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ACHIEVING NEW UPPER BOUNDS FOR THE HYPERGRAPH
DUALITY PROBLEM THROUGH LOGIC∗
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Abstract. The hypergraph duality problem Dual is defined as follows: given two simple hyper-
graphs G and H, decide whether H consists precisely of all minimal transversals of G (in which
case we say that G is the dual of H or, equivalently, the transversal hypergraph of H). This
problem is equivalent to deciding whether two given nonredundant monotone disjunctive normal
forms/conjunctive normal forms are dual. It is known that Dual, the complementary problem to
Dual, is in GC(log2 n, PTIME), where GC(f(n), C) denotes the complexity class of all problems that
after a nondeterministic guess of O(f(n)) bits can be decided (checked) within complexity class C. It
was conjectured that Dual is in GC(log2 n, LOGSPACE). In this paper we prove this conjecture and
actually place the Dual problem into the complexity class GC(log2 n, TC0) which is a subclass of
GC(log2 n, LOGSPACE). We here refer to the logtime-uniform version of TC0, which corresponds to
FO(COUNT), i.e., first order logic augmented by counting quantifiers. We achieve the latter bound
in two steps. First, based on existing problem decomposition methods, we develop a new nondeter-
ministic algorithm for Dual that requires one to guess O(log2 n) bits. We then proceed by a logical
analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT). From
this result, by the well-known inclusion TC0 ⊆ LOGSPACE, it follows that Dual also belongs to
DSPACE[log2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algo-
rithm is based, we devise a deterministic algorithm that, given two hypergraphs G and H, computes
in quadratic logspace a transversal of G missing in H.
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1. Introduction. The hypergraph duality problem Dual is one of the most
mysterious and challenging decision problems of computer science, as its complexity
has been intensively investigated for almost 40 years without any indication that the
problem is tractable, nor any evidence whatsoever, why it should be intractable. Apart
from a few significant upper bounds, which we review below, and a large number of
restrictions that make the problem tractable, progress on pinpointing the complexity
of Dual has been rather slow. So far, the problem has been placed in relatively low
complexity nondeterministic classes within coNP. It is the aim of this paper to further
narrow it down by using logical methods.

The hypergraph duality problem. A hypergraph G consists of a finite set
V of vertices and a set E ⊆ 2V of (hyper)edges. G is simple (or Sperner) if none
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NEW UPPER BOUNDS FOR HYPERGRAPH DUALITY 457

Fig. 1. Hypergraph G and its transversal hypergraph H.

of its edges is contained in any other of its edges. A transversal or hitting set of a
hypergraph G = 〈V,E〉 is a subset of V that meets every edge in E. A transversal
of G is minimal, if none of its proper subsets is a transversal. The set of minimal
transversals of a hypergraph G = 〈V,E〉 is denoted by tr(G). Note that tr(G), which
is referred to as the dual 1 of G or also as the transversal hypergraph of G, defines
itself as a hypergraph on the vertex set V . The decision problem Dual is now easily
defined as follows: given two simple hypergraphs G and H over vertex set V , decide
whether H = tr(G).

An example of a hypergraph and its dual is given in Figure 1. It is well known
that the duality problem has a nice symmetry property [2]: if G and H are simple
hypergraphs over vertex set V , then H = tr(G) if and only if G = tr(H), and in this
case G and H are said to be dual. The Dual problem is also tightly related to the
problem of actually computing tr(G) for an input hypergraph G. In fact, it is known
that the computation problem is feasible in total polynomial time, that is, in time
polynomial in |G| + |tr(G)|, if and only if Dual is solvable in polynomial time [3].
These and several other properties of the duality problem are reviewed and discussed
in [15, 11, 31, 13], where many original references can also be found.

Applications of hypergraph duality. The Dual problem and its compu-
tational variant have a tremendous number of applications. They range from data
mining [30, 45, 4, 5], functional dependency inference [43, 44, 26], and machine learn-
ing, in particular, learning monotone Boolean conjunctive normal forms (CNFs) and
disjunctive normal forms (DNFs) with membership queries [30, 46], to model-based
diagnosis [47, 29], computing a Horn approximation to a non-Horn theory [35, 23],
computing minimal abductive explanations to observations [14], and computational
biology, for example, discovering of metabolic networks and engineering of drugs pre-
venting the production of toxic metabolites in cells [40, 39]. Surveys of these and
other applications as well as further references can be found in [12, 11, 31, 41].

The simplest and foremost applications relevant to logic and hardware design
are DNF duality testing and its computational version, DNF dualization. A pair
of Boolean formulas f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) on propositional variables
x1, x2, . . . , xn are dual if, for any Boolean assignment to variables x1, . . . , xn,

f(x1, x2, . . . , xn) ≡ ¬g(¬x1,¬x2, . . . ,¬xn).

A monotone DNF is irredundant if the set of variables in none of its disjuncts is covered
by the variable set of any other disjunct. The duality testing problem is the problem

1Note that sometimes in the literature the dual hypergraph of G was defined as the hypergraph
derived from G in which the roles of the vertices and the edges are “interchanged” (see, e.g., [2, 48]),
and this is different from the transversal hypergraph. Nevertheless, lately in the literature the name
“dual hypergraph” has been used with the meaning of “transversal hypergraph” (as in, e.g., [15, 37,
6, 25, 38, 16]).
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458 GEORG GOTTLOB AND ENRICO MALIZIA

of testing whether two irredundant monotone DNFs f and g are dual. It is well
known and easy to see that monotone DNF duality and Dual are actually the same
problem.2 Two hypergraphs G and H are dual if and only if their associated DNFs
G∗ and H∗ are dual, where the DNF F∗ associated with a hypergraph F = 〈V,E〉
is
∨
e∈E

∧
v∈e v, where, obviously, vertices v ∈ V are interpreted as propositional

variables. For example, the hypergraphs G and H of Figure 1 give rise to DNFs

G∗ = (a ∧ c ∧ d) ∨ (a ∧ e ∧ f) ∨ (c ∧ b) ∨ (e ∧ b), and

H∗ = (a ∧ b) ∨ (c ∧ e) ∨ (c ∧ b ∧ f) ∨ (e ∧ b ∧ d) ∨ (d ∧ b ∧ f),

which are indeed mutually dual. The duality problem for irredundant monotone DNFs
corresponds, in turn, to Dual, and the problem instances 〈F ,G〉 and 〈F∗, G∗〉 can
be intertranslated by extremely low-level reductions, in particular, LOGTIME reduc-
tions, and even projection reductions. In many publications, the Dual problem is
thus right away introduced as the problem of duality checking for irredundant mono-
tone DNFs. An equivalent problem is the problem of checking whether a monotone
CNF and a monotone DNF are logically equivalent.

Previous complexity bounds. Dual is easily seen to reside in coNP. In fact,
in order to show that a Dual instance is a “no-instance,” it suffices to show that
either some edge of one of the two hypergraphs is not a minimal transversal of the
other hypergraph (which is feasible in polynomial time), or to find (guess and check)
a missing transversal to one of the input hypergraphs. The complement Dual of
Dual is therefore in NP. In their landmark paper, Fredman and Khachiyan [19]
have shown that Dual is in DTIME[no(logn)], more precisely, that it is contained
in DTIME[n4χ(n)+O(1)], where χ(n) is defined by χ(n)χ(n) = n. Note that χ(n) ∼
log n/ log log n = o(log n).

Let GC(f(n), C) denote the complexity class of all problems that after a non-
deterministic guess of O(f(n)) bits can be decided (checked) in complexity class C.
Eiter, Gottlob, and Makino [13] and, independently, Kavvadias and Stavropoulos [36]
have shown that Dual is in GC(log2 n, PTIME); note that this class is also known
as β2P; see [24].

Recently, the nondeterministic bound for Dual was further pushed down to
GC(log2 n, [[LOGSPACEpol]]

log) [25]; see Figure 2(a).
A precise definition of [[LOGSPACEpol]]

log is given in [25]. We will not make use
of this class in the technical part of the present paper. Informally, [[LOGSPACEpol]]

log

contains those problems π for which there exist a logspace-transducer T , a polynomial
p, and a function f in O(log n), such that each π-instance I of size n = |I| can be
reduced by the f(n)-fold composition T f(n) of T to a decision problem in LOGSPACE,
where the size of all intermediate results T i(I) for 1 ≤ i ≤ f(n), is polynomially
bounded by p(n). For the relationship of GC(log2 n, [[LOGSPACEpol]]

log) to other
classes; see Figure 2(a). In [25], it was shown that GC(log2 n, [[LOGSPACEpol]]

log)
is not only a subclass of GC(log2 n, PTIME), but also of DSPACE[ log2 n], i.e.,
of quadratic logspace. Therefore, as also proven in a new and more direct way in
the present paper, Dual is in DSPACE[ log2 n] (Corollary 4.9), and it is thus most
unlikely for Dual to be PTIME-hard, which answered a previously long-standing

2In fact, in the literature, the hypergraph transversal problem was tackled interchangeably from
the perspective of monotone Boolean formula dualization or from the perspective of hypergraphs.
Readers wanting to know more about the relationships between some of the different perspectives
adopted in the literature to deal with the Dual problem are referred to the extended technical
report [28] available online.
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(a) Old upper bound. (b) New upper bound.

Fig. 2. Complexity bound improvement obtained in this paper.

question. Given that PTIME and DSPACE[ log2 n] are believed to be incomparable,
it is also rather unlikely that Dual is closely related to another interesting logical
problem of open complexity, namely, to validity checking for the modal µ-calculus or,
equivalently, to the winner determination problem for parity games [32, 34], as these
latter problems are PTIME-hard, but in NP∩ coNP.

Main complexity problem tackled. In [25] it was asked whether the upper
bound of GC(log2 n, [[LOGSPACEpol]]

log) could be pushed further downwards, and
the following conjecture was made.

Conjecture (see [25]). Dual ∈GC(log2 n, LOGSPACE).

It was unclear, however, how to prove this conjecture based on the algorithms
and methods used in [25]. There, a problem decomposition strategy by Boros and
Makino [6] was used, that decomposed an original Dual instance into a conjunction
of smaller instances according to a specific conjunctive self-reduction. Roughly, this
strategy constructs a decomposition tree of logarithmic depth for Dual, each of whose
nodes represents a subinstance of the original instance; more details on decomposition
trees are given in section 3. To prove that the original instance is a no-instance
(and thus a “yes-instance” of Dual), it is sufficient to guess, in that tree, a path
Π from the root to a single node v associated with a no-subinstance that can be
recognized as such in logarithmic space. Guessing the path to v can be easily done
using O(log2 n) nondeterministic bits, but it is totally unclear how to actually compute
the subinstance associated with node v in LOGSPACE. In fact, it seems that the only
way to compute the subinstance at node v is to compute—at least implicitly—all
intermediate Dual instances arising on the path from the root to the decomposition
node v. This seems to require a logarithmic composition of LOGSPACE transducers,
and thus a computation in the complexity class [[LOGSPACEpol]]

log. It was therefore
totally unclear how [[LOGSPACEpol]]

log could be replaced by its subclass LOGSPACE,
and new methods were necessary to achieve this goal.

New results: Logic to the rescue. To attack the problem, we studied various
alternative decomposition strategies for Dual, among them the strategy of Gaur [21],
which also influenced the method of Boros and Makino [6]. In the present paper, we
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460 GEORG GOTTLOB AND ENRICO MALIZIA

build on Gaur’s original strategy, as it appears to be the best starting point for
our purposes. However, Gaur’s method still does not directly lead to a guess-and-
check algorithm whose checking procedure is in LOGSPACE, and thus new techniques
needed to be developed.

In a first step, by building creatively on Gaur’s deterministic decomposition strat-
egy [21], we develop a new nondeterministic guess-and-check algorithm ND-NotDual
for Dual, that is specifically geared towards a computationally simple checking part.
In particular, the checking part of ND-NotDual avoids certain obstructive steps
that would require more memory than just plain LOGSPACE, such as the successive
minimization of hypergraphs in subinstances of the decomposition (as used by Boros
and Makino [6]) and the performance of counting operations between subsequent de-
composition steps so to determine sets of vertices to be included in a new transversal
(as used by Gaur [21]). Our new approach is thus influenced by Gaur’s, but differs
noticeably from it, as well as from the algorithm of Boros and Makino.

In a second step, we proceed with a careful logical analysis of the checking part of
ND-NotDual. We transform all subtasks of ND-NotDual into logical formulas.
However, it turns out that first order logic (FO) is not sufficient, as an essential step
of the checking phase of ND-NotDual is to check for specific hypergraph vertices
v whether v is contained in at least half of the hyperedges of some hypergraph. To
account for this, we need to resort to FO(COUNT), which augments FO with counting
quantifiers. Note that we could have used in a similar way FOM, i.e., FO augmented by
majority quantifiers, as FO(COUNT) and FOM have the same expressive power [33].
By putting all pieces together, we succeed in describing the entire checking phase by
a single fixed FO(COUNT) formula that has to be evaluated over the input Dual
instance. Note that FO(COUNT) model checking is complete for logtime-uniform
TC0.

In summary, by putting the guessing and checking parts together, we achieve as
the main theorem a complexity result that is actually better than the one conjectured.

Theorem. Dual ∈ GC(log2 n, TC0).

By the well-known inclusion TC0 ⊆ LOGSPACE, we immediately obtain a corol-
lary that proves the above-mentioned conjecture.

Corollary A. Dual ∈ GC(log2 n, LOGSPACE).

Moreover, by the inclusion GC(log2 n, LOGSPACE) ⊆ DSPACE[log2 n], and the
fact that DSPACE [log2 n] is closed under complement, we can easily obtain as a
simple corollary the following.

Corollary B. Dual ∈ DSPACE[log2 n].

To conclude, by an easy adaptation of our algorithm ND-NotDual we devise
a simple deterministic algorithm ComputeNT to compute a new (not necessarily
minimal) transversal in quadratic logspace.

Significance of the new results and directions for future research. The
progress achieved in this paper is summarized in Figure 2, whose left part (Fig-
ure 2(a)) shows the previous state of knowledge about the complexity, while the right
part (Figure 2(b)) depicts the current state of knowledge we have achieved. We have
significantly narrowed down the “search space” for the precise complexity of Dual
(or Dual). We believe that our new results are of value to anybody studying the
complexity of this interesting problem. In particular, the connection to logic opens
new avenues for such studies. First, our results show where to dig for tighter bounds.
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It may be rewarding to study subclasses of GC(log2 n, TC0) and, in particular, logi-
cally defined subclasses that replace TC0 by low-level prefix classes of FO(COUNT).
Classes of this type can be found in [7, 8, 18, 49, 50]. More details on this will be
given in the conclusive remarks in section 5. Second, the membership of Dual in
GC(log2 n, TC0) provides valuable information for those trying to prove hardness re-
sults for Dual, i.e., to reduce some presumably intractable problem X to Dual. Our
results restrict the search space to be explored to hunt for such a problem X. More-
over, given that LOGSPACE is not known to be in GC(log2 n, TC0), and given that it
is not generally believed that GC(log2 n, TC0) contains LOGSPACE-hard problems
(under logtime reductions), our results suggest that LOGSPACE-hard problems are
rather unlikely to reduce to Dual, and that it may thus be advisable to look for
a problem X that is not (known to be) LOGSPACE-hard, in order to find a lower
bound for Dual. Our new results are of a theoretical nature. This does not rule out
the possibility that they may be used for improving practical algorithms, but this has
yet to be investigated. Finally, we believe that the methods presented in this paper
are a compelling example of how logic and descriptive complexity theory can be used
together with suitable problem decomposition methods to achieve new complexity
results for a concrete decision problem.

