly, let b(t) = 7*(t)fl(t)ao(t). Applying the results in Appendix A to _(n), we

have

-_" tb(t) r_(). (5.13)

By applying the results in Appendix A to both i(n) and _(n), the covariance matrix

Ql(t) may be estimated as

1 _ -
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1 + (5.14)
2

Then the estimate of 3'(t) may be computed as (see Appendix A)

1 [aHo(t)Q(l(t)_(t) +__fl(t)_H(t)O_(t)ao(t) (5.15)
a0H(/)(_ll (t)ao(t)

Note that since only 13(t) is a function of the range related time delay t, the (_-l(t)

can be computed more efficiently with

We note that computing 1_ -1 requires O(fl 3) computations. Once R-1 is obtained,

computing (_-l(t) for each t requires O(_I 2) computations. Computing $(t) for each

t also requires O(.Q 2) computations.

Then the APES estimator for estimating 7(t) may be summarized as follows:

Step 1: Compute t_(t), _(t), and (_l(t) with ((5.12)), ((5.13)), and ((5.16)), respec-

tively.

Step 2: Determine "_(t) with ((5.15)).

We remark that the vectors fi(t, n) and fi(t, n) are not independent of each other

since they are formed as the overlapping subvectors of n(t). Yet since these vectors

are not completely correlated with each other, it can be shown that as 19 goes to

infinity, P_y(t), l_, l_z, and t_.v(t) are all consistent estimates. As a result, the

-_(t), for all possible t, is also a consistent estimate of 7(t).

We also remark that the APES algorithm only requires simple matrix multiplica-

tions and matrix inverses. Moreover, many computations of the APES algorithm can

be done ill parallel. It is thus possible to achieve reM-time range signature estima-

tion by implementing the APES algorithm with parallel processors and/or specially

designed hardwares.
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We note that for the specialcaseof M = 1, the _/(t) in ((5.15)) can be shown to

be the Fourier transform of z. Thus the Fourier transform method is a special case

of the APES method.

Finally, the parameter /l:I has the following effects on the APES performance.

Note first that the larger the /l_I, the larger the dimension of Ql(t), and thus the

better the modeling of the interferences. We shall show in the following subsection

that the larger the fI, the better the resolution of the APES method. On the other

hand, the larger the/_I, the smaller the/V = M-/_I+ 1. Thus increasing Jl_I increases

the variance of Ql(t) since _y(t), R_, R_, and _(t) are poorer estimates for larger

fI. We shall show in the following subsection that for very large/ITI, the variance of

-_(t) may increase. Also, increasing fI increases the amount of computations needed

by the APES method.

5.2.3 Numerical and Experimental Results

We present below both numerical and experimental examples showing the perfor-

mance of the APES algorithm. In the simulated numerical examples, the root-mean-

squared errors (RMSEs) of the APES estimator are obtained with 100 independent

Monte-Carlo trials and are compared with the corresponding Cramer-Rao bounds

(CRBs) derived in Appendix A.

We first use simple numerical examples to illustrate the performance of the APES

estimator. Consider first an example where _he true range signature is shown in

Figure 5.1(a). \Ve assume that there are 66 scattering centers in the signature. The

number of data samples in the received data vector z in ((5.3)) is assumed to be

M = 128. The additive thermal noise in z is assumed to be a zero-mean white

Gaussian random process with variance 1. Figure 5.1(b) shows the estimated range

signature (amp|itude only) with the FFT method, which is also equivalent to the

APES method with 1"_I= 1. Note that due to the large sidelobes of the FFT method,
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the fourth scattering centeris not discerniblein Figure 5.1(b). Figure 5.1(c)showsthe

estimated rangesignaturewith the APES method with _I = 48. Comparing Figures

5.1(b) and (c), wenote that using APES method with M = 48 yields a much better

range signature estimate, which has much reduced sidelobes and better resolution for

the large scattering centers, than using the FFT method. For the 62 very small and

very closely spaced scattering centers between 0.97 and 2.47, the APES method with

ffI = 48 tends to suppress them. Figure 5.1(d) shows the estimated range signature

obtained when using the MODE with the least-squares fitting (MODE-LSF) method

by assuming that there are 48 complex sinusoids plus white noise in the received data

vector z. We note that since the data model is incorrect for the MODE-LSF method

and some of the estimated scattering centers are very close to each other, using the

