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Abstract

The ability to exchange secret information is critical to nmacommercial, governmental, and
military networks. Thantrinsically secure communications graghS-graph) is a random graph which
describes the connections that can be securely establmhada large-scale network, by exploiting
the physical properties of the wireless medium. This pajyas d0 characterize the global properties
of the iS-graph in terms of: (i) percolation on the infinite plane, iy full connectivity on a finite
region. First, for the Poissoifs-graph defined on the infinite plane, the existence of a phassition
is proven, whereby an unbounded component of connectedsmatidenly arises as the density of
legitimate nodes is increased. This shows that long-raegers communication is still possible in
the presence of eavesdroppers. Second, full connectivity fnite region of the Poissoifs-graph is
considered. The exact asymptotic behavior of full conwégtin the limit of a large density of legitimate
nodes is characterized. Then, simple, explicit expressaa derived in order to closely approximate
the probability of full connectivity for a finite density oégitimate nodes. The results help clarify how

the presence of eavesdroppers can compromise long-raoge ssommunication.

Index Terms

Physical-layer security, wireless networks, stochastiongetry, percolation, connectivity.

I. INTRODUCTION

Contemporary security systems for wireless networks asedan cryptographic primitives
that generally ignore two key factors: (a) the physical prtips of the underlying communication
channels, and (b) the spatial configuration of both theilegite and malicious nodes. These two
factors are important since they affect the propagatiomchis between the nodes, which in
turn determine the fundamental secrecy potential of a eésehetwork. In fact, the randomness
introduced both by the physics of the wireless medium andhbyspatial location of the nodes
can be leveraged to strengthen the overall security of themaanications infrastructuﬂé.

The basis for information-theoretic security, which baitth the notion of perfect secrecy [1],

was laid in [2] and later in[]3],[[4]. More recently, there hasen a renewed interest in

In the literature, the term “security” typically encompess3 different characteristicsecrecy(or privacy), integrity, and
authenticity This paper does not consider the issues of integrity oreautiitity, and the terms “secrecy” and “security” are used

interchangeably.



information-theoretic security over wireless channelsnt the perspective of space-time com-
munications [[5], multiple-input multiple-output commuations [6]-[10], eavesdropper collu-
sion [11], [12], cooperative relay networKs [13], fadingadmels [[14]+]1B], strong secredy [19],
[20], secret key agreement [21]-[25], code design [26]};[aBong other topics. A fundamental
limitation of this literature is that it only considers segios with a small number of nodes. To ac-
count for large-scale networks composed of multiple legatie and eavesdropper nodsscrecy
graphswere introduced in [29] from a geometrical perspective, anf80] from an information-
theoretic perspective. The local connectivity of secre@pls was extensively characterized in
[31], while the scaling laws of the secrecy capacity weresenéed in[[32],[[33].

Percolation theory studies the existence of phase transitin random graphs, whereby an
infinite cluster of connected nodes suddenly arises as sgstens parameter is varied. Various
percolation models have been considered in the literafline. Poisson Boolean model was
introduced in[[34], which derived the first bounds on theicaitdensity, and started the field of
continuum percolation. The Poisson random connection imeds introduced and analyzed in
[35]. The Poisson nearest neighbour model was consider§@bin The signal-to-interference-
plus-noise ratio (SINR) model was characterized_in [37].0fnprehensive study of the various
models and results in continuum percolation can be foun@&j. [

The connectivity of large but finite networks has also reegiattention the literature. The
asymptotic behavior of partial connectivity of the Poisd@wolean model restricted to a finite
box was studied in[[39]. The asymptotic full connectivity the same model was analyzed in
[40], [41], which obtained the rate of growth of the radiusittiensures full connectivity. The
asymptotic full connectivity in finite nearest neighboutwerks was considered in [42], [43].

In this paper, we characterize long-range secure conitgativwireless networks by consid-
ering theintrinsically secure communications gragts-graph) as defined in [31]. Th&S-graph
describes the connections that can be established wittmatton-theoretic security over a large-
scale network. We focus on percolation of tkegraph on the infinite plane, and full connectivity
in a finite region. The main contributions of this paper ardadisws:

« Percolation in theiS-graph: We prove the existence of a phase transition in the Poisson

iS-graph defined on the infinite plane, whereby an unboundedpooent of connected
nodes suddenly arises as we increase the density of letgtimades. In particular, we

determine for which combinations of system parameters geesolation occur. This shows



that long-range communication is still possible in a wisslenetwork when a secrecy
constraint is present.

« Full connectivity in theiS-graph: We analyze secure full connectivity on a finite region of
the PoissonS-graph. We characterize the exact asymptotic behaviorlbE@mnectivity in
the limit of a large density of legitimate nodes. Then, weaabsimple, explicit expressions
that closely approximate the probability of full connetgnfor a finite density of legitimate
nodes.

This paper is organized as follows. Sectidn Il describessglstem model. Sectidnlll character-
izes continuum percolation in the Poiss@graph defined over the infinite plane. Section 1V
analyzes full connectivity in the Poisse§-graph restricted to a finite region. Sectioh V con-

cludes the paper and summarizes important findings.

II. SYSTEM MODEL

We start by describing our system model and defining our nteasaf secrecy. The notation

and symbols used throughout the paper are summarized ie[Tabl

A. Wireless Propagation Characteristics

In a wireless environment, the received powey(z;, z;) associated with the Iin&ix; can

modeled as

Prx(.’lji,.’ljj) - PE‘Q(%axjain,mj)a (1)

where P, is the (common) transmit power of the legitimate nodes; agd, z;, Z,, .,) is the
power gain of the IinkxT>9:j, where the random variable (RVY,, ., represents the random
propagation effects (such as multipath fading or shadowasgociated with Iinkﬁ:c;. The
channel gaing(z;, z;, Z,, ;) is considered constant (quasi-static) throughout the dstheo
communications channel, corresponding to channels withrgel coherence time. The gain

function is assumed to satisfy the following conditions,jefthare typically observed in practice:

: with abuse

1) g(xi, x4, Zs,2,;) depends onr; andx; only through the link lengthz; — z;

of notation, we can writg(r, ) £ g(z;, z;, 2) (i

2) g(r, z) is continuous and strictly decreasingrin

3) lim, . g(r, 2z) = 0.



The proposed model is general enough to account for commoiteshof g. One example is
the unbounded model whergr, z) = ;. The term—; accounts for the far-field path loss with
distance, where the amplitude loss exporieist environment-dependent and can approximately
range from0.8 (e.g., hallways inside buildings) tb(e.g., dense urban environments), with 1
corresponding to free space propagation. This model isytealy convenient[[44], but since
the gain becomes unbounded as the distance approachestzenst be used with care for
This

model has the same far-field dependence as the unbounded, imatdeliminates the singularity

extremely dense networks. Another example is the boundetehvehereg(r, 2) = .
at the origin. Unfortunately, it often leads to intractalalealytical results. The effect of the

singularity atr = 0 on the performance evaluation of a wireless system is ceridin [45].

B. Wireless Information-Theoretic Security

We now define our measure of secrecy more precisely. Whilenmin interest is targeted
towards the behavior of large-scale networks, we brieflyesgvthe setup for a single legitimate
link with a single eavesdropper. The results therein wil’eeas basis for the notion af-graph
to be established later.