Organization of the paper. After some preliminaries in section 2, we discuss
problem decomposition strategies and introduce the concept of a decomposition tree
for Dual in section 3. Based on this, in section 4 we present the nondeterministic
algorithm ND-NotDual for Dual, prove it correct, and then analyze this algorithm
to derive our main complexity results. To conclude, by exploiting the method used
in the nondeterministic algorithm, we present a deterministic algorithm to actually
compute a new (not necessarily minimal) transversal in quadratic logspace.

2. Preliminaries. In what follows, when we identify a hypergraph G with its
edge-set E by writing G = E, we mean G = 〈

⋃
G∈E G,E〉. By writing G ∈ G we

mean G ∈ E. Generally, we denote by V the set of vertices of a hypergraph and, if
not stated otherwise, pairs of hypergraphs G and H, and the hypergraphs of a Dual
instance 〈G,H〉, are assumed to have the same set of vertices. The number of edges
of G is denoted by |G|, and, given an instance 〈G,H〉 of Dual, m is the total number
|G|+ |H| of edges of G and H. By ‖G‖ we denote the size of the hypergraph G, that
is, the space (in terms of the number of bits) required to represent G. It is reasonable
to assume that a hypergraph G is represented through the adjacency lists of its edges
(i.e., each edge G of G is represented through the list of the vertices belonging to G).
It is easy to see that |V | ≤ ‖G‖ and |G| ≤ ‖G‖. We denote by N = ‖G‖ + ‖H‖ the
size of the input of the Dual problem.

We say that G is an empty hypergraph if G does not have any edge, and G is an
empty-edge hypergraph if G contains only an empty edge (i.e., an edge without vertices
in it). Note that empty and empty-edge hypergraphs can actually contain vertices,
and thus there are various empty and empty-edge hypergraphs. For notational con-
venience, by G = ∅ we indicate that G is an empty hypergraph, while by G = {∅} we
indicate that G is an empty-edge hypergraph. However, with these notations we do
not mean that these hypergraphs do not have vertices. The notation ∅ ∈ G clearly
means that G contains an empty edge. Observe that, if G = ∅, then any set of vertices
is a transversal of G. For this reason, there is only one minimal transversal of G and
it is the empty set. On the other hand, if ∅ ∈ G, then there is no transversal of G at
all. Hence, by definition, the dual of an empty hypergraph is an empty-edge hyper-
graph, and vice versa [11]. Two hypergraphs G and H over the same vertex set are
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trivially dual, if one of them is an empty hypergraph and the other is an empty-edge
hypergraph.

Given a hypergraph G and a set of vertices T , a vertex v ∈ T is critical in T
(w.r.t. G) if there is an edge G ∈ G such that G ∩ T = {v}. We say that G witnesses
the criticality of v in T . Observe that, if v is a critical vertex in T , v may have various
witnesses of its criticality, that is, more than one edge of G can intersect T only on v.

A set of vertices S is an independent set of a hypergraph G if, for all G ∈ G,
G 6⊆ S. If G and H are two hypergraphs, a set of vertices T is a new transversal of G
w.r.t.3 H if T is a transversal of G, and T is also an independent set of H. Intuitively,
a new transversal T of G is a transversal of G missing in H. More formally, T is a
new transversal of G w.r.t. H if, for any transversal T ′ ⊆ T of G, T ′ /∈ H. Note that
a new transversal is not necessarily a minimal transversal, however, it contains a new
minimal transversal.

In the following, we state the main properties about transversals to be used in
this paper. These properties are already known or easily follow from what is known
in the literature (see, e.g., [2, 19, 22, 6, 16, 11, 20]).4

Lemma 2.1. Let G be a hypergraph, and let T ⊆ V be a transversal of G. Then,
T is a minimal transversal of G if and only if every vertex v ∈ T is critical (and hence
there is an edge Gv ∈ G witnessing so).

For a set of vertices T ⊆ V , let T denote V \ T , i.e., the complement of T in V .

Lemma 2.2. Let G and H be two hypergraphs. A set of vertices T ⊆ V is a new
transversal of G w.r.t. H if and only if T is a new transversal of H w.r.t. G.

We say that hypergraphs G and H satisfy the intersection property if all edges of
G are transversals of H and, thus, vice versa, all edges of H are transversal of G. Note
here that, for the intersection property to hold, the edges of one hypergraph are not
required to be minimal transversal of the other.

Lemma 2.3. Let G and H be two hypergraphs. Then, G and H are dual if and
only if G and H are simple, satisfy the intersection property, and there is no new
transversal of G w.r.t. H.

3. Decomposing the DUAL problem.

3.1. Decomposition principles. A way to recognize no-instances 〈G,H〉 of
Dual is to find a new transversal of G w.r.t. H, i.e., a transversal of G that is also an
independent set of H. In fact, many algorithms in the literature follow this approach
(see, e.g., [19, 13, 36, 16, 6, 21]). These algorithms try to build such a new transversal
by successively including vertices in and excluding vertices from a candidate for a
new transversal. To give an example, the classical algorithm “A” of Fredman and
Khachiyan [19] tries to include a vertex v in a candidate for a new transversal, and if
this does not result in a new transversal, then v is excluded. Moreover if the exclusion
of v does not lead to a new transversal, then no new transversal exists which is coherent
with the choices having been made before considering vertex v. (If v is the first vertex
considered, then there is no new transversal at all.)

We speak about included and excluded vertices because most of the algorithms
proposed in the literature implicitly or explicitly keep track of two sets: the set of
the vertices considered included in and the set of the vertices considered excluded

3We will often omit “w.r.t. H” when the hypergraph H we are referring to is understood.
4All the missing proofs of this and other sections and appendices of this paper can be found in

the extended technical report [28] available online.
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NEW UPPER BOUNDS FOR HYPERGRAPH DUALITY 463

from the attempted new transversal. Similarly, those algorithms working on Boolean
formulas keep track of the truth assignment: the variables to which true has been
assigned, those to which false has been assigned, and (obviously) those to which no
Boolean value has been assigned yet.

If G and H are two hypergraphs, an assignment σ = 〈In,Ex 〉 is a pair of subsets
of V such that In ∩ Ex = ∅. Intuitively, set In contains the vertices considered
included in (or, inside) an attempted new transversal T ⊇ In of G w.r.t. H, while set
Ex contains the vertices considered excluded from (or, outside) T (i.e., T ∩Ex = ∅).
We say that a vertex v ∈ V is free in (or of) an assignment σ = 〈In,Ex 〉, if v /∈ In and
v /∈ Ex . Note that the empty assignment σε = 〈∅,∅〉 is a valid assignment. Given
assignments σ1 = 〈In1,Ex 1〉 and σ2 = 〈In2,Ex 2〉, if In1∩Ex 2 = ∅ and Ex 1∩In2 = ∅,
we denote by σ1 + σ2 = 〈In1 ∪ In2,Ex 1 ∪ Ex 2〉 the extension of σ1 with σ2. An
assignment σ2 = 〈In2,Ex 2〉 is said to be an extension of assignment σ1 = 〈In1,Ex 1〉,
denoted by σ1 v σ2, whenever In1 ⊆ In2 and Ex 1 ⊆ Ex 2. If σ1 v σ2 and In1 ⊂ In2

or Ex 1 ⊂ Ex 2 we say that σ2 is a proper extension of σ1, denoted by σ1 @ σ2.
Given a set of vertices S ⊆ V , the associated assignment is σS = 〈S, S〉. We

say that an assignment σ = 〈In,Ex 〉 is coherent with a set of vertices S, and vice
versa, whenever σ v σS . This is tantamount to In ⊆ S and Ex ⊆ S (or, equivalently,
Ex ∩ S = ∅). With a slight abuse of notation we denote that an assignment σ is
coherent with a set S by σ v S. Observe that, by Lemma 2.2, if σ = 〈In,Ex 〉
is coherent with a new transversal T of G w.r.t. H, then the reversed assignment
σ = 〈Ex , In〉 is coherent with the new transversal T of H w.r.t. G. Intuitively, this
means that for an assignment σ = 〈In,Ex 〉, set In is (a subset of) an attempted new
transversal of G w.r.t. H, and, symmetrically, set Ex is (a subset of) an attempted
new transversal of H w.r.t. G.

Most algorithms proposed in the literature essentially try different assignments
by successively extending in different ways the current assignment. Each extension
performed induces a “reduced” instance of Dual on which the algorithm is recursively
invoked. Intuitively, the size of the instance decreases for two reasons. Including
vertices in the new attempted transversal of G increases the number of edges of G met
by the new transversal under construction and, hence, there is no need to consider
these edges any longer. Symmetrically, excluding vertices from the new attempted
transversal of G increases the number of edges of H certainly not contained in the new
transversal under construction and, hence, again, there is no need to consider these
edges any longer.

Given a hypergraph G and a set S of vertices, as in [16, 6], we define hypergraphs
GS = 〈S, {G ∈ G | G ⊆ S}〉 and GS = 〈S,min({G ∩ S | G ∈ G})〉, where min(H), for
any hypergraph H, denotes the set of inclusion minimal edges of H. Observe that GS
is always a simple hypergraph, and that if G is simple, then so is GS . If ∅ ∈ G, then
min(G) = {∅}.

Let I = 〈G,H〉 be an instance of Dual. While constructing a new transver-
sal of G, when the assignment σ = 〈In,Ex 〉 is considered let us denote by Iσ =
〈G(σ),H(σ)〉 = 〈(GV \In)V \(In∪Ex), (HV \Ex )V \(In∪Ex)〉 the reduced instance derived
from I and induced by σ. Observe that both G(σ) and H(σ) are simple by defini-
tion, because they undergo a minimization operation, and that, if G and H have the
same vertex set, then G(σ) and H(σ) have the same vertex set. Intuitively, since we
are interested in finding new transversals of G w.r.t. H, we can avoid analyzing and
further extending an assignment σ = 〈In,Ex 〉 for which In is not an independent set
of H or Ex is not an independent set of G. In fact, on the one hand, if Ex is not an
independent set of G, then no set of vertices T coherent with σ can be a transversal
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of G (because, by σ v T , T and Ex are disjoint). On the other hand, if In is not an
independent set of H, then no set of vertices T coherent with σ can be an independent
set of H and, hence, a new transversal of G (because, by σ v T , In ⊆ T ). To this
purpose, for an assignment σ = 〈In,Ex 〉, if there is an edge H ∈ H with H ⊆ In or an
edge G ∈ G with G ⊆ Ex , we say that In and Ex are covering, respectively. We also
say that σ = 〈In,Ex 〉 is a covering assignment if In or Ex are covering. For future
reference, let us highlight the just mentioned property in the following lemma.

Lemma 3.1. Let G and H be two hypergraphs, and let σ = 〈In,Ex 〉 be an assign-
ment.

(a) If Ex is covering, then there is no set of vertices coherent with σ that is a
transversal of G.

(b) If In is covering, then there is no set of vertices coherent with σ that is an
independent set of H.

Hence, if σ is covering, then there is no set of vertices coherent with σ that is a new
transversal of G w.r.t. H.

Decomposing an original instance of Dual into multiple subinstances has the
advantage of generating smaller subinstances for which it is computationally easier to
check their duality. In fact, many algorithms proposed in the literature decompose
the original instance into smaller subinstances for which the duality test is feasible
in PTIME or even in subclasses of it. The following property of Dual subinstances
is of key importance for the correctness of all the approaches tackling Dual through
decomposition techniques.

Lemma 3.2. Two hypergraphs G and H are dual if and only if G and H are simple,
satisfy the intersection property, and, for all assignments σ, G(σ) and H(σ) are dual
(or, equivalently, there is no new transversal of G(σ) w.r.t. H(σ)).

Lemma 3.2 can be easily proven by exploiting Lemma 2.3 and the equivalence
between the hypergraph transversal problem and the duality problem of nonredundant
monotone Boolean CNF/DNF formulas, where (partial) assignments here considered
correspond to partial Boolean truth assignments. However, in Appendix A, we provide
a detailed proof of the previous lemma without resorting to the equivalence with
Boolean formulas and we also analyze other interesting properties of decompositions.

Although checking the duality of subinstances of an initial instance of Dual can
be computationally easier, it is evident that, in order to find a new transversal of
G, naively trying all the possible noncovering assignments would require exponential
time. Nevertheless, as already mentioned, there are deterministic algorithms solving
Dual in quasi-polynomial time. To meet such a time bound, those algorithms do not
try all the possible combinations of assignments, but they consider specific assignment
extensions.

Common approaches—here referred to as extension types—to extend a currently
considered assignment σ = 〈In,Ex 〉 to an assignment σ′ are

(i) include a free vertex v into the new attempted transversal of G w.r.t. H, i.e.,
σ′ = σ + 〈{v},∅〉;

(ii) include a free vertex v as a critical vertex into the new attempted transver-
sal of G w.r.t. H with an edge G ∈ G(σ), such that v ∈ G, witnessing v’s
criticality, i.e., σ′ = σ + 〈{v}, G \ {v}〉;

(iii) exclude a free vertex v from the new attempted transversal of G w.r.t. H (or,
equivalently, include v into the new attempted transversal of H w.r.t. G), i.e.,
σ′ = σ + 〈∅, {v}〉;
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(iv) include a free vertex v as a critical vertex into the new attempted transversal
of H w.r.t. G with an edge H ∈ H(σ), such that v ∈ H, witnessing v’s
criticality, i.e., σ′ = σ + 〈H \ {v}, {v}〉.

Observe that the extension types listed above always generate consistent assign-
ments, i.e., assignments for which the sets of included and excluded vertices do
not overlap. This is easy to see for extension types (i) and (iii). For extension
type (ii), observe the following. Let σ = 〈In,Ex 〉 be an assignment. Since G ∈ G(σ),
G ⊆ V \ (In ∪ Ex ) by definition of G(σ). Therefore, G ∩ In = ∅ and G ∩ Ex = ∅.
Moreover, the sets of vertices {v} and (G \ {v}) clearly constitute a partition of ver-
tices in G, thus 〈In ∪{v},Ex ∪ (G \ {v})〉 is a consistent assignment. Similarly, it can
be shown that extension type (iv) generates a consistent assignment.

The size reduction attained in the considered subinstances tightly depends on
the assignment extension performed and, in particular, on the frequencies with which
vertices belong to the edges of G(σ) and H(σ). We will analyze this in detail below.