MODE-LSF method may yield very large false peaks. For this case, they occur near

t = 2.5. (Note that this type of large false peaks do not occur in every Monte-Carlo

simulation. They occur in about 20% of the Monte-Carlo simulations.) The presence

of these large false peaks makes the MODE-LSF method less preferable even than the

FFT method. Figure 5.1(e) shows the estimated range signature obtained by using

FFT with Kaiser window and shape parameter 4. Comparing Figures 5.1(b), (c), and

(e), we note that using FFT with Kaiser window can reduce the FFT sidelobes, but

the already poor resolution of the FFT method is made poorer due to the windowing.

We now consider the effects of _I on the performance of the APES estimator.

Figure 5.2 shows the RMSEs of _(t = 0.2332) (the first scatterer in Figure 5.1(a))

obtained with the APES estimator as a function of .g/. We note from Figure 5.2

that the APES estimator with a proper _-f can give much more accurate estimates of

"7(t = 0.2332) than the FFT method, which is equivalent to the APES method with

2171= 1. With a proper 117[,the performance of the APES estimator can be close the

corresponding CRB, which is also the best unbiased performance that can be achieved

by an estimator. Note also that for very large 2f[, the RMSE of -_(t = 0.2332)
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may increasedue to the poor estimate of Ql(t). To achieve the best estimate of

-r(, = 0.2332), the SI should be within 20 _< _I < 64.

Figures 5.3(a) and (b) show the range signature estimates obtained with the APES

method when il-I = 28 and _7I = 64, respectively.

using the APES method with any llTI within 20 _<

We note from Figure 5.2(a) that

llTI _< 64 yields similar RMSEs for

_(t = 0.2332). Yet Figure 5.3 shows that the larger the _17Iwithin 20 <_ fI _ 64, the

better the resolution of the estimated range signature. The larger the e17I, however,

the larger the amount of computations needed by the APES method.

Consider next an example where the true range signature is shown in Figure 5.4(a).

We assume that there are 75 scattering centers in the signature. The number of data

samples in the received data vector z in ((5.3)) is assumed to be M = 128. The

additive thermal noise in z is assumed to be a zero-mean white Gaussian random

process with variance 10. Figure 5.4(b) shows the estimated range signature with the.

FFT method. Note that due to the large sidelobes of the FFT method, the two small

scattering centers that are to left and right of the first group of the large scattering

centers are not discernible in Figure 5.4(b). Figure 5.4(c) shows the estimated range

signature with the APES method with fI = 48. We note that the two small scattering

centers that are to left and right of the first group of the large scattering centers are

resolved in Figure 5.4(c) since the sidelobes are very small for the APES method

with _I = 48. Comparing Figures 5.4(b) and (c), we note that neither the FFT nor

the APES method with fI = 48 can resolve the three groups of very closely spaced

scattering centers. Both methods tend to combine the RCSs of very closely spaced

scattering centers together to yield a large peak in the range signature since these

scattering centers have the same phase (see Figure 5.4(a)). Figure 5.4(d) shows the

estimated range signature with the MODE-LSF method by assuming that thereare 48

complex sinusoids plus white noise in the received data vector z. We note that since

the data model is incorrect for the MODE-LSF method and some of the estimated
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scatterer locations are very close to each other, using the MODE-LSF method may

yield large false peaks. For this example, they occur near t = 1.7. Figure 5.4(e) shows

the estimated range signature obtained by using FFT with Kaiser window and shape

parameter 4. Comparing Figures 5.4(b) and (e), we note that using FFT with Kaiser

window further widens the large peaks in 5.4(b).

Finally, we apply below the APES method to the experimental data measured by

a ground-to-air radar. (All other information about the radar and the radar target is

not available for public release.) The measured data consists of M = 128 samples and

is also degraded with the zero-mean white Gaussian noise with variance 0.1. Figure

5.5(@ shows the target range signature of an aircraft obtained with the FFT method.