Consider the model depicted in Fig. 1, where a legitimate (&léce) wants to send messages
to another user (Bob). Alice encodes a messagepresented by a discrete RV, into a codeword,
represented by the complex random sequence of lengtti* = (z(1),...,z(n)) € C, for
transmission over the channel. Bob observes the output sfcaetie-time channel (tHegitimate

channe), which at timei is given by
ye(1) = he - (i) + ne(i), 1<i<mn,

whereh, € C is the quasi-static amplitude gain of the legitimate chagramdng(i) ~ N(0,02)
is AWGN with power o} per complex samplé.Bob makes a decisiod on s based on the

output y,, incurring in an error probability equal tB{s, # s}. A third party (Eve) is also

>The amplitude gairk, can be related to the power gain @ (1) @S, Z,) = |h.|*, wherer, and Z, are, respectively, the
length and random propagation effects of the legitimatk. lin

3We useN:(0, %) to denote a circularly symmetric (CS) complex Gaussiarridigion, where the real and imaginary parts
are 1ID NV(0,02/2).



capable of eavesdropping on Alice’s transmissions. Everels the output of a discrete-time

channel (theeavesdropper’s channelwhich at timei is given by
Yo(1) = he - (1) + me(i), 1<i<mn,

where h, € C is the quasi-static amplitude gain of the eavesdropper reiamndn,(i) ~
N(0,02) is AWGN with powero? per complex sample. It is assumed that the signals,,
he, ng, andn, are mutually independent. Each codeword transmitted bgeAk subject to the

average power constraint éf per complex symbol, i.e.,
1 & i
=Y E{lz(@)l*} < P )
i=1

We define the rate of transmission as

g 2 H0)

n

where H(-) denotes the entropy function.

Throughout the paper, we ustong secrecygs the condition for information-theoretic security,
and define it as follows [19].

Definition 2.1 (Strong Secrecy)fhe rate®* is said to beachievable with strong secredly
Ve > 0, for sufficiently largen, there exists an encoder-decoder pair with &tesatisfying the

following conditions:

K ZK*_€7
H(sly?) = H(s) — ¢,

P{gg # S} S €.

We define thanaximum secrecy rat@ISR) R, of the legitimate channel to be the maximum
rate ®* that is achievable with strong secrg:yf. the legitimate link operates at a rate below
the MSR R, there exists an encoder-decoder pair such that the eapgsdris unable to obtain

additional information about from the observation”, in the sense tha#/(s|y”) approaches

4See [[20] for a comparison between the concepts of weak aodgstecrecy. In the case of Gaussian noise, the MSReis

sameunder the weak and strong secrecy conditions.



H(s) as the codeword length grows. It was shown in[4]/[17] that for a given realizatioh o
the channel gaing,, h., the MSR of the Gaussian wiretap channel is

. 2 X 2 +
Rs(wi, xj) = [logz <1 + M) — log, (1 + M)] , 3)

Ty e
in bits per complex dimension, whefe] = max{z, O}H In the next sections, we use these basic

results to analyze secrecy in large-scale networks.

C. iS-Graph

Consider a wireless network where the legitimate nodes hedgobtential eavesdroppers are
randomly scattered in space, according to some point pgeseJ heiS-graph is a convenient
representation of the information-theoretically securkd that can be established on such
network. In the following, we introduce a precise definitimiithe :S-graph, based on the notion
of strong secrecy.

Definition 2.2 ¢(S-Graph [31]): Let IT, = {z;}2°, C R? denote the set of legitimate nodes,
andIls = {¢;}3°, C R denote the set of eavesdroppers. Toegraphis the directed grapty =
{I1,, £} with vertex setll, and edge set

€ = {zw} : Ro(ws, x5) > o}, (4)

wherep is a threshold representing the prescribed infimum seciageyfor each communication
link; and R(x;, x;) is the MSR, for a given realization of the channel gains, eflthk between

the transmitters; and the receiver;, given by

Pl 1. P ot +
Ry(2s, ;) = [logQ (1 + M) — log, <1 + M)] : (5)
UZ Oe
with
e* = argmax P (z;, ex). (6)
er€lle

This definition presupposes that the eavesdroppers ardlowed tocollude(i.e., they cannot

exchange or combine information), and therefore only theesdropper with the strongest

Operationally, the MSRR; can be achieved if Alice first estimatés and . (i.e., has full CSI), and then uses a code that
achieves MSR in the AWGN channel. Estimationifis possible, for instance, when Eve is another active ustrarwireless
network, so that Alice can estimate the eavesdropper’snelaturing Eve’s transmissions. As we shall see,ithiggraph model
presented in this paper relies on an outage formulation,tletfore doesot require assumptions concerning availability of
full CSI.



received signal fromr; determines the MSR between and z;. The effect of eavesdropper
collusion on the local connectivity of th&s-graph is analyzed in [31].

The iS-graph admits an outage interpretation, in the sense tgainkate nodes set a target
secrecy rateyp at which they transmit without knowing the channel statennfation (CSI) of
the legitimate nodes and eavesdroppers. In this contexedge between two nodes signifies
that the corresponding channel is not in secrecy outage.

In the remainder of the paper, we consider the case whereotleaving conditions hold:
(a) the wireless environment introduces only path loss, Zg ., = 1 in (D); and (b) the noise
powers of the legitimate users and eavesdroppers are éguak; = o2 = o2. In such case,
we can combine{1)[14), andl(5) to obtain the following edgE S

2

£ = {xl—xg c 9|z — x5]) > 2%g(|x; — e¥|) + %(29 —1), €*=argmin |z; — ek|}, (7)
Ekene

where e* denotes the eavesdropper closest to the transmittéFhe particular case o = 0
corresponds to considering tegistenceof secure links, in the sense that an ed@ is present
iff Rs(x;, ;) > 0. Thus, a positive (but possibly small) rate exists at whigltan transmit to
x; with information-theoretic security. In this case, the edgt in [V) simplifies to

"]

, € =argmin |z; — 6k|}, (8)
Ekene

&= {xi—>xj:|xi—xj| <|z;—e
which corresponds to the geometrical model proposed in. [2@]. [2(a) shows an example of
such aniS-graph onR?.

The spatial location of the legitimate and eavesdroppeesadn be modeled either determin-
istically or stochastically. In many important scenariosly a statistical description of the node
positions is available, and thus a stochastic spatial msdelore suitable. In particular, when
the node positions are unknown to the network designer aipr@ may as well treat them
as completely random according to a homogeneous Poisson aicess[[46]. The Poisson
process has maximum entropy among all homogeneous precgsdeand serves as a simple

and useful model for the position of nodes in a netwark [448]]

®For notational simplicity, wherZ = 1, we omit the second argument of the functigfr, z) and simply usey(r).

"The spatial Poisson process is a natural choice in suchtisitudecause, given that a node is inside a regigrthe PDF of

its position is conditionally uniform oveR.



Definition 2.3 (PoissorS-graph): The PoissoniS-graphis aniS-graph wherdl,, Il C R?
are mutually independent, homogeneous Poisson point ggesewith densities\, and A,
respectively.

In the remainder of the paper (unless otherwise indicated)focus on PoissoiS-graphs on
R2.

[1l. PERCOLATION IN THE POISSON¢S-GRAPH

Percolation theory studies the behaviour of the connectedponents in random graphs.
Typically, a continuum percolation model consists of anarhydng point process defined on the
infinite plane, and a rule that describes how connectionesteblished between the nodes [38]. A
main property of all percolation models is that they exhagithase transitioras some continuous
parameter is varied. If this parameter is the densitf nodes, then the phase transition occurs
at somecritical density A\.. When A < )., denoted as thsubcritical phaseall the clusters
are a.s. boundegtlWhen A > )., denoted as theupercritical phasgthe graph exhibits a.s. an
unbounded cluster of nodes, or in other words, the grgroolates

Percolation theory plays an important role in the study afnaetivity in multi-hop wireless
networks, where the formation of an infinite component of nemted nodes is desirable for
communication over arbitrarily long distances. In theratere, percolation—and therefore long-
range communication—was shown to occur in the following eisdall of them driven by a

Poisson point process:

1) Boolean model]34], where two nodes are directly conmedtetheir distance is smaller
than a fixed radius. This can be used to model unsecured communication sulgjeat t
minimum received signal-to-noise ratio (SNR), in the alogeof fading.