3.2. Assignment trees and the definition of T (G,H). Most algorithms
proposed in the literature adopt their own specific assignment extensions in specific
sequences. The assignments successively considered during the recursive execution of
the algorithms can be analyzed through a treelike structure. Intuitively, each node of
the tree can be associated with a tried assignment, and nodes of the tree are connected
when their assignments are one the direct extension of the other. We can call these
trees assignment trees.

Inspired by the algorithm proposed by Gaur [21],5 we will now describe the con-
struction of a general assignment tree T (G,H) that simultaneously represents all
possible decompositions of an input Dual instance 〈G,H〉 according to (assignment
extensions directly derived from) extension types (ii) and (iii). This tree is of super-
polynomial size. However, it will be shown later that whenever G and H are not dual,
then there must be in this tree a node at depth O(logN) which can be recognized
with low computational effort as a witness of the nonduality of hypergraphs G and H.

Intuitively, each node p of the tree T (G,H) is associated with an assignment σp.
In particular, the root is labeled with the empty assignment. Node p of the tree has
a child q for each assignment σq that can be obtained from σp through an elementary
extension of type (ii) or (iii). Edge (p, q) is then labeled by precisely this extension.

For our purposes, drawing upon the algorithm of Gaur, for each node p of the
tree whose assignment is σp = 〈Inp,Exp〉 we do not (explicitly) consider subinstance
Ip = 〈G(σp),H(σp)〉. We refer instead to the following sets:

• SepG,H(σp) = {G ∈ G | G ∩ Inp = ∅}, the set of all edges of G not met by
(or, equivalently, separated from) σp; and

• ComG,H(σp) = {H ∈ H | H ∩ Exp = ∅}, the set of all edges of H compatible
with σp.

We will often omit the subscript “G,H” of SepG,H(σp) and ComG,H(σp) when hyper-
graphs G and H we are referring to are understood. The sets Sep(σp) and Com(σp)
are very similar to G(σp) and H(σp), respectively. However, roughly speaking, unlike
G(σp) and H(σp), the edges in Sep(σp) and Com(σp) are neither “projected” over the
free vertices of σp, nor minimized to obtain simple hypergraphs. In fact, Sep(σp) and

5Readers can find in Appendix B a deterministic algorithm, based on that of Gaur [21] (see
also [22]), deciding hypergraph duality. Note that the original algorithm proposed by Gaur aims
instead at deciding self -duality of DNF Boolean formulas. It is from the algorithm reported in the
appendix that we have taken ideas to devise our nondeterministic algorithm. Note that the exposition
in Appendix B builds up on concepts, definitions, and lemmas discussed in subsections 3.2 and 3.3.
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Fig. 3. A subtree of the decomposition tree T (G,H).

Com(σp) are (more or less) equivalent to GV \Inp
and to HV \Exp

, respectively (and not

to (GV \Inp
)V \(Inp∪Exp) and to (HV \Exp

)V \(Inp∪Exp), respectively). The difference lies
in the fact that Sep(σp) and Com(σp) are formally defined as sets of sets of vertices,
while GV \Inp

and HV \Exp
are hypergraphs.

More formally, let T (G,H) = 〈N,A, r, σ, `〉 be a tree whose nodes N are labeled
by a function σ, and whose edges A are labeled by a function `. The root r ∈ N of
the tree is labeled with the empty assignment σε = 〈∅,∅〉. Each node p is labeled
with the assignment σp = 〈Inp,Exp〉 (specified below). The leaves of T (G,H) are
all nodes p whose assignment σp is covering or has no free vertex (remember that,
by Lemma 3.1, there is no benefit in considering (and further extending) covering
assignments). Each nonleaf node p of T (G,H) has precisely the following children:

• Derived from extension type (iii): for each free vertex v of σp, p has a child q
such that σq = σp + 〈∅, {v}〉, and the edge connecting p to q is labeled −v.

• Derived from extension type (ii): for each G ∈ Sep(σp) and each vertex v ∈ G
that is free in σp, p has a child q such that σq = σp + 〈{v}, G \ {v}〉, and the
edge connecting p to q is labeled (v,G).

Observe that, by this definition of T (G,H), the edges leaving a node are all labeled
differently and, moreover, siblings are always differently labeled. Note, however, that
different (nonsibling) nodes may have the same label, and so may edges originating
from different nodes.

Also in this case, the extensions considered in tree T (G,H) generate consistent
assignments. This is obvious for the extension derived from extension type (iii) since
the vertex considered in the exclusion is free in the assignment. For the extension
derived from extension type (ii) observe the following. Let σp = 〈Inp,Exp〉. The sets
of vertices {v} and (G\{v}) constitute a partition of vertices in G. Since G ∈ Sep(σp),
G∩ Inp = ∅, and hence (G \ {v})∩ Inp = ∅. It could be the case that G∩Exp 6= ∅,
however, v /∈ Exp, because v is free. Therefore, 〈Inp ∪ {v},Exp ∪ (G \ {v})〉 is a
consistent assignment.

To give an example, consider Figure 3. Hypergraph vertices are denoted by
letters, and hypergraph edges are denoted by numbers. In the tree illustrated, the root
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coincides with the pair of hypergraphs of Figure 1, except that the transversal {d, b, f}
of G is now missing in H. The root is associated with the empty assignment σε and,
correspondingly, the sets depicted with the root node are Sep(σε) and Com(σε). Each
of the other nodes p represents an assignment σp whose included vertices are indicated
by a checkmark (3) and whose excluded vertices by a cross (7). In addition, each
node p shows, on the left-hand side, the separated edges of G and, on the right-hand
side, the compatible edges of H in σp, respectively. The leftmost edge leaving the
root is labeled with −a which stands for the exclusion of vertex a. This reflects
the application of an extension type (iii). On the other hand, the rightmost edge
leaving the root is labeled with (d, 1) which stands for the inclusion of vertex d as a
critical vertex, along with edge 1 of G witnessing d’s criticality in the attempted new
transversal under construction. This reflects the application of an extension type (ii).
In the given example, not all but only some nodes of the tree are depicted. Indeed,
observe that the bottom right node of the figure is not a leaf, because its assignment is
noncovering and still contains two free vertices that can be either included (as critical
vertices), or excluded.

On the other hand, the bottom central node of the figure is a leaf, because its as-
signment is covering (in particular, edge 3 of hypergraph G is covered by the excluded
vertices).

A path Π = (`1, `2, . . . , `k) in T (G,H) is a sequence of edge labels describing the
path from the root to a node following the edges labeled in turn `1, `2,. . . ,`k.

For example, in Figure 3, the path ((d, 1),−e) leads to the bottom right node of
the figure.

Since the edges leaving a node are assumed to be all differently labeled, a path
identifies unequivocally a node in the tree. Given a path Π, we denote by N (Π)
the end-node of Π. Note that the end-node of a path is not necessarily a leaf of the
decomposition tree.

The next lemma, which shows how to compute the assignment σN (Π) of node
N (Π), immediately follows from the definition of the concept of path. For notational
convenience we define σ(Π) = σN (Π).

Lemma 3.3.

(1) σN (Π) = σ(Π) =

〈 ⋃
(v,G)∈Π

{v},
( ⋃
−v∈Π

{v}
)
∪
( ⋃

(v,G)∈Π

(G \ {v})
)〉

.

Let us now analyze what are the reductions in size achieved when specific exten-
sion types are performed. We denote by

εSep(σ)
v =

|{G ∈ Sep(σ) | v ∈ G}|
|{Sep(σ)}|

and εCom(σ)
v =

|{H ∈ Com(σ) | v ∈ H}|
|{Com(σ)}|

the ratio of the edges in Sep(σ) and Com(σ), respectively, containing vertex v.

Lemma 3.4. Let G and H be two hypergraphs satisfying the intersection property,
and let σ be a noncovering assignment. If v is a free vertex of σ, then

|Sep(σ + 〈{v},∅〉)| = (1− εSep(σ)
v ) · |Sep(σ)| and

|Com(σ + 〈∅, {v}〉)| = (1− εCom(σ)
v ) · |Com(σ)|.

On the other hand, if G ∈ Sep(σ), H ∈ Com(σ), and v ∈ G and w ∈ H are free
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vertices of σ, then

|Com(σ + 〈{v}, G \ {v}〉)| ≤ εCom(σ)
v · |Com(σ)| and

|Sep(σ + 〈H \ {w}, {w}〉)| ≤ εSep(σ)
w · |Sep(σ)|.

Proof. Given an assignment σ, if v is a free vertex in σ and v belongs to ε
Sep(σ)
v ·

|Sep(σ)| many edges of Sep(σ), then, for the assignment σ′ = σ+ 〈{v},∅〉 (extension

type (i)), it is easy to see that |Sep(σ′)| = (1− εSep(σ)
v ) · |Sep(σ)|. Similarly, when the

assignment σ′ = σ+ 〈∅, {v}〉 is considered (extension type (iii)), it is easy to see that

|Com(σ′)| = (1− εCom(σ)
v ) · |Com(σ)|.

Let us now consider extension type (ii), and let σ′ = σ + 〈{v}, G \ {v}〉. We will

show that |Com(σ′)| ≤ εCom(σ)
v · |Com(σ)|. Let K{v} = {H̃ ∈ Com(σ) | H̃ ∩G = {v}}

be the set of edges in Com(σ) whose intersection with G is exactly vertex v, and let

K[v] = {H̃ ∈ Com(σ) | H̃ ∩G 3 v} be the set of edges in Com(σ) whose intersection
with G contains vertex v. Clearly K{v} ⊆ K[v] and, hence, |K{v}| ≤ |K[v]|. By

definition, |K[v]| = ε
Com(σ)
v · |Com(σ)|, therefore |K{v}| ≤ ε

Com(σ)
v · |Com(σ)|. Since

G and H satisfy the intersection property, Sep(σ) contains edges of G, and Com(σ)
contains edges of H, all edges of Com(σ) intersect G. This, together with the fact
that all vertices G \ {v} are excluded in σ′, implies that Com(σ′) = K{v}. Therefore,

|Com(σ′)| ≤ εCom(σ)
v · |Com(σ)|. For extension type (iv) the proof is similar.

Observe that in the proof of Lemma 3.4 we do not require Sep(σ) and Com(σ)
to be “simple,” i.e., it is not required that edges belonging to Sep(σ) (resp., Com(σ))
are not subsets of other edges in Sep(σ) (resp., Com(σ)). In fact, the lemma is valid
regardless of that. Lemma 3.4 states a general property about the reduction in size of
Sep(σ) and Com(σ) when some assignment extensions are considered. Indeed, edges
G from Sep(σ) do not need to be considered any longer as soon as they contain an
included vertex, and this is irrespective of Sep(σ) being actually simple. A similar
discussion extends to edges H of Com(σ) containing excluded vertices.

Before proceeding with our discussion, we recall that each node p of the tree
corresponds to the subinstance Ip = 〈G(σp),H(σp)〉 even though we do not explicitly
represent it, and we refer instead to Sep(σp) and Com(σp). Therefore, T (G,H) is
indeed a decomposition of the original instance into smaller subinstances.

We claim that, by construction of tree T (G,H), if G andH are simple hypergraphs
satisfying the intersection property, then the pair 〈G,H〉 is a yes-instance of Dual if
and only if, for each node p of T (G,H), Ip is a yes-instance of Dual. Indeed, if G and
H are dual, then, by Lemma 3.2, there is no assignment σ for which G(σ) andH(σ) are
not dual and, hence, all nodes p of T (G,H) are such that Ip is a yes-instance of Dual.
On the other hand, if G andH are not dual, since we are assuming that they are simple
and satisfy the intersection property, by Lemma 2.3 there is a new transversal T of G
w.r.t. H. The fact that G and H are simple implies also that G = G(σε) = G(σr) and
H = H(σε) = H(σr), where r is the root of T (G,H). Therefore, already the root r of
T (G,H) is such that G(σr) and H(σr) are not dual and, hence, Ir is a no-instance of
Dual.

The critical point here is that, in order to prove that hypergraphs G and H are
actually not dual, it would be much better to identify in T (G,H) those nodes p for
which it is computationally easy to verify that G(σp) and H(σp) are not dual, and
the root of the tree may not always fit the purpose (of an efficient check). Therefore,
to show that 〈G,H〉 is a no-instance of Dual, the ideal solution would be that of
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finding/guessing a path from the root to a node p, where Ip is easily recognizable as
a no-instance, e.g., as in the case in which σp = 〈Inp,Exp〉 is such that the set Inp
or Exp is a new transversal of G or H, respectively. The interesting fact here is that,
by construction of T (G,H), if G and H are simple nondual hypergraphs satisfying
the intersection property, there is always a node p in T (G,H) such that σp has the
required property for an easy check. Indeed, let us assume that T is a new transversal
of G, and consider the assignment σ = 〈∅, T 〉. Since σ is an assignment which only
excludes vertices, there is a node p in T (G,H) such that σp = σ because we can build
the assignment σ by successively using extensions of type (iii). It is clear that, in
general, such a node may be at depth linear in the tree. However, we will show in the
next section that if 〈G,H〉 is actually a no-instance of Dual, then there must also be
a node p at depth O(logN) such that checking that Ip is a no-instance of Dual is
feasible within complexity class TC0.

3.3. Logarithmic refuters in T (G,H). An assignment σ = 〈In,Ex 〉 is said
to be a witness of the existence of a new transversal of G w.r.t. H if In is a new
transversal of G w.r.t. H, or Ex is a new transversal of H w.r.t. G (see Lemma 2.2).
We remind the reader that, for a set of vertices T to be a new transversal of G (resp.,
H) w.r.t. H (resp., G), T has to be a transversal of G (resp., H) and an independent
set ofH (resp., G), i.e., T must not be a superset of any edge ofH (resp., G). Similarly,
σ is a double witness of the existence of a new transversal of G w.r.t. H if In is a new
transversal of G w.r.t. H, and Ex is a new transversal of H w.r.t. G. Recall that a
new transversal does not need to be minimal. Double witnesses are easily proven to
be characterized as follows.

Lemma 3.5. Let G and H be two hypergraphs. An assignment σ is a double (non-
duality) witness if and only if

(2) Sep(σ) = ∅ ∧ Com(σ) = ∅.

Note here that a node p of T (G,H) whose assignment σp is a witness is not
necessarily a leaf of the tree. For example, in Figure 3 the assignment of the bottom
right node is a witness, but this node, as already observed, is not a leaf of the full
tree. From now on, we will often refer to properties of an assignment σp as properties
of the node p. For example, we say that a node p of T (G,H) is a witness when σp is
actually a witness.

We have already seen that, if G and H are simple nondual hypergraphs satisfying
the intersection property, then in T (G,H) there is always a witness at linear depth.
But this is not enough for our purposes. Our aim in the rest of this section is to prove
a stronger property. In fact, we will show that there is always at only logarithmic
depth a node that is either a witness or can be easily extended to be a witness.

Before proceeding we need the following property.