Figure 5.5(b) shows the target range signature of the aircraft obtained by using the

FFT method with the Kaiser window and shape parameter 4. Figure 5.5(c) shows the

target range signature obtained with the APES method with 37I = 48. Comparing

Figures 5.5(a) and (c), we note that using the APES method with M = 48 yields

much lower sidelobes than using the FFT method. Comparing Figures 5.5(b) and

(c), we note that using the APES method with 371 = 48 yields better resolution and

sharper peaks than using the windowed FFT. Figure 5.5(d) shows the target range

signature obtained when using the MODE-LSF method and assuming that there are

48 complex sinusoids plus white noise in the measured data. We note that using the

MODE-LSF method can yield poor target range signatures due to inaccurate data

models.

5.3 Using the APES Algorithm for SAR Imaging

In this section, we extend the parametric model we proposed in the previous

section to synthetic aperture radar (SAR) imaging. We also describe how the APES

algorithm presented in the previous section may be used for SAR imaging.
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5.3.1 Problem Formulation

In synthetic aperture radar (SAR) or inverse SAR (ISAR) imaging [6, 7], the

radar usually transmits linear frequency modulated (chirp) pulses. Upon receiving

each pulse returned by an object being imaged, the radar demodulates the pulse by

mixing the pulse with a reference chirp signal and low-pass filter the mixed signal.

As a result, the scattering centers of the object at different ranges correspond to

different frequencies of the output of this demodulation operation. Since either the

radar or the object is moving or rotating, the pulses received at different angles

between the radar and the object are used to form a synthetic aperture. After Polar-

to-Cartesian interpolation, the scattering centers of the object at the same range but

different cross-ranges correspond to different (Doppler) frequencies over the synthetic

aperture.

Let Z denote an M1 x M2 matrix containing the samples of the demodulated and

Polar-to-Cartesian interpolated data, from which a SAR image is computed. A simple

nonparametric method of computing the SAR image is to use the two-dimensional

(2-D) FFT, which is again both computationally efficient and robust to model errors.

However, FFT is known for its high sidelobes and poor resolution. Many different

types of windows may be applied to Z to reduce the sidelobes. Yet using windows with

FFT further reduces the already poor resolution of FFT. Thus to use 2-D windowed

FFT to obtain high resolution SAR images, a large radar bandwidth and a large

synthetic aperture are needed. One of the disadvantages of this requirement is that it

makes it difficult to use synthetic aperture radar technology for wide-area surveillance.

To achieve high resolution with limited radar bandwidth and synthetic aperture,

many parametric and nonparametric spectral estimation methods have been used for

SAR imaging [8, 9, 10, 11, 12, 13, 14]. For example, the Z may be written as the

sum of 2-D complex sinusoids in additive noise. The 2-D frequencies of the sinusoids

may be estimated with computationally and asymptotically (for high signal-to-noise
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ratio) statistically efficient 2D-MODE method [14]. The complex amplitudes of the

sinusoidsmay then be estimated with the straightforward least-squaresfitting [9].

However,similar to the caseof the high resolution rangeestimation, this parametric

modeling approachmay result in poor performancewhen the number of sinusoidsis

too large to uniquely determine the parametersof the sinusoids[14] or when two or

more sinusoidsare so closelyspacedthat 2-D frequencyestimation methods cannot

resolveall of them.

We considerbelow a more robust parametric data model, which is similar to the

oneproposedin the previoussection.Let 7(tl, t2) denote the complex intensity of the

(i,/)th pixel of an Ms1 × M82 SAR image we intend to form, where tl = 2r_(i- 1)/M_I

and t2 = 2_-(j - 1)/Ms2. To estimate 7(tl, t2), we model the received data Z as

Z = 7(tl,t2)f(tl) ® fr(t2) + N(tl,t_), (5.17)

where ® denotes the Kronecker matrix product, f(t_), i = 1, 2, is defined in ((5.2))

with tk replaced by ti and M replaced by Mi, and N(tl,t2) denotes the additive

noise. The vec[N(t_, t2)], where vec(.) denotes stacking all columns of a matrix into a

single column vector, is assumed to be a circularly symmetric complex Gaussian ran-

dom vector with zero-mean and unknown covariance matrix Q(tl, t2). The unknown

Q(tl,t2) models both the thermal noise and the interferences from other pixels of

the SAR image. The Q(tl, t2) is assumed to be a positive definite and block-Toeplitz

matrix whose blocks are also Toeplitz matrices.