2) Random connection modeél [35], where each pair of nodeseastty connected with some
probability p(r) depending only on their distaneg and independently of every other pair.
This can be used to model unsecured communication in themeesof fading, subject to
a minimum received SNR.

3) SINR model([37], where two nodes are directly connectetiéf SINR exceeds the same

threshold at both ends. This can be used to model unsecunaghaoication subject to a

8We say that an event occurs “almost surely” (a.s.) if its phility is equal to one.
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minimum received SINR, in the absence of fading.
4) Nearest neighbour model [36], where each node connedts Anearest neighbours. This
can be used to model unsecured communication in a centtatizevork where a power

control scheme ensures connectivity to fheearest nodes only.

In this section, we focus on th&-graph model, and show that long-range communication with
information-theoretic security is feasible in the presemd eavesdroppers. The mathematical
characterization of theéS-graph presents two challenges: i) unlike the models 1-4ebihe
1S-graph is a directed graph, which leads to the studgi@icted percolationand ii) similarly to
models 3 and 4, théS-graph exhibits dependencies between the state of diffexdges, which
leads to the study aflependent percolation

In what follows, we start by introducing some definitionserihpresent and prove the main
theorem concerning percolation in the-graph, and lastly illustrate the percolation phenomenon
with various simulation results. The study of full conneitsi in the :S-graph over a finite domain

(as opposed to percolation in the infinite plane) is also @frast, and is considered in Section V.

A. Definitions

Graphs: As before, we usez = {II;,,£} to denote the (directed)S-graph with vertex
set II, and edge set given irL](4). In addition, we define two undickaeaphs: theweak
iS-graph Gveak = {11, £veak} | where

gweak — {m : Ks(x“l’j) > Q\/ Ks(l'jyxi) > Q}a
and thestrongiS-graph G=*°*¢ = {II,, £*"*"¢}, where
gstrong _ {m . Ks(xi7xj) > 0N K‘g(ﬁj,l’i) > Q}.

The graphG™e2k represents the links where secumidirectional communication is possible
with an MSR greater than. The graphG®°"¢, on the other hand, represents the links where
securebidirectional communication is possible with an MSR greater thamhe various types
of iS-graphs are illustrated in Fig] 2.

Graph ComponentsWhile the notion of “component” is unambiguous in undirectgaphs,
some subtleties arise in directed graphs. Specifically,nthteon of component is not clear in

a directed graph, because even if nadean reachy through a sequence of directed edges,



11

that does not imply thay can reachz. We can, however, generalize the notion of component
associated with undirected graphs by defining 4 differeaplyrcomponents for th&-graph.

In what follows, we use the notaticmiy to represent a path from nodeto nodey in a
directed graphG, andz <~y to represent a path between nad@nd nodey in an undirected
graphG*. Let the out-componenfC°*(z) of nodex be the set of nodes which can be reached
from nodex in the iS-graphaG, i.e.,

KO (z) 2 {y € I, : Fz >y} (9)
Similarly, let thein-componentC™™ of nodex be the set of nodes from which nodecan be
reached in theéS-graphdG, i.e.,
K™(z) £ {y eI, : 3y} (10)
Let the weak componenk*#(z) be the set of nodes which are connected to nede the
weak iS-graphG™eak, i.e.,
weak

KCveak(z) &2 {y € 11, : 2= y}. (11)

Let the strong componenks™"¢(z) be the set of nodes which are connected to nodie the

strongiS-graph G, i.e.,

Kone (1) & {y € T1, : F2 2% g (12)

From these definitions, it is clear that for a given real@mawf 11, andIl, the following properties

hold for anyz:
Kstrong(x) g ICOUt(l') g chak(x)’ (13)
Kstrong(x) g lCin(l') g Kweak(x)’ (14)

These properties are illustrated in @c).

°In the literature, the weak and strong components of nodee sometimes defined differently as
KY™(z) £ {y e :32 Sy vIySa} = K%) UK (2),

and
KCOrE (1) & {y € 11 - Eccgy A Hyg:c} = K" (z) N lCi"(x).

In this paper, we prefer the definitions [1111) ahdl(12), sitfiey only depend on the respective undirected graptfé* and
G=t*°*¢ and do not require explicit knowledge 6f. As we shall see, this choice will simplify many of the detivas, namely

by allowing us to translate an analysis difectedgraphs into one ofindirectedgraphs.
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Percolation Probabilities: To study the percolation in théS-graph, it is useful to define
percolation probabilities associated with the four grapmponents. Such probabilities depend
on the MSR threshold, and the node densities and \.. Specifically, letpe®, p, preak and

pitrone respectively be the probabilities that the in, out, weakl sinong components containing

nodex = 0 have an infinite number of nodes, i.€.,
P (e, Ae, 0) £ P{|IK°(0)] = oo},

whereo € {out in, weak strong} Our goal is to study the properties and behavior of these

percolation probabilities.

B. Main Result

We now investigate the percolation phenomenon in d8egraph. Specifically, we aim to
determine if percolation in th&S-graph is possible, and if so, for which combinations of egst
parameterg\,, \e, 0) does it occur. The result is given by the following main tresor

Theorem 3.1 (Phase Transition in t&-Graph): For any )\ > 0 and p satisfying

P-qg(0
0<o< Qmaxé 10g2 (1 + 0_92( )) ) (15)

there exist critical densities2"*, \ir, \veak| \strons satisfying

0 < AVeak < \oub < \Strong (16)
0 < Aveak < \ino < pstrong o (17)
such that
pe, =0, for A\, < A, (18)
pe, >0, for A\, > A\, (19)

for any o € {out in,weak strong. Conversely, ifo > omax thenpS, = 0 for any Ay, Ae.

To prove the theorem, we introduce the following three lemma

\We condition on the event that a legitimate node is located -at0. According to Slivnyak’s theoreni [49, Sec. 4.4], apart
from the given point atz = 0, the probabilistic structure of the conditioned proceswléntical to that of the original process.
Except where otherwise indicated, in the rest of the papeuseethe symbob to represent the out, in, weak, or strong

component.
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Lemma 3.1:For any) > 0 andp satisfying [Ib), there exists ar> 0 such thap®°<()\,) = 0
for all A\, < e.

Proof: Due to its length, the proof is postponed to Secfion 1II-C. ]

Lemma 3.2:For any\e > 0 andp satisfying [Ib), there exists@< oo such thapstrors(\,) >
0 for all A\, > C.

Proof: Due to its length, the proof is postponed to SecfionII-D. O

Lemma 3.3:For any)\, > 0 andp > 0, the percolation probability?_(\,) is a non-decreasing
function of \,.

Proof: See AppendiXCA. O

With these lemmas we are now in condition to prove Thedrem 3.1

Proof of Theoreni_3]1We first show that ifo > omax thenp?, = 0. The MSRR; of a
link :ﬁ; given in [8), is upper bounded by the channel capagityf a link with zero length,
i.e., Rs(wi, ;) < R (2, 2;) = log, <1 + PULQ(O)) If the thresholdp is set such thab > omax
the condition®(x;, z;) > o in (@) for the existence of the edge_x; is never satisfied by
any x;, z;. Thus, theiS-graph G has no edges and cannot percolate. We now consider the
case of0 < ¢ < omax From properties[(13) and_(14), we hapgrone < pout < preak gand
pstrons. < pin - < pweak Then, Lemma$_311,-3.2, ald B.3 imply that each curyé)\,) departs
from the zero value at some critical density, as expressed by (18) and [19). Furthermore,
these critical densities are nontrivial in the sense that \{ < oo. The ordering of critical
densities in[(16) and (17) follows from similar coupling angents. O]

We now present some remarks on Theofem 3.1. The theorem shatveach of the four
components of théS-graph experiences a phase transition at some criticalitgens These
critical densities areontrivial, in the sense thal < A\ < co. As we increase the density,
of legitimate nodes, the componefit°<(0) percolates first, thefC°(0) or £™(0), and finally
KCstone(0). Furthermore, percolation can occur for any prescribednimfin secrecy rate, as
long as it is below the channel capacity of a link with zeroglin i.e., omax. This has different
implications depending on the type of path loss model, asgmted in Sectiop [[-A:

. If g(0) = oo, percolation can occur for any arbitrarily large secreayuieementy, as long

as the density\, of legitimate nodes is made large enough.
« If g(0) < oo, percolation cannot occur if the threshelds set abovemax = log, (1 + SNR - ¢(0)),

whereSNR £ 0%. To ensure percolation for sugh the signal-to-noise-ratiSNR must be
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increased untibmax(SNR) decreases below the desirgdAt that point, the density, can
then be increased to achieve percolation.
Note that the theorem holds for any channel gain functjon satisfying Conditions 1-3 in
Section[I[=4, including bounded and unbounded models. €oring the density\. of eaves-
droppers, the theorem says that as longwas omax, percolation can occur even in scenarios
with arbitrarily dense eavesdroppers. This can be achigystdby deploying more legitimate
nodes, so thad, is large enough.