Lemma 3.6. Let G and H be two hypergraphs, and let σ = 〈In,Ex 〉 be an assign-
ment coherent with a new minimal transversal T of G w.r.t. H, such that In 6= T .
Then, every vertex v ∈ (T \ In) is free, and for each such vertex, there is an edge
Gv ∈ Sep(σ) with v ∈ Gv, such that σ + 〈{v}, Gv \ {v}〉 is coherent with T .

Proof. Let v be any vertex belonging to T \In. From σ v T it follows that v /∈ Ex
and hence v is free. Since T is a minimal transversal of G, by Lemma 2.1, v is critical
(in T ). For this reason, there is an edge Gv ∈ G such that T ∩ Gv = {v}. Now,
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470 GEORG GOTTLOB AND ENRICO MALIZIA

simply observe that Gv ∈ Sep(σ) as well (because T ∩ Gv = {v} and v /∈ In), and
that σ + 〈{v}, Gv \ {v}〉 v T .

Consider now the following situation. Let G and H be two hypergraphs satisfying
the intersection property, for which T is a new minimal transversal of G w.r.t. H.
Let us again use as a running example the hypergraphs in Figure 3: the minimal
transversal of G missing in H is T = {d, b, f}. Assume that we are in the process of
building a witness by extending intermediate assignments to new ones that are still
coherent with T (essentially we extend assignments with the aim of “converging” to T ,
so to have the witness that we are looking for). From what we have said, intuitively,
we can recognize the built assignment σ as a witness when sets Sep(σ) and Com(σ)
become empty.

In general, if σ = 〈In,Ex 〉 is a nonwitnessing assignment coherent with T , we
could extend σ, for example, by excluding a vertex v that is free in σ and does not
belong to T (i.e., an extension type (iii)) or, by including, as critical vertex, a vertex
v that is free in σ and belongs to T (i.e., an extension type (ii)). Note that, by
Lemma 3.6, if σ = 〈In,Ex 〉 is an assignment coherent with a new minimal transversal
T of G, for any vertex v ∈ (T \ In), it is always possible to include v as critical vertex
into σ (along with the suitable edge witnessing v’s criticality).

For the extension type (iii), if v belongs to at least half of the edges in Com(σ),
then by excluding v we get rid of at least half of the edges in Com(σ) (see Lemma 3.4).
On the other hand, for the extension type (ii), if v belongs to less than half of the edges
in Com(σ), then by including v as critical vertex with the proper edge witnessing v’s
criticality we again get rid of at least half of the edges in Com(σ).

In our example, at the root of the tree (i.e., for the empty assignment σε), vertex c
is such that c /∈ T and c belongs to two out of four edges of Com(σε). So, excluding c is
a very good choice because the number of edges from Com(〈∅,∅〉) to Com(〈∅, {c}〉)
would be halved (from four to two). Symmetrically, vertex d is such that d ∈ T and
d belongs to only one edge of Com(σε). Hence, including d as critical vertex (along
with edge 1 witnessing d’s criticality) is again a very good choice because, also in this
case, the number of edges from Com(〈∅,∅〉) to Com(〈{d}, {a, c}〉) would be (more
than) halved (from four to one).

It is evident that halving the size of the set of compatible edges each time we
perform an assignment extension would be one of the best ways to asymptotically
speed up the construction of the witness sought for. This is the key intuition to
prove that in T (G,H) there are “duality refuters” at logarithmic depth. The following
definitions serve the purpose of formalizing the just illustrated intuition.

Given an assignment σ, a free vertex v of σ is called frequent (in σ) if v belongs to
at least half of the edges in Com(σ), otherwise we say that v is infrequent (in σ). For
example, we have already observed that in Figure 3 vertex c is frequent at the root
and vertex d is infrequent at the root. Let us denote by FreqG,H(σ) and InfreqG,H(σ)
the frequent and infrequent vertices in σ, respectively. Again, we will often omit the
subscript “G,H” of FreqG,H(σ) and InfreqG,H(σ) when the hypergraphs G and H we
are referring to are understood.

Let σ be an assignment coherent with a new minimal transversal T of G such that
Com(σ) 6= ∅. A free vertex v of σ is said to be appealing to exclude (for σ) w.r.t. T if
v ∈ Freq(σ) and v /∈ T . On the other hand, a free vertex v of σ is said to be appealing
to include (as a critical vertex) (for σ) w.r.t. T if v ∈ Infreq(σ) and v ∈ T .

To summarize the first intuition, given a node p coherent with a new minimal
transversal T , edges leaving p labeled with the exclusion of an appealing vertex to
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exclude (w.r.t. T ), or labeled with the inclusion as a critical vertex (with a suitable
criticality’s witness) of an appealing vertex to include (w.r.t. T ), lead to a node q such
that σq v T and |Com(σq)| ≤ 1

2 |Com(σp)| (see Lemma 3.4).
The intuition behind the fact that in T (G,H) there are, at logarithmic depth,

duality refuters which are moreover easily recognizable is the following. Assume G
and H satisfy the intersection property and T is a new minimal transversal of G w.r.t.
H. As presented above, we are extending assignments via appealing vertices so to
quickly “converge” to T . If during this process we build a witness, then we are all
done, because recognizing a witnessing assignment as such is computationally quite
easy. However, it may well be the case that this process gets stuck if a point is
reached where, on the one hand, there are no appealing vertices to extend the current
assignment σ and, on the other hand, σ is not yet a witness. Remember that σ is
by construction coherent with T . The key point is the following. If there are no
appealing vertices to extend σ, then all the free vertices of σ that are frequent belong
to T and all the free vertices of σ that are infrequent do not belong to T . Therefore,
we can easily extend σ to obtain a witness by simply including all the free vertices of
σ that are frequent and by excluding all the free vertices of σ that are infrequent. In
the next section we show that this final assignment extension based on the frequencies
of the vertices can be computed extremely efficiently.

We now formally prove that in T (G,H) there are duality refuters at logarithmic
depth. Given an assignment σ = 〈In,Ex 〉, σ+ = 〈In ∪ Freq(σ),Ex ∪ Infreq(σ)〉 is the
augmented assignment of σ.

Lemma 3.7. Let G and H be two hypergraphs satisfying the intersection property.
Then, there is a new transversal of G w.r.t. H if and only if there is a node p in
T (G,H), at depth at most blog |H|c+ 1, such that σp

+ is a double witness.

Proof. (⇒) Let T be a new minimal transversal of G, and let p be a generic node
of T (G,H) such that σp is coherent with T , Com(σp) 6= ∅, and σp can be extended
via an appealing vertex. Let σq be the assignment obtained by extending σp via
the appealing vertex. Since the structure of T (G,H) keeps track of all the possible
extensions of types (ii) and (iii), there is, among the children of p in T (G,H), a node
whose assignment is precisely σq.

Observe that the empty assignment σε associated with the root of T (G,H) is
obviously coherent with T . Therefore, starting from the root of T (G,H), we can
build a sequence of nodes that can be successively extended via the inclusion (as a
critical vertex) or the exclusion of an appealing vertex w.r.t. T , until we reach a node
p such that Com(σp) = ∅ (and in that moment the frequencies of the vertices become
meaningless, because frequencies are evaluated w.r.t. to Com(σp)) or there are no
more appealing vertices w.r.t. T at all.

Let s = (p0, p1, . . . , pk) be a sequence of maximal length having the just mentioned
property. By the definition of s, all nodes pi are such that σpi is coherent with T
(see Lemma 3.6). Since s is of maximal length, Com(σpk) = ∅ or there are no
appealing vertices in σpk w.r.t. T to further extend s. Observe that, by the definition
of appealing vertex, for all 1 ≤ i ≤ k, |Com(σpi)| ≤ 1

2 |Com(σpi−1
)| (see Lemma 3.4).

Therefore, s contains at most blog |H|c + 2 nodes and, hence, the length of the path
from the root to pk is at most blog |H|c+ 1.

Let σpk = 〈Inpk ,Expk〉. There are two cases: either (1) Com(σpk) = ∅ or (2)
Com(σpk) 6= ∅.

Consider case (1). From Com(σpk) = ∅ it follows that Expk is a transversal of
H. Since σpk is coherent with T and T is a transversal of G, Expk ∩ T = ∅ and,
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472 GEORG GOTTLOB AND ENRICO MALIZIA

hence, Expk is an independent set of G. Therefore, Expk is a new transversal of H
w.r.t. G. Because Com(σpk) = ∅, all the free vertices of σpk are frequent, because
each of them belongs to at least half of the edges of Com(σpk). By this, σpk

+ =
〈Inpk ∪Freq(σpk),Expk ∪ Infreq(σpk)〉 = 〈Inpk ∪Freq(σpk),Expk〉 = 〈Expk ,Expk〉, be-
cause all the free vertices are frequent. By Lemma 2.2, since Expk is a new transversal
of H w.r.t. G, Expk is a new transversal of G w.r.t. H. Thus, σpk

+ is a double witness.
Consider now case (2). Since pk is the last node of the maximal length sequence

s and Com(σpk) 6= ∅, it must be the case that there are no appealing vertices in σpk
w.r.t. T . For the following discussion, note that Com(σpk) 6= ∅ implies that the fre-
quencies of the vertices are meaningful. There are two cases: either (a) Sep(σpk) 6= ∅
or (b) Sep(σpk) = ∅.

Consider Case (a). Since Sep(σpk) 6= ∅, Com(σpk) 6= ∅, and there are no appeal-
ing vertices in σpk w.r.t. T , all the frequent vertices of σpk belong to T and all the
infrequent vertices of σpk are outside T . By this,

σpk
+ = 〈Inpk ∪ Freq(σpk),Expk ∪ Infreq(σpk)〉 = 〈T, T 〉.

By Lemma 2.2, since T is a new transversal of G w.r.t. H, T is a new transversal of
H w.r.t. G. Thus, σpk

+ is a double witness.
Consider now case (b). Since σpk is coherent with T , T is a minimal transversal

of G, and Sep(σpk) = ∅, Inpk = T . Because Inpk = T , any free vertex v of σpk is
such that v ∈ (T \ Expk) and, since there are no appealing vertices in σpk w.r.t. T ,
v is infrequent (for otherwise v would have been an appealing vertex to exclude). By
this, σpk

+ = 〈Inpk ∪ Freq(σpk),Expk ∪ Infreq(σpk)〉 = 〈Inpk ,Expk ∪ Infreq(σpk)〉 =
〈Inpk , Inpk〉, because all the free vertices are infrequent. By Lemma 2.2, since Inpk =
T is a new transversal of G w.r.t. H, Inpk is a new transversal of H w.r.t. G. Thus,
σpk

+ is a double witness.
(⇐) Clearly, if there is, within the required depth, a node p such that σp

+ is a
double witness, then there is a new transversal of G w.r.t. H.

4. New upper bounds for the DUAL problem.

4.1. A new nondeterministic algorithm for DUAL. We present in this sec-
tion our new nondeterministic algorithm ND-NotDual for Dual and prove its
correctness. To prove the correctness of the algorithm we will exploit the prop-
erty of T (G,H) of having easily recognizable duality refuters at logarithmic depth
(Lemma 3.7).

To disprove that two hypergraphs G and H are dual, we know that it is sufficient
to show that at least one of them is not simple, or that the intersection property
does not hold between them, or that there is a new transversal of G w.r.t. H (see
Lemma 2.3). After having ruled out the first two conditions, intuitively, our nonde-
terministic algorithm, to compute such a new transversal, guesses in the tree T (G,H)
a path of logarithmic length leading to a node p such that σp

+ is a double witness
(see Lemma 3.7). More precisely, ND-NotDual nondeterministically generates a set
Σ of logarithmic-many labels, which is then checked to verify whether it is possible
to derive from it a new transversal of G w.r.t. H.

To be more formal, for a hypergraph G, let LG denote the set of all possible labels
that can potentially be generated from edges of G and vertices, i.e., LG = {−v | v ∈ V }
∪ {(v,G) | G ∈ G ∧ v ∈ G}. A set of labels Σ of the tree T (G,H) is any subset of LG .
Note the difference between a path of T (G,H) and a set of labels of T (G,H). The
former is an ordered sequence of labels coherent with the structure of T (G,H), while
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the latter is just a set. Given the above notation, we define the set

S log(G,H) = {Σ | Σ ⊆ LG ∧ 0 ≤ |Σ| ≤ blog |H|c+ 1}.

Given a set Σ ∈ S log(G,H), the following expressions

(3)

In(Σ) =
⋃

(v,G)∈Σ

{v},

Ex (Σ) =

( ⋃
−v∈Σ

{v}
)
∪
( ⋃

(v,G)∈Σ

(G \ {v})
)
,

indicate the sets of the included and excluded vertices in Σ, respectively. These two
expressions are similar to the formulas to compute an assignment given a (valid) path
in T (G,H) (Formula (1) of Lemma 3.3). Since a set Σ is merely a set of labels, it
may happen that In(Σ) ∩ Ex (Σ) 6= ∅. When this is not the case we say that Σ is a
consistent set of labels.

Given a set of labels Σ, we define σ(Σ) as the pair 〈In(Σ),Ex (Σ)〉. If Σ is con-
sistent, then σ(Σ) = 〈In(Σ),Ex (σ)〉 is a (consistent) assignment as well. By a slight
abuse of terminology and notation, given a set of labels Σ, regardless of whether Σ
is actually consistent or not, we extend, in the natural way, the definitions given for
(consistent) assignments to the pair σ(Σ) = 〈In(Σ),Ex (Σ)〉.

The following property is fundamental for the correctness of algorithm ND-
NotDual. In particular, it highlights that the order in which the labels of a path Π
appear is not actually relevant to recognize that σ(Π)

+
is a witness.

Lemma 4.1. Let G and H be two hypergraphs satisfying the intersection property.
Then, there is a new transversal of G w.r.t. H if and only if there is a consistent set
Σ ∈ S log(G,H) such that σ(Σ)+ is a double nonduality witness.

Proof. (⇒) By Lemma 3.7, because G and H satisfy the intersection property, if
there is a new transversal of G w.r.t.H, then, in T (G,H), there is a path Π of length at
most blog |H|c+1 such that σ(Π)

+
is a double nonduality witness. Let ΣΠ be the set of

labels containing exactly the labels of Π (ΣΠ, unlike Π, is a set without any order over
its elements). Because the length of Π is at most blog |H|c+1, ΣΠ actually belongs to
S log(G,H). By comparing formula (1) of Lemma 3.3 and formula (3) of this section,
it is clear that the included and excluded vertices of σ(Π) do not depend on the actual

order of the labels in Π. Hence, σ(ΣΠ) = σ(Π) and also σ(ΣΠ)
+

= σ(Π)
+

. Given that
Π is a path in T (G,H), σ(Π) is a (consistent) assignment by definition and, hence,
from σ(ΣΠ) = σ(Π) it follows that Σ is a consistent set. To conclude, since σ(Π)+ is

a double witness and σ(ΣΠ)
+

= σ(Π)
+

, σ(ΣΠ)
+

is a double witness as well.
(⇐) Clearly, if there is a consistent set of labels Σ ∈ S log(G,H) such that σ(Σ)+

is a double witness, then there is a new transversal of G w.r.t. H.

