709 research outputs found

    Percolation and Connectivity on the Signal to Interference Ratio Graph

    Full text link
    A wireless communication network is considered where any two nodes are connected if the signal-to-interference ratio (SIR) between them is greater than a threshold. Assuming that the nodes of the wireless network are distributed as a Poisson point process (PPP), percolation (unbounded connected cluster) on the resulting SIR graph is studied as a function of the density of the PPP. For both the path-loss as well as path-loss plus fading model of signal propagation, it is shown that for a small enough threshold, there exists a closed interval of densities for which percolation happens with non-zero probability. Conversely, for the path-loss model of signal propagation, it is shown that for a large enough threshold, there exists a closed interval of densities for which the probability of percolation is zero. Restricting all nodes to lie in an unit square, connectivity properties of the SIR graph are also studied. Assigning separate frequency bands or time-slots proportional to the logarithm of the number of nodes to different nodes for transmission/reception is sufficient to guarantee connectivity in the SIR graph.Comment: To appear in the Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2012), to be held in Orlando Florida Mar. 201

    Optimal Paths on the Space-Time SINR Random Graph

    Full text link
    We analyze a class of Signal-to-Interference-and-Noise-Ratio (SINR) random graphs. These random graphs arise in the modeling packet transmissions in wireless networks. In contrast to previous studies on the SINR graphs, we consider both a space and a time dimension. The spatial aspect originates from the random locations of the network nodes in the Euclidean plane. The time aspect stems from the random transmission policy followed by each network node and from the time variations of the wireless channel characteristics. The combination of these random space and time aspects leads to fluctuations of the SINR experienced by the wireless channels, which in turn determine the progression of packets in space and time in such a network. This paper studies optimal paths in such wireless networks in terms of first passage percolation on this random graph. We establish both "positive" and "negative" results on the associated time constant. The latter determines the asymptotics of the minimum delay required by a packet to progress from a source node to a destination node when the Euclidean distance between the two tends to infinity. The main negative result states that this time constant is infinite on the random graph associated with a Poisson point process under natural assumptions on the wireless channels. The main positive result states that when adding a periodic node infrastructure of arbitrarily small intensity to the Poisson point process, the time constant is positive and finite

    Continuum Percolation in the Intrinsically Secure Communications Graph

    Full text link
    The intrinsically secure communications graph (iS-graph) is a random graph which captures the connections that can be securely established over a large-scale network, in the presence of eavesdroppers. It is based on principles of information-theoretic security, widely accepted as the strictest notion of security. In this paper, we are interested in characterizing the global properties of the iS-graph in terms of percolation on the infinite plane. We prove the existence of a phase transition in the Poisson iS-graph, whereby an unbounded component of securely connected nodes suddenly arises as we increase the density of legitimate nodes. Our work shows that long-range communication in a wireless network is still possible when a secrecy constraint is present.Comment: Accepted in the IEEE International Symposium on Information Theory and its Applications (ISITA'10), Taichung, Taiwan, Oct. 201

    Percolation and Connectivity in the Intrinsically Secure Communications Graph

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper aims to characterize the global properties of the iS-graph in terms of: (i) percolation on the infinite plane, and (ii) full connectivity on a finite region. First, for the Poisson iS-graph defined on the infinite plane, the existence of a phase transition is proven, whereby an unbounded component of connected nodes suddenly arises as the density of legitimate nodes is increased. This shows that long-range secure communication is still possible in the presence of eavesdroppers. Second, full connectivity on a finite region of the Poisson iS-graph is considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how the presence of eavesdroppers can compromise long-range secure communication.Comment: Submitted for journal publicatio

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Wireless Secrecy in Large-Scale Networks

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.Comment: To appear: Proc. IEEE Information Theory and Applications Workshop (ITA'11), San Diego, CA, Feb. 2011, pp. 1-10, Invited Pape

    Achieving Non-Zero Information Velocity in Wireless Networks

    Full text link
    In wireless networks, where each node transmits independently of other nodes in the network (the ALOHA protocol), the expected delay experienced by a packet until it is successfully received at any other node is known to be infinite for signal-to-interference-plus-noise-ratio (SINR) model with node locations distributed according to a Poisson point process. Consequently, the information velocity, defined as the limit of the ratio of the distance to the destination and the time taken for a packet to successfully reach the destination over multiple hops, is zero, as the distance tends to infinity. A nearest neighbor distance based power control policy is proposed to show that the expected delay required for a packet to be successfully received at the nearest neighbor can be made finite. Moreover, the information velocity is also shown to be non-zero with the proposed power control policy. The condition under which these results hold does not depend on the intensity of the underlying Poisson point process.Comment: to appear in Annals of Applied Probabilit
    corecore