The problem of interest herein is to determine the range signature 7(tl, t2) from

Z. We remark that the complex intensities 7(tl, t2) of all pixels in a SAR image can

be computed in parallel.
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5.3.2 SAR Imaging with the APES Algorithm

The APES algorithm may be applied to the rows (columns) and then to the

columns (rows) of the data matrix Z to form the SAR image. We referred to this

approachasthe one-dimensional APES or the 1-D APES algorithm. We also present

below a two-dimensional APES or the 2-D APES algorithm. We shall show in the

next subsection that the 2-D APES algorithm may be computationally more intensive

but may yield better SAR images than the 1-D APES algorithm.

To obtain the 2-D APES algorithm, we first divide the data matrix Z into ]Q1N2

overlapping submatrices Z(n) of dimension f[1 × /17/2 (in raster sequence), where

/V1 = M1 - 37[1 + 1 and/V2 = M2 - i_,I2 + I. Let _i(tl,t2,n) be formed from N(tl,t2)

in the same way Z(n) are formed from Z. Let

(5.1s)

The fi(tl, t2, n) are assumed to be circularly symmetric complex Gaussian random

vectors with zero-mean and the same unknown covariance matrix Ql(tl,t2), which

has the same form as Q(tl,t2). Let

_(n) "-- vec [7,(n)]. (5.19)

Then _.(n), n = 1,2,...,/V1N2, may be written as

_(n) = _/(tl,t2)ao(tl,t2)y(tl,t2, n) + fi(tl,t2, n), (5.20)

where a0(tl, t2) is referred to as the steering vector and has the form

ao(tl,t2) = al(tl) ® a2(t2), (5.21)

where

TeJ_, ... eJ(:¢1_-l) t_ , i = 1,2, (5.22)
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and y(tl, t2, n) is the nth element of the vector yo(tl, t2),

yo(tl,t2) = yl(tl) ®y2(t2), (5.23)

with

yi(ti)= [1 e jr' ... e j(fc'-l)t_ ]

Let J be the /_[1 If/'2 X /f/'l JfI2 exchange matrix. Let

T

, i = 1,2. (5.24)

_(n) = J_'(/V1/V2 -- n + 1), (5.25)

Let

fi(t_,t2, n) = Jfi*(tl,t2,NiN2 - n + 1),

where fi(tl, t2, n) are assumed to have the same statistics as fi(t_, t_, n).

may be written as

(5.26)

Then _(n)

_(n) = 7"(tl,t2)_(tl,t2)ao(tl,t2)y(tl,t_,n) + fi(tx,t2,n), (5.27)

where

fl(t_,t2) = e-j[(Nl-1)tl+(N2-1)t2]. (5.28)

With these new notation definitions, the remaining steps of computing "_(tl, t2) in

the 2-D APES algorithm are similar to those of computing _(t) in the APES algorithm

presented in the previous section. Let

1 _,_2

_.y(t_, t2) NIN: _-" _(n)y(t,,t2), (5.29)
n--1

and _._(tl, t2) be defined similarly. Then similar to using FFT to compute _.y(t) and

f'_(t) in the previous section, the 2-D FFT method can be used to compute _y(t_, t2)

and _(tl,t2) more efficiently.

We remark that for the special case of i_I_ = f[2 = 1, the _[(t_, t2) obtained

with either the 1-D or the 2-D APES algorithm can be shown to be the 2-D Fourier
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transform of Z. Thus the Fourier transform method is again a special case of the

APES methods.

We also remark that both the 1-D and 2-D APES algorithms only require simple

matrix multiplications and matrix inverses. Moreover, many computations of the

APES algorithms can be done in parallel. It is thus possible to achieve real-time

SAR image formation by implementing the APES algorithm with parallel processors

and/or specially designed hardwares.

5.3.3 XPATCH Examples

We present below simulated examples showing the performance of the 1-D and

2-D APES algorithms for SAR imaging. The data we use are generated by XPATCH,

which is a computational electromagnetics software [15].