We now present our nondeterministic algorithm. The pseudocode of algorithm
ND-NotDual is listed as Algorithm 1; “return accept” and “return reject” are
two commands causing a transition to a final accepting state and to a final rejecting
state, respectively, of a nondeterministic machine.

The three checking procedures used in the algorithm implement the four determin-
istic tests needed after the guess has been carried out. The aims of the subprocedures
are the following.
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Algorithm 1 A nondeterministic algorithm for Dual.

1: procedure ND-NotDual(G,H)
2: Σ← guess(a set of labels from S log(G,H));
3: if ¬Check-Simple-And-Intersection(G,H) then return accept;

4: if ¬Check-Consistency(G,Σ) then return reject;

5: if Check-Aug-DoubleWitness(G,H,Σ) then return accept;

6: return reject;

Check-Simple-And-Intersection: checks whether the two hypergraphs G and
H are simple and satisfy the intersection property.6

Check-Consistency: checks whether the guessed set of labels Σ is actually
consistent.
Check-Aug-DoubleWitness: checks whether σ(Σ)

+
is a double witness. In

order to perform this check, condition (2) of Lemma 3.5 is evaluated on σ(Σ)
+

.
The following property shows that algorithm ND-NotDual is correct. We re-

mind the reader that a nondeterministic algorithm A is correct for a decision problem
P if A admits a computation branch terminating in an accepting state if and only if
A is executed on a yes-instance of P .

Theorem 4.2. Let G and H be two hypergraphs. Then, there is a computation
branch of ND-NotDual(G,H) halting in an accepting state if and only if G and H
are not dual.

Proof. (⇒) Assume that there is a computation branch of ND-NotDual(G,H)
halting in an accepting state. A transition to an accepting state may happen only at
line 3 or 5. If such a transition happens at line 3, then G or H is not simple, or G and
H do not satisfy the intersection property. Hence, by Lemma 2.3, G and H are not
dual.

If a transition to the accepting state occurs at line 5, it means that the execution
flow of the algorithm has reached that point, implying that the test performed at line 4
passed. Therefore, the guessed set of labels Σ is consistent. The fact that the check at
line 5 is successful implies that σ(Σ)+ is a double witness. Thus, by Lemma 4.1, there
is a new transversal of G w.r.t. H and, hence, by Lemma 2.3, G and H are not dual.

(⇐) Let us now assume that G and H are not dual. By Lemma 2.3, G or H is not
simple, or they do not satisfy the intersection property, or there is a new transversal
of G w.r.t. H.

If G or H is not simple, this condition is recognized by the algorithm at line 3 and
the algorithm correctly moves to an accepting state. The same happens in the case
G and H do not satisfy the intersection property.

Consider now the case in which G and H are simple and satisfy the intersection
property. Since G and H are nondual, by Lemma 2.3, there is a new transversal of G
w.r.t. H.

Because G and H satisfy the intersection property, by Lemma 4.1, among the sets
Σ guessed by the algorithm at line 2 there must be a consistent one such that σ(Σ)+

is a double witness. This is recognized by the algorithm at line 5 and the algorithm
correctly moves to an accepting state.

6This condition does not depend on the guessed set, and could thus be checked at the beginning
of the algorithm, before the guess is made. However, for uniformity, and to adhere to a strict
guess-and-check paradigm we check it after the guess.
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Note that the approach of extending assignments used in our paper, while partly
inspired by Gaur’s ideas, is fundamentally different from the method used in Gaur’s
deterministic algorithm [21, 22]. In particular, Gaur’s algorithm may extend the set
In of included vertices of an intermediate assignment σ = 〈In,Ex 〉 in a single step
by several vertices and not by just one. In our approach this is only possible for
end-nodes of the path. Moreover, algorithm ND-NotDual could identify a witness
by guessing a path of logarithmic length that is not a legal path according to Gaur
because the single assignment extensions are not chosen according to frequency counts.
In fact, unlike Gaur’s algorithm, ND-NotDual performs frequency counts only at
the terminal nodes of a path.

4.2. Logical analysis of the ND-NOTDUAL algorithm. We will show that
the deterministic tests performed by algorithm ND-NotDual require (quite) low
computational effort, and in particular they can be carried out within complexity
class TC0. This will allow us to prove that Dual ∈ GC(log2N , TC0). We begin by
expressing the deterministic tests performed by ND-NotDual in FO(COUNT) which
is FO logic augmented with counting quantifiers “∃!n” having the following semantics.
FO(COUNT) is a two-sorted logic, i.e., a logic having two domain sets [33]: a numeri-
cal domain set containing objects used to interpret only numerical values, and another
domain set containing all other objects. Consider the formula Φ(n, x) = (∃!n x)(φ(x)),
where variable x ranges over the nonnumerical domain objects and is bound by the
counting quantifier ∃!n, and where variable n ranges over the numerical domain ob-
jects and is left free by the counting quantifier. Φ(n, x) is valid in all the interpretations
in which n is substituted for by the exact number of nonnumerical domain values a
for which φ(a) evaluates to true.7 Note that FOM, i.e., FO logic augmented with the
majority qualifier, is known to be equivalent to FO(COUNT) [33, 1, 51]. The model
checking problem for both logics is complete for class TC0 [51, 33, 1].

With a pair of hypergraphs 〈G,H〉 we associate a relational structure A〈G,H〉.
Essentially, we represent hypergraphs through their incidence graphs. In particular,
the universe A〈G,H〉 of A〈G,H〉 consists of an object for each vertex of V , an object for
each hyperedge of the two hypergraphs, and two more objects, oG and oH, for the two
hypergraphs, i.e., A〈G,H〉 = {ov | v ∈ V } ∪ {oG | G ∈ G} ∪ {oH | H ∈ H} ∪ {oG , oH}.

The relations of A〈G,H〉 are as follows: Vertex (x) is a unary relation indicating
that object x is a vertex; Hyp(x) is a unary relation indicating that object x is a
hypergraph; EdgeOf (x, y) is a binary relation indicating that object x is an edge of
the hypergraph identified by object y; and In(x, y) is the binary incidence relation
indicating that object x is a vertex belonging to the edge identified by object y.

We also need to represent through relations the guessed set Σ. Remember that
in Σ there are elements (which are labels) of two types: −v, where v is a vertex, and
(v,G), where v is a vertex and G is an edge of G.8 We assume a unary relation S1

storing those tuples 〈v〉 where v is a vertex such that −v ∈ Σ, and we assume a binary
relation S2 containing those tuples 〈v,G〉, where v is a vertex and G is an edge such
that (v,G) ∈ Σ.

Remember that, by Lemma 4.1, it is sufficient to guess a set of labels, and it is not
required to guess a path. This means that the exact order of the labels is not relevant
and, hence, the above relational representation of a guessed set is totally sufficient.

7For more on this, the reader is referred to any standard textbook on the topic. See, e.g.,
[10, 33, 9, 42].

8Note that an edge G in a label of a path or a set is given by its identifier and not by the explicit
list of its vertices.
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476 GEORG GOTTLOB AND ENRICO MALIZIA

We use the following “macros” in our FO formulas:

v ∈ V ≡ Vertex (v),

g ∈ G ≡ Hyp(oG) ∧ EdgeOf (g, oG),

h ∈ H ≡ Hyp(oH) ∧ EdgeOf (h, oH),

v ∈ g ≡ In(v, g).

We are now ready to prove some intermediate results.

Lemma 4.3. Let G be a hypergraph. Deciding whether G is simple is expressible
in FO.

Proof. We know that a hypergraph G is simple if and only if, for all pairs of
distinct edges G,H ∈ G, G 6⊆ H. Hence, the formula checking whether a hypergraph
is simple is

simple(x) ≡ Hyp(x)

∧ (∀g, h)((g ∈ x ∧ h ∈ x ∧ g 6= h)→ (∃v)(v ∈ V ∧ v ∈ g ∧ ¬(v ∈ h))).

Lemma 4.4. Let G and H be two hypergraphs. Deciding whether G and H satisfy
the intersection property is expressible in FO.

Proof. Two hypergraphs G and H satisfy the intersection property if and only if,
for every pair of edges G ∈ G and H ∈ H, G ∩H 6= ∅. Hence, the formula encoding
this test is

intersection-property ≡ (∀g, h)((g ∈ G ∧ h ∈ H)→ (∃v)(v ∈ V ∧ v ∈ g ∧ v ∈ h)).

We say that the guess is congruent (which is different from being consistent) if,
for every guessed tuple 〈x〉 ∈ S1, object x is actually a vertex, and, for every tuple
〈x, y〉 ∈ S2, object y is actually an edge belonging to G containing the vertex identified
by object x.

Lemma 4.5. Let G and H be two hypergraphs, and let Σ be a (guessed) set of
labels of T (G,H). Deciding the congruency and the consistency of Σ is expressible in
FO.

Proof. The congruency of the guessed set can be checked through

congruentGuess ≡ (∀v)(S1(v)→ v ∈ V )∧ (∀w, g)(S2(w, g)→ w ∈ V ∧ g ∈ G ∧w ∈ g).

The consistency check is expressed as the conjunction of two formulas. The first
verifies whether there is an inconsistency on a specific vertex, and the second checks
the overall consistency:

inconsistent(w) ≡ w ∈ V
∧ (∃g)(S2(w, g) ∧ (S1(w) ∨ (∃v, h)(S2(v, h) ∧ v 6= w ∧ w ∈ h)))

consistentGuess ≡ (∀v)(v ∈ V → ¬inconsistent(v)).

To conclude our complexity analysis of the deterministic tests performed by ND-
NotDual, let us formulate in FO(COUNT) the property that σ(Σ)

+
is a double

nonduality witness.
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Lemma 4.6. Let G and H be two hypergraphs, and let Σ be a (guessed) set of labels
of T (G,H). Deciding whether σ(Σ)

+
is a double nonduality witness is expressible in

FO(COUNT).

Proof. Let σ(Σ) = 〈In(Σ),Ex (Σ)〉 be the pair associated with Σ. Essentially we
need to prove that is possible to express, in FO(COUNT), condition (2) of Lemma 3.5
on σ(Σ)+. Remember that σ(Σ) is not explicitly represented, but it can be evaluated
from Σ through formula (3) of subsection 4.1.

Let us define the following two formulas serving the purpose of evaluating whether
a vertex belongs to In(Σ) or Ex (Σ), respectively:

I -guess(v) ≡ v ∈ V ∧ (∃g)(S2(v, g)),

E -guess(v) ≡ v ∈ V ∧ (S1(v) ∨ (∃w, g)(S2(w, g) ∧ w 6= v ∧ v ∈ g)).

We now exhibit the formulas to verify whether a given free vertex is frequent in
σ(Σ). These formulas are the only ones in which we actually use counting quanti-
fiers. In the following formulas we will use predicate PLUS (x, y, z), which holds true
whenever x + y = z, and predicate SUCC (x, y), which holds true whenever x and
y are two domain values such that y is the immediate successor of x in the domain
ordering. Remember, indeed, that relational structures are assumed to have totally
ordered domains (and predicate “<” allows us to test the ordering), and to have a
predicate BIT (i, j) that holds true whenever the jth bit of the binary representa-
tion of number i is 1. These assumptions allow us to express in FO logic, predicates
PLUS (x, y, z) and SUCC (x, y) (see section 1.2 of [33]).

Since we need to evaluate whether a vertex v is frequent in σ(Σ), we have to check
whether v belongs to at least d|Com(σ(Σ))|/2e edges of Com(σ(Σ)). So, we exhibit
a formula half (x, y) which holds true whenever y = dx/2e:

half (x, y) ≡ PLUS (y, y, x) ∨ (∃z)(PLUS (y, y, z) ∧ SUCC (x, z)).

The following formulas evaluate whether an edge belongs to Com(σ(Σ)), the
number of edges in Com(σ(Σ)), the number of edges in Com(σ(Σ)) containing a
given vertex v, and whether v is frequent in σ(Σ), respectively (remember that being
either frequent or infrequent is a property of free vertices):

com(h) ≡ h ∈ H ∧ (∀v)((v ∈ V ∧ v ∈ h)→ ¬E -guess(v)),

count-com(n) ≡ (∃!n h)(h ∈ H ∧ com(h)),

count-com-inc(v, n) ≡ v ∈ V ∧ (∃!n h)(h ∈ H ∧ com(h) ∧ v ∈ h),

freq(v) ≡ v ∈ V ∧ ¬I -guess(v) ∧ ¬E -guess(v) ∧ (∃n,m, o)
(count-com(n) ∧ count-com-inc(v,m) ∧ half (n, o) ∧ (o = m ∨ o < m)).

After having defined a formula to evaluate whether a vertex is frequent in σ(Σ), we
show the formulas computing the included and excluded vertices of the augmented
pair σ(Σ)+, respectively:

I -aug(v) ≡ v ∈ V ∧ (I -guess(v) ∨ freq(v)),

E -aug(v) ≡ v ∈ V ∧ (E -guess(v) ∨ ¬freq(v)).

Now we show the formulas encoding the evaluation of condition (2) of Lemma 3.5
on σ(Σ)+. The formulas evaluating whether an edge belongs to Sep(σ(Σ)+) and to
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Com(σ(Σ)+) are, respectively,

sep-aug(g) ≡ g ∈ G ∧ (∀v)((v ∈ V ∧ v ∈ g)→ ¬I -aug(v)),

com-aug(h) ≡ h ∈ H ∧ (∀v)((v ∈ V ∧ v ∈ h)→ ¬E -aug(v)).

Finally, the formula verifying that σ(Σ)+ meets condition (2) of Lemma 3.5 is as
follows.

CheckGuessAugDoubleWitness

≡ (∀g)(g ∈ G → ¬sep-aug(g)) ∧ (∀h)(h ∈ H → ¬com-aug(h).

4.3. Putting it all together. We are now ready to prove our main results.

Theorem 4.7. Let G and H be two hypergraphs. Then, deciding whether G and
H are not dual is feasible in GC(log2N , TC0).

Proof. Lemmas 4.3 to 4.6 show that the deterministic checks performed by algo-
rithm ND-NotDual are expressible in FO(COUNT). Hence, these tests are feasible
in logtime-uniform TC0 [33, 51, 1].

Moreover, by analyzing algorithm ND-NotDual, clearly only O(log2N) nonde-
terministic bits are sufficient to be guessed to properly identify a (double) nonduality
witness. Indeed, let us assume that G and H are not dual. If G or H is not simple, or
G and H do not satisfy the intersection property, then the guessed set Σ is completely
ignored, because G and H are directly recognized to be nondual and, hence, is totally
irrelevant what the guessed bits are. On the other hand, if G and H are simple and
satisfy the intersection property, since they are not dual, by Lemma 2.3, there is a
new transversal of G w.r.t. H. Therefore, by Lemma 4.1, there is in S log(G,H) a set
Σ with O(log |H|) elements such that σ(Σ)+ is a double witness. Remember that our
definition of the size of the input of Dual is N = ‖G‖ + ‖H‖, hence, the number of
elements of Σ is also O(logN). Since, by definition, O(logN) bits are sufficient to
represent any vertex or edge identifier of the input hypergraphs, each label of Σ can
be represented with only O(logN) bits. By this, the whole set Σ can be correctly
represented and stored in the (set) variable Σ with O(log2N) bits.