Operationally, the theorem is important because it shoatddimg-range secure communication
over multiple hops is still feasible, even in the presencarbitrarily dense eavesdroppers. In
particular, if we limit communication to the secure links age MSR exceeds (chosen such
that o < omax), then for A, large enough, a component with an infinite nhumber of securely
connected nodes arises. Those nodes are able to communitatgrong secrecy (in the sense
of Definition[2.1), at a rate greater tharbits per complex channel use. The specific type of the
secure connection (e.g., unidirectional or bidirectiprEpends on the graph component under

consideration: out, in, weak, or strong component.

C. Proof of Lemm&3l1

In this section, we introduce a few definitions and proposgj which are then used to prove
the lemma. Note that the grajgi™**(p) depends om, and it is sufficient to show thai™**(p)
for the case ofp = 0 does not percolate for sufficiently smal}. This is because for larger
the connectivity ofG¥e2k(p) is worse and thug*¥ (o) certainly does not percolate either. We
then proceed in two intermediate steps. First, we map theére@mus:S-graphG onto a discrete
hexagonal latticeC;,, and declare a face ig;, to be closed in such a way that the absence of
face percolation inC;, implies the absence of continuum percolatiorGie®*. Second, we show
that discrete face percolation does not occuinfor sufficiently small (but nonzero),. The
details are presented next.

1) Mapping on a Lattice:We start with some definitions. Let,, be an hexagonal lattice as
depicted in Fig[ B, where each face is a regular hexagon wdih Iengths. Each face has a
state which can be eitheopenor closed A set of faces (e.g., a path or a circuit) 4l is said
to be open iff all the faces that form the set are open. We ndimelevhen a face i€losed

based on how the processids andIle behave inside that face.
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Definition 3.1 (Closed Face iff,,): A face H in £, is said to beclosediff all the following
conditions are met:

1) Each of the 6 equilateral triangldg;}%_, that compose the hexagdi has at least one

eavesdropper.

2) The hexagorH is free of legitimate nodes.

The above definition was chosen such that discrete face lpgomoin £, can be tied to
continuum percolation ir;****, as given by the following proposition.

Proposition 3.1 (Circuit Coupling)If there exists a closed circuit irf;, surrounding the
origin, then the componer™°**(0) is finite.

Proof: Assume there is a closed circditin £, surrounding the origin, as depicted in Hig. 4.
This implies that the open component 4l containing0, denoted byK*"(0), must be finite
Since the area of the regidd: (0) is finite, the continuous grapfi*** has a finite number of
vertices falling inside this region. Thus, to prove thatea«(0) is finite, we just need to show
that no edges of:"*** cross the circuiC. Consider Fig[13, and suppose that the shaded faces
are part of the closed circul. Let 1,2, be two legitimate nodes such thaf falls on an
open face on the inner side 6f while z, falls on the outer side of (note that Definitio 311
specifies that the closed facesdrcannot contain legitimate nodes). Clearly, the most favera
situation forxy, zo being able to establish an edge acr@sis the one depicted in Figl 3. The
edgez;z; exists inG¥k iff either B,, () or B,,(d) are free of eavesdropp@]’his condition
does not hold, since Definitidn_3.1 guarantees that at leasteavesdropper is located inside
the triangle7; C B,,(§) N B,,(5). Thus, no edges of/*#¢ cross the circuiC, which implies
that £?%(0) has finite size. O

2) Discrete Percolation:Having performed an appropriate mapping from a continuoua t
discrete model, we now analyze discrete face percolatiofy,in

Proposition 3.2 (Discrete Percolation ify): If the parameters\,, \e, § satisfy

(1 — 6_)‘9\{562)6 G KIS %, (20)

then the origin is a.s. surrounded by a closed circuifin
Proof: According to Definition[ 3.1, the state of a faé¢ in £, does not depend on the

behaviour of the processék andIl, outside?. Because the processes are Poisson, the state of

2We useB.(p) 2 {y € R? : |y — x| < p} to denote the closed two-dimensional ball centered at paimtith radiusp.
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different faces is then independent. Then, the model intred in Sectioh III-Cl1 can be seen as
a face percolation model on the hexagonal lattige where each face is closed independently

of other faces with probability

p = P{face i of L, is closed

~2{ (Anm = 1) a0}

=1
w32\ 0 ) 3va e
:(1—6)‘845> .€>‘5257 (21)

where we used the independence between the procHssasdIl., and the fact that\{7;} =
Y352 andA{H} = 2352, Face percolation on the hexagonal lattice can be equilypléescribed

as site percolation on the triangular lattice. In particutacall that if
. 1
P{H is open} < 3 (22)

then theopencomponent inC,, containing the origin is a.s. finiteé [50, Ch. 5, Thm. 8], andis®
origin is a.s. surrounded by @osedcircuit in £;,. Combining [21) and (22), we obtaih (20).

We now use the propositions to finalize the proof of Lenima &Herebyp™e:()\,) = 0 for
sufficiently small (but nonzero),.

Proof of Lemma& 3]1For any fixed)\, it is easy to see that conditidn_(20) can always be met
by making the hexagon sidelarge enough, and the density small enough (but nonzero). For
any such choice of parametexs \e, d satisfying [20), the origin is a.s. surrounded by a closed
circuit in £, (by Propositiod 312), and the componé@itea(0) is a.s. finite (by Propositidn3.1),
i.e., preak()\,) = 0. O

[e.e]

D. Proof of Lemma&_3]2

In this section, we introduce a few definitions and proposgj which are then used to prove
the lemma. We proceed in two intermediate steps. First, veecéste with our continuous
iS-graph G a discrete square latticE; as well as its duall, and declare an edge ifi; to
be open in such a way that discrete edge percolatiog’immplies continuum percolation in
Gsm¢, Second, we show that discrete edge percolation occut fior sufficiently large (but

finite) \,. The details are presented next.
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1) Mapping on a Lattice:We start with some definitions. Let, = d - Z*> be a square lattice
with edge lengthd. Let £. be the dual lattice ofZ,, constructed by placing a vertex in the

center of every square df,, and placing an edge across every edge of L,. SinceL, is a

d d
272

square lattice, it is clear thal, = £, + (£, %), as depicted in Fig.]5. We make the origin of the
coordinate system coincide with a vertex&f. Each edge has state which can be eitheopen

or closed We declare an edg€ of £, to be open iff its dual edge in L, is open. Furthermore,
a set of edges (e.g., a path or a circuit)ydnor £ is said to be open iff all the edges that form
the set are open.

We now specify when an edge df, (and therefore off]) is open based on how the
processes$l, andIl. behave in the neighborhood of that edge. Consider[Fig. 6ravhdenotes
an edge in’,, and S;(a) and Sy(a) denote the two squares adjacentatoLet {v;}!_, denote
the four vertices of the rectangl® (a) U Sy(a). We then have the following definition.