Figure 5.6(a) shows the SAR image (the logarithm of the amplitude) of a firetruck

obtained with the 2-D FFT method when M1 = M2 = 128. The firetruck is simulated

with the XPATCH software [15] and is added with the zero-mean white Gaussian

noise with variance 0.1. Figure 5.6(b) shows the SAR image obtained by using the

2-D FFT method with the circularly symmetric Kaiser window and shape parameter

6. Figure 5.6(c) shows the SAR image obtained by using the 1-D APES algorithm

with _I = 48. Comparing Figures 5.6(a), (b), and (c), we note that using the 1-

D APES algorithm with M = 48 yields lower sidelobes and better resolution than

the 2-D FFT methods. Figure 5.6(d) shows the SAR image obtained by using the

2D-MODE algorithm with the least-squares fitting (2D-MODE-LSF) and assuming

that there are 121 two-dimensional complex sinusoids in additive white noise. We

note that the 2D-MODE-LSF algorithm performs poorly and many features that are

important for target identification, such as the target pixels to the upper right of the

brightest pixels in Figure 5.6(b), are left out in Figure 5.6(d) by the 2D-MODE-LSF

algorithm.
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Figure 5.7 is similar to Figure 5.6 except that only 1/2 of the bandwidth and

1/2 of the synthetic aperture are used for SAR imaging. Further, Figure 5.7(c) is

obtained with the 1-D APES algorithm with fl = 24. Figure 5.8 is also similar to

Figure 5.6 except that only 1/3 of the bandwidth and 1/3 of the synthetic aperture

are used for SAR imaging. Further, Figure 5.8(c) is obtained with the 1-D APES

algorithm with ffI = 16. Figure 5.8(d) is obtained with the 2-D APES algorithm with

_ll = IQ2 = 16. Figure 5.8(e) is obtained similarly as Figure 5.7(d). We again note

that using the APES algorithms yield lower sidelobes and better resolution than the

2-D FFT methods. The APES algorithm is also more robust than the 2D-MODE-LSF

method. Finally, we note from Figures 5.8(c) and (d) that the 2-D APES algorithm

gives better performance than the 1-D APES algorithm at the cost of much more

computations.

5.4 Conclusions

We have presented a robust parametric data model for estimating high resolution

range signatures of radar targets and for forming high resolution synthetic aperture

radar (SAR) images. We have described how the APES {Amplitude and Phase Es-

timation of a Sinusoid in unknown colored noise) algorithm can be used to estimate

the range signatures and to form SAR images. With both numerical and experi-

mental examples, we have shown that our modeling and estimation approach yields

better resolution and lower sidelobes than the conventional nonparametric FFT (fast

Fourier transform) method. We have also shown that our approach is more robust

than modeling the radar data as a certain number of complex sinusoids in noise and

estimating the frequencies, amplitudes, and phases of the sinusoids with one of the

best sinusoidal parameter estimation methods.

103



Acknowledgments

The author grateful acknowledgesthe manyhelpful discussionswith Mr. E. G. Zel-

nio. The author is grateful to Mr. D. Zhengfor generatingthe SAR imageswith the

2D-MODE-LSF estimator.

Appendix A - Large Sample Maximum Likelihood Estimator and Cramer-

Rao Bound

We consider below the estimation of the complex gain of a signal with known

waveform and known steering vector in unknown colored Gaussian noise. Let x(n),

n = 1,2,..., N, denote some received data vectors of dimensions M x 1. Let y(n),

n = 1,2,--., N, denote a known waveform. Assume that the received data vectors

x(n) can be written as

x(n) = 7a0y(n) + n(n), (5.30)

where n is the additive noise vector of dimensions M × 1 and a0 is referred to as the

steering vector and is known. The noise vectors n(n) are assumed to be circularly

symmetric complex Gaussian random vectors with zero-mean and arbitrary covariance

matrix Q and are temporally white, i.e.,

E[n(i)nH(j)] = Q6i,j, (5.31)

where (.)H denotes the complex conjugate transpose and &,j is the Kronecker delta.

We consider below a large sample (N >> 1) maximum likelihood (ML) estimator

for estimating 3, from x(n), n = 1,2,..., N. It is easy to show that an exact ML

estimator requires a multidimensional search over the parameter space and is com-

putationally burdensome. We shall present below a large sample ML estimator that

is both computationally and asymptotically (for large N) statistically efficient. The
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approach we use to derive the large sample ML estimator is similar to the one in

[16, 17],which is devisedfor a different problem.

