179 research outputs found

    Boolean Functions: Theory, Algorithms, and Applications

    Full text link
    This monograph provides the first comprehensive presentation of the theoretical, algorithmic and applied aspects of Boolean functions, i.e., {0,1}-valued functions of a finite number of {0,1}-valued variables. The book focuses on algebraic representations of Boolean functions, especially normal form representations. It presents the fundamental elements of the theory (Boolean equations and satisfiability problems, prime implicants and associated representations, dualization, etc.), an in-depth study of special classes of Boolean functions (quadratic, Horn, shellable, regular, threshold, read-once, etc.), and two fruitful generalizations of the concept of Boolean functions (partially defined and pseudo-Boolean functions). It features a rich bibliography of about one thousand items. Prominent among the disciplines in which Boolean methods play a significant role are propositional logic, combinatorics, graph and hypergraph theory, complexity theory, integer programming, combinatorial optimization, game theory, reliability theory, electrical and computer engineering, artificial intelligence, etc. The book contains applications of Boolean functions in all these areas

    Unique key Horn functions

    Get PDF
    Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function hh, representing the functional dependencies. If the knowledge of the attribute values in set AA determines the value for attribute vv, then AvA\rightarrow v is an implicate of hh. If KK is a key of the database, then KvK\rightarrow v is an implicate of hh for all attributes vv. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the Minimum Key problem is at least as hard as the Minimum Target Set Selection problem with bounded thresholds.Comment: 12 pages, 5 figure

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    On the Complexity of Reconstructing Chemical Reaction Networks

    Full text link
    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from the full hypergraph description, e.g.\ on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP-completeness of the problem in its Boolean formulation. Furthermore we study the problem empirically on random and real world instances in order to investigate its computational limits in practice

    Posimodular Function Optimization

    Full text link
    Given a posimodular function f:2VRf: 2^V \to \mathbb{R} on a finite set VV, we consider the problem of finding a nonempty subset XX of VV that minimizes f(X)f(X). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. In this paper, we show that any algorithm for the problem requires Ω(2n7.54)\Omega(2^{\frac{n}{7.54}}) oracle calls to ff, where n=Vn=|V|. It contrasts to the fact that the submodular function minimization, which is another generalization of cut functions, is polynomially solvable. When the range of a given posimodular function is restricted to be D={0,1,...,d}D=\{0,1,...,d\} for some nonnegative integer dd, we show that Ω(2d15.08)\Omega(2^{\frac{d}{15.08}}) oracle calls are necessary, while we propose an O(ndTf+n2d+1)O(n^dT_f+n^{2d+1})-time algorithm for the problem. Here, TfT_f denotes the time needed to evaluate the function value f(X)f(X) for a given XVX \subseteq V. We also consider the problem of maximizing a given posimodular function. We show that Ω(2n1)\Omega(2^{n-1}) oracle calls are necessary for solving the problem, and that the problem has time complexity Θ(nd1Tf)\Theta(n^{d-1}T_f) when D={0,1,...,d}D=\{0,1,..., d\} is the range of ff for some constant dd.Comment: 18 page
    corecore