Therefore, Dual belongs to GC(log2N , TC0).

From the previous theorem the following corollaries follow immediately, the first
of which proves that the conjecture stated by Gottlob [25] actually holds.

Corollary 4.8. Let G and H be two hypergraphs. Deciding whether G and H
are not dual is feasible in GC(log2N , LOGSPACE).

Proof. The proof follows from Theorem 4.7 and the inclusion TC0 ⊆
LOGSPACE.

Corollary 4.9 (see [25]). Let G and H be two hypergraphs. Deciding whether
G and H are dual is feasible in DSPACE[log2N ].

Proof. Dual ∈ DSPACE[log2N ] follows from Corollary 4.8 and the inclusion
GC(log2N , LOGSPACE) ⊆ DSPACE[log2N ]. Since DSPACE[log2N ] is closed under
complement, Dual ∈ DSPACE[log2N ].

4.4. Computing a new transversal. In this section, we will show that com-
puting a (not necessarily minimal) new transversal of G w.r.t. H is feasible in space
O(log2N). First observe that it is possible to define a total order over S log(G,H).
Indeed, consider the totally ordered domain A〈G,H〉 of the relational structure A〈G,H〉
(described in subsection 4.2), and in particular consider the space of pairs P =
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A〈G,H〉×A〈G,H〉. First, let us define an order over P by exploiting the ordering relation
“<” over A〈G,H〉 (see subsection 4.2): given two pairs p1 = 〈a1, b1〉 and p2 = 〈a2, b2〉
belonging to P , p1 precedes p2 in P if and only if (a1 < a2) ∨ (a1 = a2 ∧ b1 < b2).

Now, we associate each label with a pair in P : label (v,G) is associated with pair
〈ov, oG〉 ∈ P , where ov and oG are the objects of A〈G,H〉 associated with v and G,
respectively; and label −v is associated with pair 〈ov, ov〉, where ov is the object of
A〈G,H〉 associated with v. Given two labels `1 and `2, `1 precedes `2 if and only if
their respective associated pairs p1 and p2 are such that p1 precedes p2 in P .

To conclude, given two sets of labels Σ1,Σ2 ∈ S log(G,H), Σ1 precedes Σ2 if
and only if Σ1 contains strictly fewer labels than Σ2, or Σ1 and Σ2 contain the same
number of labels and the least labels `1 ∈ Σ1 and `2 ∈ Σ2 on which Σ1 and Σ2 differ
are such that `1 precedes `2.

Given this order, it is possible to enumerate all sets belonging to S log(G,H)
without repetitions.

Consider now the following deterministic algorithm ComputeNT listed as Al-
gorithm 2, which, given two hypergraphs G and H, successively generates all sets Σ
belonging to S log(G,H) to verify whether one of them is a good starting point to build
a new transversal of G w.r.t. H. A prerequisite for the correct execution of algorithm
ComputeNT is that the input hypergraphs satisfy the intersection property, and
the purpose of procedure Check-IntersectionProperty used in ComputeNT is
precisely that. This is required because ComputeNT looks for sets of labels only
among those in S log(G,H), and Lemma 4.1 holds only if G and H satisfy the inter-
section property. In the pseudocode of the algorithm, “return error” is a command
triggering an error state/signal.

Algorithm 2 A deterministic algorithm, derived from ND-NotDual, computing a
new transversal of G w.r.t. H. Here neither σ(Σ) nor σ(Σ)+ are explicitly stored, but
they are dynamically computed as needed. We assume that σ(Σ) = 〈In(Σ),Ex (Σ)〉.
Require:

Hypergraphs G and H satisfy the intersection property.
1: procedure ComputeNT(G,H)
2: if ¬Check-IntersectionProperty(G,H) then return error;

3: for each Σ: Σ ∈ S log(G,H) do
4: if Check-Consistency(G,Σ) then
5: if Check-Aug-DoubleWitness(G,H,Σ) then return In(Σ) ∪

Freq(σ(Σ));

6: return NIL;

Lemma 4.10. Let G and H be two hypergraphs satisfying the intersection property.
Then, algorithm ComputeNT correctly computes a new transversal of G w.r.t. H (if
it exists) in space O(log2N).

Proof. ComputeNT always terminates because sets belonging to S log(G,H) are
finite and, by exploiting the order defined, can be enumerated successively without
repetitions.

First, ComputeNT checks the intersection property, and if this property does not
hold between the two input hypergraphs, then an error state/signal is triggered. Next,
ComputeNT successively enumerates all possible elements belonging to S log(G,H)
to find a set Σ (if one exists) such that σ(Σ)+ meets condition (2) of Lemma 3.5, and
hence such that σ(Σ)+ is a double nonduality witness.
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Observe that at line 4 the currently analyzed set Σ is checked for consistency, and
at line 5 pair σ(Σ)+ is tested to be a double nonduality witness. Hence, since G and H
are checked at line 2 to satisfy the intersection property, by Lemma 4.1, there is a set
Σ = 〈In(Σ),Ex (Σ)〉 passing the test at line 5 if and only if there is a new transversal
of G w.r.t. H. From σ(Σ)+ being a double witness, it follows that In(Σ)∪Freq(σ(Σ))
is a new transversal of G w.r.t. H (the reader can see from the proof of Lemma 3.7
that In(Σ) ∪ Freq(σ(Σ)) is not always a minimal transversal of G).

Algorithm ComputeNT correctly outputs NIL at line 6 if no new transversal of
G exists.

To conclude, let us now show that ComputeNT executes within a quadratic
logspace bound. All sets Σ generated at line 3 contain at most blog |H|c + 1 labels,
which is O(logN), and each of these sets can be represented with O(log2N) bits (see
the proof of Theorem 4.7). For this reason, by reusing of workspace, the algorithm
needs only O(log2N) bits to represent all the sets successively tried. Lemmas 4.4
to 4.6 show that all tests can be executed in TC0 and hence in logarithmic space (by
the inclusion TC0 ⊆ LOGSPACE). In fact, in order to implement those tests within a
logarithmic space bound, pairs σ(Σ) and σ(Σ)

+
, the sets of the separated and compat-

ible edges, and the sets of frequent and infrequent vertices, are dynamically computed
in LOGSPACE when needed, rather than being explicitly stored.

Observe also that the output operations can be carried out in logarithmic space.
Indeed, the elements belonging to In(Σ)∪Freq(σ(Σ)) can be output successively one
by one using only logarithmic workspace by exploiting formula (3) of subsection 4.1
(for each vertex v it is decided whether v has to be output or not). Note that, given a
vertex v, checking whether v is a free vertex of σ(Σ) is feasible in TC0 (see the proof
of Lemma 4.6), and hence in LOGSPACE (from TC0 ⊆ LOGSPACE). Moreover,
deciding whether a free vertex of σ(Σ) is frequent is feasible in TC0 (see the proof of
Lemma 4.6), and hence in LOGSPACE.

It is an open problem whether it is possible to compute a minimal new transversal
of G in space O(log2N).

From the previous lemma, the following theorem directly follows. Note that the
result here reported is actually a (slight) improvement over the result in the conference
paper [25], because we require here that the input hypergraphs satisfy the intersection
property instead of the tighter condition of G and H being such that G ⊆ tr(H) and
H ⊆ tr(G).

Theorem 4.11 (improved over [25]). Let G and H be two hypergraphs satisfying
the intersection property. Then, computing a new (not necessarily minimal) transver-
sal of G w.r.t. H is feasible in O(log2N) space.

5. Conclusions and future research. In this paper, we studied the computa-
tional complexity of the Dual problem. By using standard decomposition techniques
for Dual, we proved that after logarithmic many decomposition steps it is possible
to individuate a subinstance of the original instance of Dual for which verifying that
it corresponds to a new transversal is feasible within complexity class TC0.

From this we devised a new nondeterministic algorithm for Dual whose anal-
ysis allowed us to recognize GC(log2 n, TC0) as a new complexity upper bound
for Dual. As a simple corollary of this result, we obtained also that Dual ∈
GC(log2 n, LOGSPACE), which was conjectured by Gottlob [25].

Moreover, the nondeterministic algorithm proposed in this paper is used to de-
velop a simple deterministic algorithm whose space complexity is O(log2 n).
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Now some questions arise. Is it possible to avoid the counting in the final deter-
ministic check phase of the nondeterministic algorithm without the need of guessing
more bits than O(log2 n)? Or, more generally, without exceeding the upper bound of
O(log2 n) nondeterministic guessed bits, is it possible to devise a final deterministic
test requiring a formula with strictly fewer quantifier alternations?

In the quest to find the exact complexity of the Dual problem, there is another
direction of investigation that could be interesting to explore.

Flum, Grohe, and Weyer [18] (see also [17]) defined a hierarchy of nondeterministic
classes containing those languages that, after guessing O(log2 n) bits, can be checked
by an FO formula with a bounded number of quantifier alternations. A different
definition of this very same hierarchy can also be found in a paper by Cai and Chen [7].
For notational convenience, let us denote these classes by GC(log2 n, S), where S is a
sequence of logical quantifiers characterizing the quantifiers alternation in the formulas
for the check of the languages in the class. Interestingly, there are natural decision
problems that are complete for classes in this hierarchy, for example, the tournament
dominating set problem, and the Vapnik–Chervonenkis dimension problem.

The former problem is defined as follows: given a tournament G (i.e., a directed
graph such that for each pair of vertices v and w there is either an edge from v to w,
or an edge from w to v (but not both)) and an integer k, decide whether there is a
dominating set in G of size k. It can be shown that this problem is complete for the
class GC(log2 n, ∀∃) [7, 18, 17].

The latter problem is defined as follows: given a hypergraph G and an integer
k, decide whether the Vapnik–Chervonenkis dimension of G is at least k. It can be
shown that this problem is complete for the class GC(log2 n, ∀∃∀) [7, 18, 17].

In fact, a new hierarchy of classes characterized by limited nondeterminism could
be defined. Indeed, we could extend the definitions given by Cai and Chen [7], and
Flum, Grohe, and Weyer [18], to define the classes of languages that, after a nonde-
terministic guess of O(log2 n) bits, can be checked by an FO(COUNT) formula with
a bounded number of quantifier alternations.

In particular, for Dual, we hypothesize that the formula checking the guess of
our nondeterministic algorithm, possibly rearranged and rewritten, is characterized
by a quantifiers alternation ∀∃C (where C is the counting quantifier).9

Given such a new hierarchy, it would be interesting to verify whether Dual
belongs to the class GC(log2 n, ∀∃C), and even whether Dual is complete for this
class.

Appendix A. Proofs of properties stated in section 3. Several proofs
in this appendix omit some minor details. Full proofs can be found in the extended
technical report [28] available online.

Lemma A.1. Let G and H be two hypergraphs, and let σ = 〈In,Ex 〉 be an assign-
ment. Then

(a) ∅ ∈ G ⇔ ∅ ∈ GV \In and
∅ ∈ H ⇔ ∅ ∈ HV \Ex ;

(b) ∅ ∈ GV \In ⇒ G(σ) = {∅} and,
∅ ∈ HV \Ex ⇒ H(σ) = {∅};

(c) G = ∅⇒ GV \In = ∅ and
H = ∅⇒ HV \Ex = ∅;

9Note here that FO(COUNT) formulas with bounded quantifiers could be put in a relation with
the levels of the logarithmic time counting hierarchy defined by Torán [49, 50].
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(d) GV \In = ∅⇔ G(σ) = ∅ and,
HV \Ex = ∅⇔ H(σ) = ∅;

(e) G(σ) = ∅ if and only if In is a transversal of G and,
H(σ) = ∅ if and only if Ex is a transversal of H;

(f) G(σ) = {∅} if and only if Ex is covering and,
H(σ) = {∅} if and only if In is covering;

(g) G(σ) contains nonempty edges if and only if In is not a transversal of G and
Ex is not covering and,
H(σ) contains nonempty edges if and only if Ex is not a transversal of H
and In is not covering.

Proof.
(a) The property follows from the fact that the empty edge is a subset of any set

of vertices and from GV \In ⊆ G and HV \Ex ⊆ H.
(b) The property follows from the fact that the intersection of the empty edge

with any set of vertices is the empty set and from the fact that G(σ) and
H(σ) undergo a minimization operation.

(c) The property follows from GV \In ⊆ G and HV \Ex ⊆ H.
(d) We prove the property for G. The proof for H is symmetric.

(⇒) If GV \In = ∅, then G(σ) = ∅ by definition.
(⇐) Assume that G(σ) = ∅ and let us assume by contradiction that GV \In 6=
∅ (i.e., GV \In contains edges). There are two cases: either (1) there is an
edge G ∈ GV \In such that G ∩ (V \ (In ∪ Ex )) = ∅ (observe that it may be
the case that such edge G is the empty one), or (2) there is not such an edge
(i.e., all edges in GV \In have a nonempty intersection with V \ (In ∪Ex )). In
case (1), since there is an edge G ∈ GV \In such that G ∩ (V \ (In ∪ Ex )) is
empty, ∅ ∈ G(σ): a contradiction, because we are assuming G(σ) = ∅. For
case (2), since, for all edges G ∈ GV \In , G ∩ (V \ (In ∪ Ex )) is not empty,
G(σ) contains nonempty edges: a contradiction, because we are assuming
G(σ) = ∅. Therefore, it must be the case that GV \In = ∅.

(e) We prove the property for G(σ). The proof for H(σ) is symmetric.
If ∅ ∈ G or G = ∅, the property trivially holds.
Assume that G contains only nonempty edges. Consider GV \In and observe
that, by definition, when G 6= ∅, GV \In = ∅ if and only if In is a transversal
of G. Therefore, by point (d), this property follows.

(f) We prove the property for G(σ). The proof for H(σ) is symmetric.
If ∅ ∈ G or G = ∅, the property trivially holds.
Assume that G contains only nonempty edges. First note that, since G con-
tains only nonempty edges, by point (a), ∅ /∈ GV \In .
(⇒) Since G(σ) = {∅}, by point (d), GV \In 6= ∅. Therefore, GV \In contains
only nonempty edges. Let us assume by contradiction that Ex is not covering,
and let G ∈ GV \In be an edge. By definition of GV \In , for any G ∈ GV \In ,
G ⊆ V \ In and, hence, G∩ In = ∅. Since GV \In ⊆ G and Ex is not covering,
there is a vertex v ∈ (G \Ex ). From G∩ In = ∅ and v ∈ (G \Ex ), it follows
that v ∈ (G ∩ (V \ (In ∪ Ex ))) and hence that G ∩ (V \ (In ∪ Ex )) 6= ∅.
Therefore, G(σ) contains a nonempty edge: a contradiction, because we are
assuming G(σ) = {∅}. Thus, Ex is covering.
(⇐) Remember that GV \In contains all and only the edges G ∈ G such that
G ∩ In = ∅. Since Ex is covering, there is an edge G ∈ G such that G ⊆ Ex .
Observe that G must belong to GV \In (because In and Ex are disjoint).
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Therefore, from G ∈ GV \In and G ∩ (V \ (In ∪ Ex )) = ∅, it follows that
G(σ) = {∅}.