The log-likelihood function of the receivedvectorsx(n), n = 1, 2,..., N, is pro-

portional to (within an additive constant):

-In ]QI- tr Q- _ _--_[x(n) - by(n)][x(n) - by(n)] H ,

where ]. [ denotes the determinant of a matrix and

b = 7a0. (5.32)

Consider first the estimate of Q and the unstructured estimate of b. It is easy to

show that
1 N

= _ _[x(n) - by(n)][x(n)- l_y(n)] _, (5.33)
n----1

and l_ may be obtained by minimizing the following cost function

F _[x(n) - by(n)][x(n) - by(n)] H
n=l

(5.34)

Let
1 N

n=l

and
1 N

n----1

Let l_xx be defined similarly as Pyy. Then let [18]

(5.35)

(5.36)

G
1 N

_ _-'[x(n) - by(n)][x(n) - by(n)] H
N _=

^H H
= Rxx - b_yx - ryxb + bryy bH

^ _H _-a + l_xx r_xr_y rux.AH ^--1 [b rvxrvv] H ^H A--l^: [b-ryxryy]ruy --

(5.37)

(5.38)

(5.39)
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Since ÷yyis a positive number and the secondand third terms in ((5.39)) do not

dependon b, it follows that

G >_G I b=f,, (5.40)

where

l_ ^re^-1 (5.41)-----ryxryy •

Since the whole sample covariance matrix G is minimized, the unstructured estimate

t_ of b in ((5.41)) will minimize any nondecreasing function of G including the deter-

minant of G, which is_:F in ((5.34)). It is easy to see that 1_ is a consistent estimate

of b.

By using ((5.41)) with ((5.33)), the Q may be rewritten as

Q Rxx ^H --,^ (5.42)--- - ry×ryy ry×.

It is easy to see that I_ is a consistent estimate of Q.

Let us now consider the structure of b. The cost function in ((5.34)) may be

rewritten as

F ^H H bevvb H]= 115,.xx- b_vx - ryxb +

= Rxx - l_yul_ H + (b - l_)÷yy(b - 1_)"[

= 161 I + Q-l(b - l_)_yy(b - I_)H[.

(5.43)

(5.44)

(5.45)

The ML estimate of 7 may be obtained by minimizing F in ((5.45)) or equivalently

In F. In [i6, 17], we have shown that minimizing In F, with F defined in ((5.45)), is

asymptotically (for large N) equivalent to minimizing

F_ = tr [÷_(b - I_)HQ-'(b - 1_)]. (5.46)

Using b = 7ao and minimizing F1 in ((5.46)) with respect to _, yields

a0HQ-11_

")- aHQ_,a 0. (5.47)
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The large sample ML estimator for estimating 3' may be summarizedasfollows:

Step 1: Compute 1_and Q with ((5.41)) and ((5.42)), respectively.

Step 2: Determine _ with ((5.47)).

We remark that since_ is a consistentandlargesamplerealization of the ML esti-

mate, it follows that _ is asymptotically (for large N) statistically efficient according

to the general properties of ML estimators [19]. Using the results in [16, 17], we can

show that the asymptotic (for large N) distribution of _ is complex Gaussian with

mean 3' and variance

1
Var[?l = N (5.48)

_,_=1 yH(n)a_Q-laoy(n) _

which is also the CRB.

107



[1] P. Stoica and K. C. Sharman, "Maximum likelihood methods for direction-of-
arrival estimation," IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. ASSP-38, pp. 1132-1143, July 1990.

[2] P. Stoica and K. C. Sharman, "Novel eigenanalysis method for direction estima-

tion," IEE Proceedings, Pt. F, vol. 137, pp. 19-26, February 1990.

[3] M. Viberg, "Sensitivity of parametric direction finding to colored noise fields and

undermodeling," Signal Processing, vol. 34, pp. 207-222, 1993.

[4] M. Wax and I. Ziskind, "On unique localization of multiple sources by passive

sensor arrays," IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 37, pp. 996-1000, July 1989.

[5] A. Nehorai, D. Starer, and P. Stoica, "Direction-of-arrival estimation in applica-

tions with multipath and few snapshots," Circuits, Systems, and Signal Process-

ing, vol. 10, pp. 327-342, 1991.