Definition 3.2 (Open Edge if,): An edgea in L, is said to beopeniff all the following

conditions are met:

1) Each squard;(a) and S,(a) adjacent ton has at least one legitimate node.
2) The regionZ(a) is free of eavesdroppers, whef(a) is smallest rectangle such that
Ui_1 Bos (Piee) € Z(a) with?

e 247 (200050 - S0 27)) @3)
The above definition was chosen such that discrete edge lggocoin £, can be tied to
continuum percolation irz**°"¢, as given by the following two propositions.
Proposition 3.3 (Two-Square Couplinglf a is an open edge id, then all legitimate nodes
inside S (a) U Sy(a) form a single connected componentGhi™ors,

Proof: If two legitimate nodesr;,z, are to be placed inside the regidh(a) U Sy(a),
the most unfavorable configuration in terms of MSR is the oher& the distancer; — x»| is
maximized, i.e.z;, x5 are on opposite corners of the rectan§l¢a) US:(a) and thugz; —z5| =
V/5d. In such configuration, we see frof (7) that the edge; exists inG iff g(|z; — z;|) >

299(|x; — €*]) + %(29 — 1), wheree* is the eavesdropper closest:tg. This is equivalent to

1370 ensure thatriee in (23) is well-defined, in the rest of the paper we assume thas chosen such that <

29! ("—pz(?" - 1)) :
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requiring that
0.2
o= > g7 (20050 - S - 2)
A
= Tfree,

which is a well-defined quantity if is chosen such that < %g‘l ("—;(29 — 1)). As a result,

the edgerz; exists inGs*° ¢ iff both B,, (rqe) @and B., (re.) are free of eavesdroppers. Now,
if Z(a) is the smallest rectangle containing the regﬂg?ll B, (rtee), Wherev; are the vertices
of Si(a) U Sz(a), then the conditiolle{ Z(a)} = 0 ensures the edgez; exists inG=""¢ for
any z;,z; € Si(a) USs(a), and thus all legitimate nodes insidg(a) U Sz(a) form a single
connected component i@sto"e, ]

Proposition 3.4 (Component Coupling)f the open component i, containing the origin is
infinite, then the componerig=**°"¢(0) is also infinite.

Proof: Consider Fig[l7. LetP = {a,} denote a path of open edgé¢s;} in L£.. By the
definition of dual lattice, the patf? uniquely defines a sequende= {S;} of adjacentsquares
in L, separated by open edgés } (the duals of{a,}). Then, each square i has at least one
legitimate node (by Definition_3.2), and all legitimate nedalling inside the region associated
with S form a single connected component @#*°*¢ (by Propositior 3J3). Now, letC“:(0)
denote the open component Al containing0, i.e., the set of vertexes if. that are connected
to 0 by some path. Because of the argument just presented, we|k&v@)| < |52 (0)).
Thus, if |KC%(0)| = oo, then |5 (0)] = oc. O

2) Discrete Percolation:Having performed an appropriate mapping from a continuoua t
discrete model, we now analyze discrete edge percolatidi.ibet N, be the number of squares
that compose the rectang(a) introduced in Definitio_3]2. We first study the behavior of
paths inL; with the following proposition.

Proposition 3.5 (Geometric Bound)fhe probability that a given path a, with lengthn is
closedis bounded by

PP{path of £, with lengthn is closed < ¢"/"-, (24)
where N, is a finite integer and

g=1—(1— )2, gTreled” (25)
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is the probability that an edge d; is closed.

Proof: Using Definition[3.2, we can write

q = P{edgea of L, is closed

— 1 P{IL{S(a)} > 1 ATL{S:(a)} > 1 ATL{Z(a)} = 0}

-1 (1 _ 6—,\5d2)2 . 6—>\eNsd2

9

where we used the properties of the independent procéksasdIl.. This is the result in[(25).
Now, letting? = {a;}!_, denote a path of with lengthn and edgeqa;}, we wish to obtain
an upper bound of?{P is closed. Considering two edges;, a; € P, the states of these edges

are statistically independent iff

Z(a;) N Z(a;) = 0. (26)

We consider a subse&® of edges inP, constructed in the following way. Start with the first
edgea; € P, whose associated region#a, ), and add it to the subs&. Now, determine the
next edgen;, € P such thatZ(a;) N Z(ax) = 0, and add it to the subs&. Repeat the process
until there are no more edges in p&th By construction, it is easy to see th@tC P, and any

two edges inQ have independent states since they satlsfy (26). Thus,
P{P is closed < P{Q is closed
=q,
where m = #Q. After careful analysis of Figll6, we observe that the regiarZ(a) has
dimensionsV/ x (M + 1) squares, wherd/ = 2 V*T} + 1. Furthermore, starting in edge we

can count at mosd, = 8M? — 1 edges (including: itself) until we reach the next element of

Q. As a result,
n n

> — | > —
n (5]

and the desired upper bound becomes
P{P is closed < ¢"/,

which is the result in[(24). Since,.. in (23) is guaranteed to be finite, théfy and V, are also
finite (although possibly large). O
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We have just shown that, although there is dependence hetiheestate of different edges
of L, the probability of a path of length being closed decays geometrically @g"-. We can
now use a Peierls argument to study the existence of an eftoitnpone

Proposition 3.6 (Discrete Percolation ig!): If the probability ¢ satisfies

Ne
11 —2v/10
_ 27
q < ( o ) , (27)
then
P{open component i, containing0 is infinite} > 0. (28)

Proof: We start with the key observation that the open componenf.ircontaining0
is finite iff there is a closed circuit inl; surrounding0. This is best seen by inspecting
Fig. @, where the origin is surrounded by a necklace of clasdges inL., which block all
possible routes inC, from the origin to infinity. Thus, the inequality in_(P8) is @galent to
P{3 closed circuit inL, surroundingd} < 1. Let p(n) denote the possible number of circuits
of lengthn in £, surrounding) (a deterministic quantity). Let(n) denote the number afosed
circuits of lengthn in £, surrounding0 (a random variable). From combinatorial arguments, it
can be shown [52, (1.17)] that

p(n) < 4n3"2.

Then, for a fixedn,

P{x(n) > 1} < p(n)P{path of L, with lengthn is closed

S 4n3n—2qn/Ne ’

A “Peierls argument”, so-named in honour of Rudolf Peiens &is 1936 article on the Ising modél [51], refers to an

approach based on enumeration. For a simple examplel_sep526-19].
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where we used the union bound and Proposifioh 3.5. Also,

IP{3 closed circuit inL; surrounding0} = P{x(n) > 1 for somen}
<> P{x(n) > 1}
n=1

S i4n3n—2qn/Nc

n=1
1/Ne
s )
for ¢ < (%)N We see that ify satisfies [(27), then(29) is strictly less than one, dnd (28)
follows. ]
We now use the propositions to finalize the proof of Lenima &t&rebypsrore()\,) > 0 for
sufficiently large (but finite)\,.

Proof of Lemmd_3]12For any fixed), it is easy to see the probabilityin (25) can be
made small enough to satisfy conditidn](27), by making thgeelgéngthd sufficiently small,
and the density\, sufficiently large (but finite). For any such choice of paréane),, e, d
satisfying [27), the open component 4f containing0 is infinite with positive probability (by
Proposition[3.6), and the componekit™°*¢(0) is also infinite with positive probability (by

Propositior 3.4), i.epsos()\,) > 0. O

E. Simulation Results

In this section, we obtain additional insights about peatioh in theiS-graph via Monte
Carlo simulation. Specifically, we aim to evaluate the pktton probabilitiesp? as a function
of the density), of legitimate nodes, and thus estimate the corresponditigatrdensities\?.