(g) The property follows from points (e) and (f).

Lemma A.2. Let G and H be two hypergraphs satisfying the intersection property,
and let σ = 〈In,Ex 〉 be a covering assignment. Then

(a) In and Ex cannot both be covering;
(b) G(σ) and H(σ) are trivially dual. In particular, if In is covering, then G(σ) =

∅ and H(σ) = {∅}; and, symmetrically, if Ex is covering, then G(σ) = {∅}
and H(σ) = ∅.

Proof.
(a) If G = ∅ (resp., H = ∅) or ∅ ∈ G (resp., ∅ ∈ H), the property trivially

holds.
Assume that both G and H contain only nonempty edges. Assume by con-
tradiction that there are two edges G ∈ G and H ∈ H such that G ⊆ Ex
and H ⊆ In. Because of the intersection property, from G ∩H 6= ∅ follows
In ∩ Ex 6= ∅, a contradiction, because σ is an assignment.

(b) If ∅ ∈ G, then H = ∅ by the intersection property. In this case, any set
of vertices Ex is covering, because any Ex is a superset of the empty edge
contained in G. By Lemma A.1 points (a) and (b), G(σ) = {∅} and, by
Lemma A.1 points (c) and (d), H = ∅. Symmetrically, if ∅ ∈ H, then G = ∅
by the intersection property, In is covering, G = ∅, and H(σ) = {∅}.
If G = ∅, then H 6= ∅ for otherwise σ would not be covering. Since G = ∅,
for σ to be covering it must be the case that In is covering. By Lemma A.1
point (f), H(σ) = {∅}, and by Lemma A.1 points (c) and (d), G(σ) = ∅.
Symmetrically, if H = ∅, then G 6= ∅ for otherwise σ would not be covering,
and it can be shown that Ex is covering, G(σ) = {∅}, and H = ∅.
Assume that both G and H contain only nonempty edges. If In is covering,
then In is a transversal of G because G andH satisfy the intersection property.
Thus, by Lemma A.1 point (e), G(σ) = ∅. Since In is covering, by Lemma A.1
point (f),H(σ) = {∅}. Symmetrically, it can be shown that, if Ex is covering,
then G(σ) = {∅} and H(σ) = ∅.

Lemma A.3. Let G and H be two hypergraphs. Then, G and H satisfy the in-
tersection property if and only if, for all assignments σ, G(σ) and H(σ) satisfy the
intersection property.

Proof. (⇒) If G = ∅ or ∅ ∈ G, the property trivially holds.
Assume that both G and H contain only nonempty edges. Let σ = 〈In, Ex〉. If

σ is covering, then, by Lemma A.2 point (b), G(σ) and H(σ) are (trivially) dual, and
hence they also satisfy the intersection property.

In case σ is noncovering, if In (resp., Ex ) is a transversal of G (resp., H), then,
by Lemma A.1 point (e), G(σ) = ∅ (resp., H(σ) = ∅). In these cases, since at least
one of the two hypergraphs G(σ) and H(σ) is empty, they satisfy the intersection
property.

Let us consider now the case in which both In and Ex are not transversals of
G(σ) and H(σ), respectively. By Lemma A.1 point (g), both G(σ) and H(σ) contain
only nonempty edges. Assume by contradiction that there are two edges G′ ∈ G(σ)
and H ′ ∈ H(σ) such that G′ ∩ H ′ = ∅. Since G′ ∈ G(σ) there is an edge G ∈ G
such that G = G′ ∪ A with ∅ ⊆ A ⊆ Ex , and with G ∩ In = ∅ (for otherwise G′

would not be in G(σ)). Moreover, since H ′ ∈ H(σ) there is an edge H ∈ H such that
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H = H ′ ∪B with ∅ ⊆ B ⊆ In, and with H ∩Ex = ∅ (for otherwise H ′ would not be
in H(σ)). From this follows G∩H = ∅, a contradiction, because G and H satisfy the
intersection property. Therefore, G(σ) and H(σ) satisfy the intersection property.

(⇐) Since G and H do not satisfy the intersection property, there are two edges
G ∈ G and H ∈ H such that G ∩ H = ∅. Assume without loss of generality that
G and H are not supersets of other edges (remember that, in the statement of the
lemma, G and H are not assumed to be simple). Consider the empty assignment σε.
Observe that G ∈ G(σε) and H ∈ H(σ) and hence G(σε) and H(σε) do not satisfy the
intersection property.

Lemma A.4. Let G and H be two hypergraphs, and let σ = 〈In,Ex 〉 be an assign-
ment.

(a) If T ′ is a transversal of G(σ), then T = T ′ ∪ In is a transversal of G.
(b) If T ′ is an independent set of H(σ), then T = T ′ ∪ In is an independent set

of H.
Hence, if T ′ is a new transversal of G(σ) w.r.t. H(σ), then T = T ′ ∪ In is a new
transversal of G w.r.t. H.

Proof. We remind the reader that, since G(σ) (resp., H(σ)) undergoes a minimiza-
tion operation, it is not possible that ∅ ∈ G(σ) and G(σ) 6= {∅} (resp., ∅ ∈ H(σ)
and H(σ) 6= {∅}) at the same time. Therefore, G(σ) (resp., H(σ)) fulfills exactly
one of these conditions: is empty, or contains only the empty edge, or contains only
nonempty edges.

(a) If G(σ) = {∅} or G(σ) = ∅, then the property can be easily proven.
Assume that G(σ) contains only nonempty edges. By Lemma A.1 points (a),
(b), (c), and (d), G contains only nonempty edges. Observe that, for each
edge G ∈ G, there are two cases: either G ∩ In 6= ∅ or G ∩ In = ∅. If
G ∩ In 6= ∅, then T ∩ G 6= ∅ because In ⊆ T . If G ∩ In = ∅, then there
is an edge ∅ 6= G′ ∈ G(σ) such that G′ ⊆ G. Hence, T ∩ G 6= ∅ because
T ′ ∩G′ 6= ∅, G′ ⊆ G, and T ′ ⊆ T .

(b) If H(σ) = {∅} or H(σ) = ∅, then the property can be easily proven.
Assume that H(σ) contains only nonempty edges. Since the vertex set of
H(σ) is V \ (In ∪ Ex ), T ′ ⊆ V \ (In ∪ Ex ). Observe that, for each edge
H ∈ H, there are two cases: either H ∩ Ex 6= ∅ or H ∩ Ex = ∅. From
T ′ ⊆ V \ (In ∪ Ex ) and In ∩ Ex = ∅, it follows that T ∩ Ex = ∅. So, if
H ∩ Ex 6= ∅, then H 6⊆ T . On the other hand, if H ∩ Ex = ∅, then there is
an edge ∅ 6= H ′ ∈ H(σ) such that H ′ ⊆ H. Since T ′ is an independent set of
H(σ), there is a vertex v ∈ (H ′ \ T ′). From H ′ ⊆ V \ (In ∪ Ex ) and v ∈ H ′,
it follows that v /∈ In. Therefore, since T = T ′ ∪ In, v /∈ T , and, because
v ∈ H ′ ⊆ H, H 6⊆ T .

Observe that, by the symmetrical nature of the Dual problem, the roles of G
and H can be swapped in an instance of Dual. By this reason, Lemma A.4 can be
easily adapted to state that transversals of H(σ) and independent sets of G(σ) can be
extended, in this case by adding Ex , to be transversals of H and independent sets of
G, respectively.

Lemma A.5. Let G and H be two hypergraphs.
(a) If T is a transversal of G, then, for any assignment σ = 〈In,Ex 〉 coherent

with T , T ′ = T \ In is a transversal of G(σ).
(b) If T is an independent set of H, then, for any assignment σ = 〈In,Ex 〉

coherent with T , T ′ = T \ In is an independent set of H(σ).
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Hence, if T is a new transversal of G w.r.t. H, then, for any assignment σ = 〈In,Ex 〉
coherent with T , T ′ = T \ In is a new transversal of G(σ) w.r.t. H(σ).

Proof.
(a) If ∅ ∈ G or G = ∅, the property trivially holds.

Assume that G contains only nonempty edges. There are two cases: either
In is a transversal of G, or it is not. If In is a transversal of G, then, by
Lemma A.1 point (e), G(σ) = ∅. Hence, trivially any set of vertices is a
transversal of G(σ), and so is T ′. Consider now the case in which In is not
a transversal of G. Since T is a transversal of G coherent with σ, by (the
contrapositive of) Lemma 3.1 point (a), Ex is not covering. Therefore, by
Lemma A.1 point (g), G(σ) contains only nonempty edges. Let G′ ∈ G(σ) be
an edge. By definition of G(σ), there is an edge G ∈ G such that G ∩ In = ∅
(for otherwise G′ would not be in G(σ)) and G′ = G∩(V \(In∪Ex )). Since T is
a transversal of G, T∩(G\In) 6= ∅, because G∩In = ∅, and T∩(G\Ex ) 6= ∅,
because σ v T and so T ∩Ex = ∅. Therefore, T ∩ (G\ (In ∪Ex )) 6= ∅. Since
G′ = G ∩ (V \ (In ∪ Ex )), T ′ = T \ In has a nonempty intersection with G′

and, hence, T ′ is a transversal of G(σ).
(b) If ∅ ∈ H or H = ∅, the property trivially holds.

Assume that H contains only nonempty edges. There are two cases: either
Ex is a transversal of H, or it is not. If Ex is a transversal of H, then,
by Lemma A.1 point (e), H(σ) = ∅. Hence, trivially any set of vertices is
an independent set of H(σ), and so is T ′. Consider now the case in which
Ex is not a transversal of H. Since T is an independent set of H coherent
with σ, by (the contrapositive of) Lemma 3.1 point (b), In is not covering.
Therefore, by Lemma A.1 point (g), H(σ) contains only nonempty edges.
Let H ′ ∈ H(σ) be an edge. By the definition of H(σ), there is an edge
H ∈ H such that H ∩ Ex = ∅ (for otherwise H ′ would not be in H(σ)) and
H ′ = H ∩ (V \ (In ∪ Ex )). Since T is an independent set of H, there is a
vertex v ∈ (H \ T ) such that v /∈ Ex , because H ∩ Ex = ∅, and v /∈ In,
because σ v T and so In ⊆ T . Therefore, from v /∈ Ex and v /∈ In, it follows
that v ∈ H ′ because H ′ = H ∩ (V \ (In ∪ Ex )), and from v /∈ T (because
v ∈ (H \ T )), it follows that v /∈ T ′. Hence H ′ 6⊆ T ′, and thus T ′ is an
independent set of H(σ).

Observe again that, by the symmetrical nature of the Dual problem, by swapping
the roles of G and H, and by considering the reversed assignment σ = 〈Ex , In〉,
Lemma A.5 can be easily adapted to state that transversals of H and independent
sets of G coherent with σ can be shrunk, in this case by removing Ex , to be transversals
of H(σ) and independent sets of G(σ), respectively.

The following corollary descends directly from Lemmas A.4 and A.5 and highlights
an interesting property of decompositions.

Corollary A.6. Let G and H be two hypergraphs. Then, for all assignments σ,
there is a new transversal of G(σ) w.r.t. H(σ) if and only if there is a new transversal
of G w.r.t. H coherent with σ.

From the previous corollary, by noticing that the empty assignment is coherent
with any set of vertices, we obtain the next property.

Corollary A.7. Let G and H be two hypergraphs. There is no new transversal
of G w.r.t. H if and only if, for all assignments σ, there is no new transversal of G(σ)
w.r.t. H(σ).
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Lemma A.8. Let G and H be two dual hypergraphs. Then, for all assignments σ,
G(σ) and H(σ) are dual.

Proof. If G and H are trivially dual, then, by Lemma A.1 points (a), (b), (c), and
(d), for any assignment σ, G(σ) and H(σ) are trivially dual.

Consider now the case in which G and H are nontrivially dual. Since G and H are
dual, they are simple, satisfy the intersection property, and there is no new transversal
of G w.r.t.H (see Lemma 2.3). Observe that, for any assignment σ, G(σ) andH(σ) are
simple by definition and, by Lemma A.3, satisfy the intersection property. Because
there is no new transversal of G w.r.t. H, by Corollary A.7, there is no new transversal
of G(σ) w.r.t. H(σ). Therefore, from Lemma 2.3 it follows that G(σ) and H(σ) are
dual.

Lemma A.9. Let G and H be two simple hypergraphs. If, for all assignments σ,
G(σ) and H(σ) are dual, then G and H are dual.

Proof. Since, for all assignments σ, G(σ) and H(σ) are dual, by Lemma 2.3, for
all assignments σ, G(σ) and H(σ) satisfy the intersection property and there is no
new transversal of G(σ) w.r.t. H(σ). Hence, by Lemma A.3, G and H satisfy the
intersection property. Because, for all assignments σ, there is no new transversal of
G(σ) w.r.t. H(σ), by Corollary A.7, there is no new transversal of G w.r.t. H. Given
that G and H are assumed to be simple, by Lemma 2.3 it follows that G and H are
dual.

It is interesting to observe that in the statement of the previous lemma it is
necessary to assume that hypergraphs G andH are simple. Indeed, for any assignment
σ, G(σ) and H(σ) are simple by definition, because they undergo a minimization
operation. Hence, from G(σ) and H(σ) being dual (and hence also simple) we cannot
derive G and H being simple. To give an example, consider hypergraphs G = ∅ and H
being a hypergraph containing an empty edge and another edge. Hypergraph H is not
simple, and hence G and H are not dual. However, for any assignment σ, G(σ) = ∅
and H(σ) = {∅} (see Lemma A.1 points (a), (b), (c), and (d)) and, hence, G(σ) and
H(σ) are dual.

Given the properties above, the following lemma is a direct consequence of Lem-
mas 2.3, A.8, and A.9.

Lemma 3.2. Two hypergraphs G and H are dual if and only if G and H are simple,
satisfy the intersection property, and, for all assignments σ, G(σ) and H(σ) are dual
(or, equivalently, there is no new transversal of G(σ) w.r.t. H(σ)).

Appendix B. A deterministic algorithm for DUAL. In this section we
propose a deterministic duality algorithm Det-Dual, which is an extension of that
proposed by Gaur [21] (see also [22]). Algorithm Det-Dual presented here is some-
what different from Gaur’s because the latter checks self-duality of a single DNF
Boolean formula, while ours verifies duality between two hypergraphs.