[6] D. C. Munson, Jr., J. D. O'Brien, and W. K. Jenkins, "A tomographic formula-

tion of spotlight-mode synthetic aperture radar," Proceedings of IEEE, vol. 71,

pp. 917-925, August 1983.

[7] D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "De-

velopments in radar imaging," IEEE Transactions on Aerospace and Electronic

Systems, vol. 20, pp. 363-400, July 1984.

[8] S. R. DeGraaf, "Parametric estimation of complex 2-d sinusoids," IEEE Fourth

Annual ASSP Workshop on Spectrum Estimation and Modeling, pp. 391-396,

August, 1988.

[9] Y. Hua, "High resolution imaging of continuously moving object using stepped

frequency radar," Signal Processing, vol. 35, pp. 33-40, January 1994.

[10] I. J. Gupta, "High-resolution radar imaging using 2-D linear prediction," IEEE

Transactions on Antennas and Propagation, vol. 42, pp. 31-37, January 1994.

[11] S. R. DeGraaf, "SAR imaging via modern 2-d spectral estimation methods,"

SPIE Proceedings on Optical Engineering in Aerospace Sensing, Orlando , FL,

April 1994.

[12] G. R. Benitz, "Adaptive high-definition imaging," SPIE Proceedings on Optical

Engineering in Aerospace Sensing, Orlando , FL, April 1994.

[13] S. R. DeGraaf, "Sidelobe reduction via adaptive FIR filtering in SAR imagery,"

[EEE Transactions on Image Processing, vol. 3, pp. 292-301, May 1994.

108



[14] J. Li, P. Stoica, and D. Zheng, "An efficientalgorithm for two-dimensional fre-
quencyestimation," submitted to IEEE Transactions on Signal Processing.

[15] D. J. Andersh, M. Hazlett, S. W. Lee, D. D. Reeves, D. P. Sullivan, and Y. Chu,

"XPATCH:, a high-frequency electromagnetic scattering prediction code and en-

vironment for complex three-dimensional objects," [EEE Antennas and Propa-

gation Magazine, vol. 36, pp. 65-69, February 1994.

[16] J. Li, B. Halder, P. Stoica, M. Viberg, and T. Kailath, "Deeoupled maximum

likelihood angle estimation for signals with known waveforms," Technical Re-

port No. CTH-TE-8, Chalmers University of Technology, Gothenburg, Sweden,

February 1994.

[17] J. Li, B. Halder, P. Stoica, and M. Viberg, "Decoupled maximum likelihood angle

estimation for signals with known waveforms," submitted to IEEE Transactions

on Signal Processing.

[18] T. SSderstrSm and P. Stoics, System Identification. London, U.K.: Prentice-Hall

International, 1989.

[19] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part L New

York, NY: John Wiley & Sons Inc., 1968.

109



4

2

10

O.S ! 1 .S 2 2+5 3
Range ('r_e Delay)

(a)

I

J
0.5 1 1,5 2 2.$ 3

Range ('_me De_y)

(c)

3.S

3,5

lO

i'

4

0.5 1 1.5 2 2+5 3 3.5
RI,n9 o (T'rne Delay)

(b)

2

_.__ o'sI , I,III, l.rI_ t. lt
1,5 2 2,5

RIIP,_le(Time Delay}

(d)

, , t
3 1'3.5

O.S 1 1.5 2 2.5 3
Range (_f'lrne De_ay)

(e)

3.5

Figure 5.1: Range signature estimates (solid lines in (b) - (e)) compared to the true

range signature (dashed lines in (b) - (e)) when the white noise variance is 1 and

M = 128. (a) True range signature. (b) FFT or APES with ff = 1. (c) APES with

f[ = 48. (d) MODE-LSF by assuming 48 complex sinusoids. (e) FFT with Kaiser

window and shape parameter 4.
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ffl = 28. (b) APES with ffI = 64.
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range signature (dashed lines in (b) - (e)) when the white noise variance is 10 and

M = 128. (a) True range signature. (b) FFT or APES with fI = 1. (c) APES with

fI = 48. (d) MODE-LSF by assuming 48 complex sinusoids. (e) FFT with Kaiser

window and shape parameter 4.
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