We now describe the simulation procedure for evaluatingpéecolation probabilities. We
consider a squar® with dimensionsy’A x v/A. The aread is adjusted according td = f—;
where the average numbé¥, of legitimate nodes iR is kept fixed. This ensures that the
simulation time is approximately constant with respecthe parametep,. In the simulations,
we useN, = 5000 nodes and\e = 1 m~2. We first placell,{R} ~ P(\,A) legitimate nodes and
[Ie{R} ~ P(AeA) legitimate nodes insid&, uniformly and independentlyl. The :S-graphG =

We useP(u) to denote a discrete Poisson distribution with mgan
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{Il;, £} is then established using as edge set
2

&= {:Tx; cg(d(zg,x5)) > 2%(d(x, €")) + %(29 —1), € = argmind(z;, ek)}, (30)

ep€lle
where d(-,-) is a toroidal distance metriE[BB][[B@.After the iS-graph is established, we
determine the various componentsdh G2, and G*t*"¢, The percolation probabilities are

then calculated using the result in Appendix B:

E{NO } E{letrgest}
o ) ~ 1

whereo refers to the weak or strong component, angl...., is the size of the largest component

gest
of the weak or strongS-graph restricted to the regioR. The need for the approximation is
the following: since the simulation regioR is finite, it is not possible to determine whether a
nodez in R has an infinite componert®(z) or not. Thus, the number of nodes T’ whose
componentC®(z) is infinite is approximated by the number of nodes belongmghe largest
component insid&, similarly to [34]. A little reflection also shows that theale approximation

is only reasonable for the weak and strong components, ldfbnthe out- and in-components,
and so we consider only the first two. The expectatio_in (81 gomputed over an ensemble of
20 spatial realizations ofl, and Il.

Figure[8 shows the simulated percolation probabilitiesierweak and strong components of
theiS-graph, versus the density of legitimate nodes. It considers the simplest case 6f0, for
which the percolation probabilities depend only on theoréﬁi As predicted by Theorein 3.1,
the weak and strong components experience phase trassdgk is increased. Indeed, the
curvesp? (\,) exhibit a fast increase immediately after the critical digna? is reached. The
reason whyp?_(\,) is not exactly zero for\, < \¢ is the approximation made if_(31): even
though there is no infinite component in such regime, them m®nzero probability that large
finite components arise, and these contribute to a nonz¢rg; .. }. Figure[8 suggests that

Aveak ~ 3.4 m~2 and \stone &~ 6.2 m~2, for the case of\e = 1 m~2 and = 0. Operationally, this

*The use of the Euclidean metrje; — x;| over the finite regioriR would give rise to boundary effects, since legitimate
nodes near the borders would be isolated with higher préityathan the nodes in the middle. The toroidal distance rmoetr
on the other hand, transforms the square reg@omto a torus, and minimizes such boundary effects in the Isitimns. Other

edge correction methods are discussed in [54].

"The proof of this fact is entirely analogous to the proof[cfl,[®roperty 3.1].
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means that if long-range bidirectional secure commurooais desired in a wireless network,
the density of legitimate nodes must be at leasttimes that of the eavesdroppers. In practice,
this ratio must be even larger, because a security requiregreater tharp = 0 is typically
require Furthermore, increasinly, also leads to an increased average fraction of npgjes:
which belong to the infinite component, thus ensuring bettemectivity of the network.

Figure[® illustrates the subcritical and supercritical gggaof theiS-graph. In Fig[9(@), we
havei—i = 2, and theiS-graph exhibits only small, bounded clusters of legitimabeles. This
is in agreement with Fid.]8, which suggests that for a rati@—iof: 2, all four out, in, weak,
and strong components are subcritical. In Fig.]9(b), we r%vse 10, and the:S-graph exhibits
a large cluster of connected nodes. This also agrees witli8Fighich suggests that for a ratio
of ﬁ—i = 10, all four out, in, weak, and strong components are supa&arit

Figure[ID illustrates the dependence of the percolatiobaiitity p?°** on the secrecy rate
thresholdo. As expected, we observe that the critical densjt§?* is increasing with respect to
o. This is because as we increase the thresholthe requiremeniR;(z;, z;) > o for any two
nodesz;, z; to be securely connected becomes stricter. Thus, the ctivibeof the iS-graph
becomes worse and a higher density of legitimate nodes @edef®r percolation.

Figure [I1 illustrates the dependence of the percolatiomaiitity p¥°*c on the wireless
propagation effects, such as lognormal shadowing and R#wyfding. From the curves, we
observe that\"**(lognorma) < A\"**k(Rayleigh < \Y#(deterministig, i.e., the randomness
of the wireless channel—as observed in realistic envirarisseimproveslong-range secure
connectivity, by decreasing the critical density at whi@rgolation occurs. This phenomenon
contrasts with the behavior of local connectivity, wherammel randomnesdoes notchange
the PMF of the out-degred,,; [31]. However, channel randomnedsesaffect the PMF of the
in-degreelV;,, as well as the statistical dependencies between the degfekferent nodes, and

therefore affects the properties of multi-hop conneqtlatFurthermore, we conclude that by

8The critical densities\? (e, o) are non-decreasing functions &f and g, as can be shown using a coupling argument similar
to the proof of Lemm&_3]3.

Note that in the absence of fading, the degrees of differegitinate nodes arstatistically dependentecause different
edges depend on@mmonunderlying proces$l. of eavesdroppers. For example, given that a legitimate modmlated (due
to the proximity of an eavesdropper), then it is also likdiattnearby legitimate nodes will also be isolated. By iniicdg

random fading, such dependence on the underlying eavgseirgpocess is decreased, and multi-hop connectivity isdugal.
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assuming the absence of fading—as we do in the majority sfd@pter to ensure mathematical
tractability—we are in effect considering tmeost pessimistic scenaria terms of long-range

secure connectivity.

V. FuLL CONNECTIVITY IN THE POISSON:S-GRAPH

In the previous sections, we studied percolation inithgraph defined over the infinite plane.
We showed that for some combinations of the paraméters\, o), the regime is supercritical
and an infinite component arises. However, the existencenohfinite component does not
ensure connectivity between any two nodes, e.g., one naitteithe infinite component cannot
communicate with a node outside. In this sense, percolaimures onlypartial connectivity
of the network. In some scenarios, it is of interest to gu@efull connectivity i.e., that all
nodes can communicate with each other, possibly throughiptesthops. Note, however, that
for networks defined over an infinite region, the probabitifyfull connectivity is exactly zero.
Thus, to study of full connectivity, we need to restrict otteation to a finite regiork.

Throughout this section, we consider the simplest case-oef0, i.e., theexistenceof secure
links with a positive (but possibly small) MSR. Because tbégnario is characterized by the
simple geometric description ifl(8), it provides variousigits that are useful in understanding
more complex scenari@lurthermore, the case of= 0 represents thmost favorable scenario
in terms of full connectivity, since a higher security reguanento leads to degraded connectivity.

In what follows, we start by defining full connectivity in thé&-graph. We then characterize
the exact asymptotic behavior of full connectivity in thenii of a large density of legitimate
nodes. Lastly, we derive simple, explicit expressions thasely approximate the probability of
full in- and out-connectivity for a finite density of legitee nodes, and determine the accuracy

of such approximations using simulations.

A. Definitions

Since theiS-graph is a directed graph, we start by distinguishing betwill out- and in-

connectivity with the following definitions.

gpecifically, the case ob = 0 brings the following mathematical simplifications. Firshe iS-graph is completely
independent of channel gain functiaf(r), thus no assumptions about the propagation model are ne&ebnd, there
exist simple (often closed-form) expressions for charaitey local connectivity [[311] which will be useful in analing full

connectivity.
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Definition 4.1 (Full Out-Connectivity)A legitimate noder; € II, "R is fully out-connected
with respect to a regiofR if in the iS-graphG = {I1,, £} there exists a directed path from
to everynodex; € II, N'R, for z; # x,.