Given two hypergraphs G and H, our algorithm Det-Dual, like many others,
to disprove that G and H are dual aims at finding, via subprocedure New-Tr, a
new transversal of G w.r.t. H. To do so, the algorithm builds up, step by step, by
including and excluding vertices, a set of vertices intersecting all edges of G that is
different from all edges of H (i.e., a set of vertices that is a transversal of G and an
independent set of H, and hence a new transversal of G w.r.t. H).

As already discussed, choosing vertices to exclude allows us to decrease the num-
ber of edges of H that are not different (yet) from the candidate for a new transver-
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sal. In particular, when New-Tr excludes specific vertices, the number of edges
of H still needed to be considered is halved (see Lemma 3.4 and the discussion in
subsection 3.3).

Let us now see the details of algorithm Det-Dual. After exhibiting the algo-
rithm, we will formally prove some of its properties and its correctness. We remind
the reader that all missing proofs of this section can be found in the technical re-
port [28] available online. Algorithm Det-Dual, and more specifically subprocedure
New-Tr which checks the existence of new transversals, uses three sets to keep track
of the included, excluded, and free vertices of the currently considered assignment,
which are denoted by Incl , Excl , and Free, respectively. We remind the reader that,
to recognize an assignment as a nonduality witness, we need to know what edges of
G are separated from and what edges of H are still compatible with the assignment
(and transversal) under construction. To this purpose, in the algorithm we use the
sets denoted by SepG , and ComH, respectively. Observe that, for simplicity of the
presentation and better readability of the algorithm, we explicitly store here sets Incl ,
Excl , Free, SepG , and ComH. This obviously requires more than quadratic logspace.
However, by storing instead the labels only of the extensions leading to the current
assignment, and evaluating the aforementioned sets dynamically (see the proof of
Lemma 4.10 and subsection 4.2), the space complexity of the algorithm is bounded
by DSPACE [log2N ].

The Det-Dual algorithm is listed below as Algorithm 3. The aim of the proce-
dure Check-Simple-And-Intersection is checking that hypergraphs G and H are
simple and satisfy the intersection property.

Algorithm 3 A deterministic duality algorithm based on Gaur’s.

1: procedure Det-Dual(G,H)
2: if ¬Check-Simple-And-Intersection(G,H) then return false;

3: return ¬New-Tr(G,H,∅,∅, V );

4: procedure New-Tr(G,H, Incl ,Excl ,Free)
5: if (∃G)(G ∈ G ∧G ⊆ Excl) ∨ (∃H)(H ∈ H ∧H ⊆ Incl) then return false;

6: SepG ← {G ∈ G | G ∩ Incl = ∅};
7: ComH ← {H ∈ H | H ∩ Excl = ∅};
8: if SepG = ∅ ∨ ComH = ∅ then return true;

9: U ← {v ∈ Free | v belongs to at least half of the edges of ComH};
10: for each v : v ∈ U do
11: if New-Tr(G,H, Incl ,Excl ∪ {v},Free \ {v}) then return true;

12: Free ← Free \ U ;
13: Incl ← Incl ∪ U ;
14: if (∃H)(H ∈ H ∧H ⊆ Incl) then return false;

15: SepG ← {G ∈ G | G ∩ Incl = ∅};
16: if SepG = ∅ then return true;

17: for each v : v ∈ Free do
18: for each G : v ∈ G ∧G ∈ SepG do
19: if New-Tr(G,H, Incl ∪ {v},Excl ∪ (G \ {v}),Free \ G) then return

true;

20: return false;
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Note that, for simplicity, procedure New-Tr is meant to be called by value. This
means that the parameters passed to the procedure are local copies for each specific
recursive call. Therefore, any modification to those sets affects only the sets of the
call currently executed.

We recall here that two hypergraphs G and H are dual if and only if they are
simple, satisfy the intersection property, and there is no new transversal of G w.r.t.
H (see Lemma 2.3). So, after checking that G and H are simple and satisfy the
intersection property (line 2), it is checked that there is no new transversal of G. This
is achieved by calling New-Tr(G,H,∅,∅, V ) at line 3, where the sets Incl and Excl
are initialized to ∅, and Free = V . This procedure is devised to answer true if and
only if it finds a new transversal of G coherent with the assignment on which it is
executed. Given a pair of hypergraphs 〈G,H〉, and an assignment π = 〈In,Ex 〉, we
say that procedure New-Tr is executed on π whenever it is called with the following
parameters: New-Tr(G,H, In,Ex , V \ (In ∪ Ex )). For notational convenience we
denote it by New-Tr(G,H, π) or, even more simply, by New-Tr(π) when it is clear
from the context what the two hypergraphs G and H are.

Let us now analyze intuitively the execution of procedure New-Tr. Consider
a generic call of the procedure executed on the pair of hypergraphs 〈G,H〉 and on
assignment π. At line 5 we check whether π is a covering assignment, in which case
clearly there is no new transversal of G coherent with π (see Lemma 3.1). If this is
not the case, then the procedure checks (at line 8) whether π is (already) a witness.
Then the procedure computes a set U (line 9). This set is locally computed in the call
currently executed and, hence, for the following discussion, let us call it Uπ. We use
the subscript π because set U depends on the history of the recursive calls having led
to the one currently being executed and, hence, depends on the currently considered
assignment π having been built so far (and encoded in sets Incl and Excl).

Set Uπ is the set of the free frequent vertices of π. First, the procedure tries to
exclude individually each of the vertices of Uπ (lines 10–11). If none of these attempts
results in the construction of a witness (all the tests performed at line 11 return
false), all vertices of Uπ are included (lines 12–13). Let us call σ the assignment
resulting after the inclusion of the vertices of Uπ. Then, the procedure checks again
whether σ is a covering assignment (line 14). Otherwise, the procedure tests whether σ
is a witness (line 16). If this is not the case, then the procedure tries to include each of
the free vertices of σ as a critical vertex with an edge from Sep(σ) witnessing its criti-
cality (lines 17–19). If for none of these attempts it is possible to find a new transversal
of G (all the tests performed at line 19 return false), then the procedure answers
false at line 20, meaning that there is no new transversal of G coherent with π.

Let us now make some observations on the procedure New-Tr. Throughout the
whole execution of the procedure and its recursive calls, the sets Incl , Excl , and Free,
are always a partition of the set of vertices V and, hence, Incl and Excl constitute
a consistent assignment (i.e., Incl and Excl do not overlap). This descends from the
fact that the extensions implemented in procedure New-Tr are the same as those
considered in tree T (G,H), and we have already discussed in section 3 that those
extensions generate consistent assignments.

Besides this, every recursive call performed by New-Tr(π) is executed on an
assignment π′ such that π @ π′. This implies that the set of free vertices becomes
smaller and smaller from one recursive call to the next. As a result, since the procedure
tries to include or exclude vertices taken only from the set of the free ones, every
recursion path traversed by New-Tr(π) is finite, because at some recursion level the
set of free vertices is empty.
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The tests performed at lines 5–8 and at lines 14–16 essentially check whether the
assignment is a witness. In particular, first it is ruled out that the current assignment
is covering, and then is checked whether SepG or ComH is a transversal of G or H,
respectively. Note that at lines 14–16 is tested only whether SepG is a new transversal
of G w.r.t. H. At that point of the execution it is reasonable to do so because only
SepG has changed after the previous check of the witnessing condition performed at
lines 5–8.

We can now formally prove the correctness of algorithm Det-Dual.

Theorem B.1. Let G and H be two hypergraphs. Then, the call Det-Dual(G,H)
outputs true if and only if G and H are dual.

To prove the above theorem we need the following property.

Lemma B.2. Let G and H be two hypergraphs, and let π be an assignment. Then,
the call New-Tr(π) answers true if and only if there is a new transversal of G w.r.t.
H coherent with π.

Proof of Theorem B.1. By Lemma 2.3, G and H are dual if and only if they
are simple, satisfy the intersection property, and there is no new transversal of G
w.r.t. H. Therefore, since G and H are explicitly checked to see if they are simple
hypergraphs satisfying the intersection property (line 2), the correctness of the al-
gorithm Det-Dual directly follows from the correctness of the procedure New-Tr
(see Lemma B.2); in fact, any new transversal of G, if it exists, is coherent with σε
which is the assignment on which New-Tr is invoked by the procedure Det-Dual
(line 3).

Let us now consider the time complexity of the algorithm.

Theorem B.3. Let G and H be two hypergraphs satisfying the intersection prop-
erty. Then, the time complexity of the algorithm Det-Dual is O(NO(logN)).

If we assume that the input hypergraphs G and H are guaranteed to fulfill G ⊆
tr(H) and H ⊆ tr(G) (i.e., we assume the stricter condition imposed on the input
hypergraphs by Boros and Makino [6]), and are such that each vertex belongs to
at least an edge in both G and H, then we can carry out a finer time complexity
analysis.

Theorem B.4. Let G and H be two hypergraphs such that G ⊆ tr(H) and H ⊆
tr(G) and such that each vertex v ∈ V belongs to an edge in G and to an edge in H.
Then, the time complexity of algorithm Det-Dual, in which the condition of G and
H being such that G ⊆ tr(H) and H ⊆ tr(G) is checked, instead of them being simple
and satisfying the intersection property, is O((|G| · |H|)O(log |H|)).

It is now interesting to focus on the following fact. By the proof of Theorem B.3
(see the extended technical report [28]), the leaves of the recursion tree of proce-
dure New-Tr, which are candidate to certify the existence of a new transversal
of G, are O(N2O(logN)), but in principle there could be an exponential number of
new minimal transversals of G w.r.t. H. For example, let us consider the class
of pairs of hypergraphs {〈Gi,Hi〉}i≥1, defined as follows: Vi = {x1, y1, . . . , xi, yi},
Gi = {{xj , yj} | 1 ≤ j ≤ i}, and Hi = {{x1, . . . , xi}, {y1, . . . , yi}}. For every i ≥ 1,
hypergraphs Gi and Hi satisfy the intersection property, |Gi| = i, |Hi| = 2, and the
number of minimal transversals of Gi missing in Hi is Θ(2i). So, it is not possible that
each leaf of the recursion tree of New-Tr identifies a unique new minimal transversal
of G. For this reason we want to know what new transversals of G are identified by
New-Tr when it answers true.
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Theorem B.5. Let G and H be two hypergraphs. If New-Tr(σε) answers true,
then the witness σ on which the procedure has answered true at the end of its recursion
is coherent with a new minimal transversal of G w.r.t. H.

Let G and H be two hypergraphs. Assume that New-Tr(σε) answers true, and
let σ = 〈In,Ex 〉 be the assignment on which the procedure answers true at the end
of its recursion. There are two cases: (1) Sep(σ) = ∅ or (2) Sep(σ) 6= ∅.

In case (1), by Theorem B.5, σ is coherent with a new minimal transversal of G,
and σ is such that Sep(σ) = ∅, hence it follows that In is a new minimal transversal
of G w.r.t. H.

Consider case (2). Since σ is a witness and Sep(σ) 6= ∅, it must be the case that
Com(σ) = ∅ and hence Ex is a transversal of H. By this, Ex is an independent set
of H. Let us denote by Free(σ) = V \ (In ∪Ex ) the set of free vertices in σ. Consider
the set Tσ = {In ∪ S | S ∈ tr(Sep(σ)Free(σ))}.10 Transversals S of Sep(σ)Free(σ), by
definition, are such that S ∩ Ex = ∅ and, hence, S ⊆ Ex which means that S is an
independent set of H. Therefore, from an adaptation of Lemma A.4 to Sep(σ), it
follows that Tσ is a set of new transversals of G. Note that some of the elements of Tσ
are new minimal transversals of G, while others are not minimal. However, there is
no guarantee that there are no more minimal transversals, i.e., there are new minimal
transversals of G not belonging to Tσ.
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[44] H. Mannila and K.-J. Räihä, Algorithms for inferring functional dependencies from relations,
Data Knowl. Eng., 12 (1994), pp. 83–99, https://doi.org/10.1016/0169-023X(94)90023-X.

[45] H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowledge dis-
covery, Data Min. Knowl. Discov., 1 (1997), pp. 241–258, https://doi.org/10.1023/A:
1009796218281.

[46] N. Mishra and L. Pitt, Generating all maximal independent sets of bounded-degree hyper-
graphs, in Proceedings of the 10th Annual Conference on Computational Learning The-
ory (COLT ‘97), Y. Freund and R. Schapire, eds., ACM, New York, 1997, pp. 211–217,
https://doi.org/10.1145/267460.267500.

[47] R. Reiter, A theory of diagnosis from first principles, Artif. Intell., 32 (1987), pp. 57–95,
https://doi.org/10.1016/0004-3702(87)90062-2.

[48] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory: A Rational Approach to
the Theory of Graphs, Wiley, New York, 1997.

[49] J. Torán, Structural Properties of the Counting Hierarchies, Ph.D thesis, Facultat
d’lnformatica de Barcelona, Barcelona, 1988.

[50] J. Torán, Succinct representations of counting problems, in Proceedings of the 6th Interna-
tional Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
1988, AAECC-6 Rome, Italy, Lecture Notes in Comput. Sci. 357, T. Mora, ed., Springer,
Berlin, 1989, pp. 415–426, https://doi.org/10.1007/3-540-51083-4 77.

[51] H. Vollmer, Introduction to circuit complexity, Texts Theoret. Comput. Sci. EATES Ser.,
Springer, Berlin, 1999.D

ow
nl

oa
de

d 
06

/2
9/

18
 to

 1
44

.1
73

.1
77

.9
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1145/263661.263684
https://doi.org/10.1145/263661.263684
https://doi.org/10.1016/j.tcs.2005.11.015
https://doi.org/10.1016/j.tcs.2005.11.015
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/3-540-57568-5_271
https://doi.org/10.1016/S0020-0190(02)00346-0
https://doi.org/10.1016/j.dam.2006.04.012
https://doi.org/10.1016/j.dam.2006.04.012
https://doi.org/10.1016/j.ipl.2006.09.006
https://doi.org/10.1016/j.biosystems.2005.04.009
https://doi.org/10.1093/bioinformatics/btg395
https://doi.org/10.1371/journal.pcbi.1000385
https://doi.org/10.1016/0166-218X(92)90031-5
https://doi.org/10.1016/0169-023X(94)90023-X
https://doi.org/10.1023/A:1009796218281
https://doi.org/10.1023/A:1009796218281
https://doi.org/10.1145/267460.267500
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/3-540-51083-4_77

	Introduction
	Preliminaries
	Decomposing the DUAL problem
	Decomposition principles
	Assignment trees and the definition of T(G,H)
	Logarithmic refuters in T(G,H)

	New upper bounds for the DUAL problem
	A new nondeterministic algorithm for DUAL
	Logical analysis of the ND-NOTDUAL algorithm
	Putting it all together
	Computing a new transversal

	Conclusions and future research
	Appendix A. Proofs of properties stated in section 3
	Appendix B. A deterministic algorithm for DUAL
	Acknowledgments
	References