Definition 4.2 (Full In-Connectivity):A legitimate nodex; € II, N 'R is fully in-connected
with respect to a regiofR if in the :S-graphG = {II,,£} there exists a directed path 1g
from everynodex; € II, "R, for x; # xi!p

Since theiS-graph is a random graph, we can consider the probabilifies redex; being
fully out- or in-connected. For analysis purposes, we atgrsihat probe legitimate node (nodle
placed at the origin of the coordinate system, ug,,,. = 0 € R. We then defin@y—con and
Pin—con @S the probability that node is, respectively, fully out- and fully in-connected. These
probabilities are a deterministic function of the densitig and )\, and the areal of region’k.

Our goal is to characterizg,;—con and pin_con-

B. Full Connectivity: Asymptotic Regime

In this section, we focus on the asymptotic behavior of ss@annectivity as we increase
the density of legitimate nodes. Specifically, for a fixediosagof areaA and a fixed density
of eavesdroppers, we would like to determine if by incregsin— oo, we can asymptotically
achieve full in- and out-connectivity with probability oaNote that a.s. full connectivity can
only be achievedsymptotically since for any finite\,, the probabilitie®,u;—con @ANAP;n_con are
strictly less than one.

Definition 4.3 (Asymptotic Out-ConnectivityX legitimate noder € 1I,\R is asymptotically
out-connectedvith respect to a regiofk with areaA if limy, . Pout—con = 1, fOr any e > 0
and A > 0.

ZINote that these two definitions imply that that legitimatel@moutsidethe regionR can act as relays between legitimate
nodesinside R. Essentially, we are considering ti§-graph defined on the infinite plane, but are only interestethé full
connectivity of the nodes inside an observation regionin this paper, we will refer to this as th@bservation modelin the
literature, other models for finite networks include: i) tiestriction modelwhere the network graph is strictly limited to a finite
square, with no nodes outside the square (é.gl, [39]), anleitoroidal mode] where the network graph is defined over a torus
(e.g., [40]). The main advantage of the observation andidatanodels is their homogeneity, since they eliminate loauy

effects associated with the restriction model, leading &dhematically more elegant results.

Z\\e say that an event occurs “asymptotically almost suredy&.6.) if its probability approaches oneas— co.
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Definition 4.4 (Asymptotic In-ConnectivityA legitimate noder € I1, N R is asymptotically
in-connectedvith respect to a regioR with areaA if limy, o Pin—con = 1, fOr any Ae > 0 and
A> 0

The following theorem characterizes the asymptotic ourectivity in theiS-graph.

Theorem 4.1 (Asymptotic Out-Connectivitfor the PoissonS-graph with\e > 0 and A >
0, the legitimate node at the origin is asymptotically outicected.

Proof: Without loss of generality, consider that a legitimate nidelaced at the origin, and
let the regionR be a square of siz¢/A x /A containing at the origin. Let us partitioR into
equal subsquares; of size \/log”;;(”) x \/k’g”;;(“), such where:()\,) > 0 is the smallest

number that the total numbc;.lrif‘fZ of subsquares is an integé@rThis partition is depicted
og Ae—e(Ar)

in Fig.[IZ2(@). A subsquare is said to fadl if it contains at least one legitimate node, ardpty
otherwise. The probability that a subsquare is full is e~ '°s+<\) and the probability that

every subsquare ok is full is

AXp
log Ap—e(Ny) ANy
P /\ SZ |S fu” — (1 o 6—10g)\[+6()\[))logAgfe(Ag) ’ (32)
i=1

where we used the fact thHt, is a Poisson process. When we take the limit> oo, it is easy
to see that()\,) — 0 and that[(3R) converges to one. In other words, the descpbetition of
R ensures that every subsqudtewill be full a.a.s.

Next, we analyze the secure connectivity between legiemmaides belonging tadjacent
subsquares oR. Recall FigL6, wheres; andS, denote two adjacent squares. Using an argument
analogous to Sectidn IlI-D1, we know that if tlex 8-subsquare rectangl€(a) in the figure) is
free of eavesdroppers, then all legitimate nodes inSidesS, form a single strong componemit.

Now consider a regiofR,. C R constructed in the following way. For every possible pair of

ZIn our study of asymptotic connectivity, it is irrelevant ether we consider the observational, restriction, or taiomodel.
The reason is that, as we shall see, full connectivity isrd@teed by the behavior of the legitimate nodashe vicinity of the
eavesdroppersTherefore, when we lex, — oo, there exist enough legitimate nodes between the borddreofegionR and
any eavesdropper, so the border effects essentially véeifshie they can affect the vicinity of the eavesdroppersl thaos, full
connectivity).

\We have explicitly indicated the dependenceeadn )., and for simplicity omitted its dependence ¢h(which will be
kept fixed).

ZNote that here we are considering the case ef 0, while the discussion in Secti@n [I-ID1 was valid for norzeras well.
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adjacent subsquarés;, S;) in R, determine whether the associated rectatg)§;, S,) is free
of eavesdroppers. If so, updea®,. such that it now becomeB,. US; U S;. Repeat the process
until there are no more pairs of adjacent subsquares. Wighd#finition, it is possible for large

enough)\, to partition the squar® into two regions as
R = Rsc ) RO;

whereR., = R\R,. is simply the remaining region 6 after R,. is constructed as above. This
partition is shown in Figl. 12(h). By construction, it is edeysee that as, approaches infinity
(or, equivalently, the size of the subsquafes} approaches zero) the following properties hold
a.s.:

1) The regionR, can be decomposed into non-overlapping regionskas—= Ufj; R,
where N, = TI.{R} is the number of eavesdroppers insiie and R CcRis a square
of size7 x 7 subsquares centered at theh eavesdropper ok. If N, =0, thenR, = @.

2) The origin belongs t&R,..

3) There exists a lattice path (i.e., a path composed onlyodkbntal and vertical segments
inside R) between every two subsquaresif., and thus all legitimate nodes insid&,.
form a single strong component.

We thus conclude that the origin is a.a.s. out-connectedl| tiegitimate nodes insidéR.. It
remains to determine whether it is also out-connected ttegilimate nodes insid®.. For that
purpose, we consider the behaviour of tisegraph in the vicinity of then-th eavesdropper of
R, which we denote byzn We know that a node; € II, N R™ will be in-connected iff
the corresponding Voronoi cell induced by the procHss) {z;} has at least another legitimate

node [31]. A little reflection shows that & — oo this Voronoi cell approaches the half-plane
H(zi) £ {y €R®: |y — x| < |y —enl},

as depicted in Figr I2(b). Now, it is easy to see that for everg I, N R{", there is a.a.s.
at least one legitimate node inside the regidz;) N Ry, and thus every such node has
an in-connection from the strong componentRy.. This argument holds similarly for every

region RE"),n =1,...,N,, and so we conclude that the origin is a.a.s. out-connecteall t

| the trivial case of zero eavesdroppersRn the origin is out-connected to all legitimate nodes insitleand the theorem

follows.
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legitimate nodes insid®,., in addition to those irR,.. This is the result of the theorem and the
proof is concluded. O
The following theorem characterizes the asymptotic inremtivity in the:S-graph.
Theorem 4.2 (Asymptotic In-Connectivityjor the PoissonS-graph withAe > 0 and A > 0,
we have that

o6  dea

lim pin—con < 1 (1—e ), (33)

Ao 8 +3v3

i.e., the legitimate node at the origin m®t asymptotically in-connected.

Proof: Consider a regiork with areaA, where a probe legitimate node (nodleis placed
at the origin. Let andI,{R} andIl.{R} denote the number of nodes iy "R andIleNR,
respectively. Consider that the event that there is at leasteavesdropper and one legitimate
node in regiorRk, as depicted in Fig. 13. Leat; denote the distance between a arbitrarily selected
eavesdropper and itsclosestlegitimate noder; € R, i.e., x; = |e — z1|. In addition, letS be
the set of possible locations iR? where a node can connect 19, given thatz; is the closest

legitimate node te, i.e.,
S 2 {x e R?: 21t is possibleA |z —e| > x1}
—{zeR’: |z —z| <xiA|z—e| > xi}
= B, (x1)\Be(x1),

and is shown in Fig_13. We now define the evépte {II.{R} > 1AI[,{R} > 1AL {S} = 0}.
Note that if there are no legitimate nodes ins&glethenz; is out-isolated and the origin isot

fully in-connected, i.e.F; C E,. As a consequence, we have that
P{E,} > P{Es}

or

1 = Pin—con = P{IIe{R} > 1 ATI{R} > 1 AII,{S} = 0},
which can be manipulated as follows

Poeon < 1= P{II{R} > 1 ATL{R} > 1 ATL{S} = 0}

= 1—(1—e*%) - P{II{R} > 1 ATl{S} = 0},
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where we used the fact thH;, andlIl are independent processes. We now take limits,as oo
on both sides while keepinge and A fixed. For the purposes of determinif{II,{R} >
1 ATI{S} = 0}, letting A, — oo with A fixed is equivalent to lettingd — oo with )\, fixed.
In such limiting regime of annfinite areaPoisson process, the evefil,{R} > 1} occurs a.s.,
andlimy_,o P{II,{R} > 1 All,{S} = 0} = P{II,{S} = 0}. Then,

M pincon < 1 — (1 — &) - P{I,{S} = 0}. (34)

)\(—)OO
To determineP{II,{S} = 0}, we use two facts: 1) when conditioned gn, the area ofS is
equal tory? (% + g) and 2) when\, — oo, the boundary effects vanish, and the R¥ y?2

becomes exponentially distributed with rate,. Then,

PIL{S} = 0} = Ey {P{IL{S} = Olx1}}

=E,, {exp (—)mxf (% + 2—\/E>> }

= /000 exp <—)\57TC <% + 2—\/§>> A exp(—mA()d¢
6

T 87+3V3
With this result, [[34) becomes
67
Ao = Sr+3V3
which is the bound in[{33). Thus, the legitimate node at thgimrs not asymptotically in-

111’11 Pin—con <1 (1 - e_AEA)u

connected, and the proof is concluded. O
The theorem has the following intuitive explanation. Cdesi)\, (or A) large enough that

border effects can be ignored. Given that exactly one eavppdr occurs inside regioR, there

is a constant probabilitPP{I,{S} = 0} = %7 _ ~ 0.62 that the legitimate node closest to

87+3V3
the eavesdropper is out-isolated, and this probabilitysdu@ decrease with,. In fact, when

A\¢ increased, the area of decreases in such a way thll,{S} = 0} remains constant. As a
result, regardless of how large is made, there is a constant probability=ef).62 that the nearest
node is out-isolated, and therefore a positive probahiligt the origin isnot in-connected.
Theoremg 4]1 and 4.2 clearly show that increasing the densgiof legitimate nodes is an
effective way to improve the full out-connectivity, in therse that the corresponding probability
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approaches one. However, the probability of full in-coriivly cannotbe made arbitrarily close
to one by increasing,. In essence, full (in or out) connectivity is determined hg behavior
of the legitimate nodes in the vicinity of the eavesdroppérss more likely that a legitimate
node in such vicinity idocally in-connected than out-connected|[31, Property 3.3], wich
reflected in the fact that the origin achieves full out-cartivity a.a.s., but not full in-connectivity.
Operationally, this means a node can a.amsmitsecret messages to all the nodes in a finite
region’R, but cannot a.s.geceivesecret messages from all the nodesiin

Recall that for the study of full connectivity, we considérenly the simplest scenario of
o = 0. Using a coupling argument similar to the proof of Lemma %3s easy to show that
the probabilities pou—con(0) @nd pi_con(0) are decreasing functions ef In other words, the
case ofp = 0 represents of the most favorable scenario in terms of fulheativity.

C. Full Connectivity: Finite Regime

We now attempt to characterize full connectivity for a finitensity of legitimate nodes. We
start with the simple observation that if nodlés fully-out connected, then there are no in-isolated

nodes inR. Then, we immediately obtain an upper bound #Qf; _... as
Pout—con < P{N0 in-isolated nodes iR }. (35)

We would like to express the right-hand side in terms of trddvidual in-isolation probability
determined in[[31, eq. (13)]. In general, this is non-tli&cause the in-isolation events for
different nodes are statistically dependent. For examipleegitimate nodexz, is in-isolated
and noderg is close tox,, then it is most likely thatry is also in-isolated. Full-connectivity
has been previously studied in the case of the Poisson Bootemlel for unsecured wireless
network@ For such scenario, it has been shownl(in| [35], [55], [56] tratle average node
degreer\r?, becomes large, two phenomena are observed: 1) the isot@nts for different
nodes become almost independent; an®@&ull connectivity} ~ P{no isolated nodgs i.e., a
bound analogous td_(B5) becomes tight. These two facts irfyaly for the Poisson Boolean
model, theP{no isolated nodgsis both a simple and accurate analytical approximation for

P{full connectivity}, whentAr2  — oco.

max

2"The Poisson Boolean model is an undirected model where emish can establish wireless links to all nodes within a fixed

connectivity rangermax, but to no other.
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We now investigate under which conditions similar phenomencur in theiS-graph. For

that purpose, we introduce the following definition:

ﬁout—con é ENR{(l - pin—isol)NR}a (36)

where N = II,{R} is the random number of legitimate nodes inside the re@ofexcluding
the probe node at the origin). The quantity,;_... represents the probability that none of the
Nz legitimate nodes are in-isolated, under the approximati@t the in-isolation events are
independentand have the same probabilipy, i, given in [31, eq. (13)]. As we will show
later, this quantity can serve as a good approximation,of ..., with the advantage that it only
depends on local characteristics (the isolation prok#s)i of theiS-graph and is analytically
tractable. This can be shown by rewriting(36) as

_ L (AeA) " exp(—AA)
Pout—con = Z nl

(1 - pin—isol)n

n=0

= [)\ZA(l - pin—isol)]n €xXp (_)\ZA(]- - pin—isol))
n!

= eXp(_)\ZA pin—isol)

n=0
N -

g

=1

= eXp(—)\éA pin—isol)
— exp <—)\gAE {e_ileg}) , 37)

whereA is the (random) area of a typical Voronoi cell induced by a-deinsity Poisson process.
Here, we used the expression fo_i, in [31, eq. (13)].

For the case of full in-connectivity, we can proceed in a clatgby analogous way to write
Pin—con < P{N0 out-isolated nodes iR }, (38)

and

Zﬁ)/in—con é ENR{(l - pout—isol)NR}

= eXp(_)\ZA pout—isol)

)\é)\e
P < N+ Ae) ’ (39)

where we used the expression f@r: i in [31, Eqg. (18)].
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Furthermore, according to [B1, Property 3.3], we know that;.,; < pout—isol fOr Ay > 0 and

Xe > 0, and therefore

Pout—con > Pin—con-

As as result, in the regime whefg,_ .., and poui_con Closely approximate;, _.on and pout—con,
respectively, them,.._..n. Will be typically larger thanp;,_.... Intuitively, it is easierfor an
individual node to bdocally in-connectedhan out-connected, and this fact is reflected in the
global connectivity properties of th&-graph, in the sense that easierfor the origin to be

fully out-connectedreach all nodes) than fully in-connected (be reached byadles).

D. Simulation Results

We resort to Monte Carlo simulations to study full-conneétyiin the :S-graph, and in particu-
lar the accuracy of the approximations introduced in th@iptes section. In our environment, we
define the regiorR = [—5, 5] m x [—5,5] m with areaA = 100 m*. We placell,{R} ~ P(\,A)
legitimate nodes ant.{R} ~ P(\.A) legitimate nodes insid®, uniformly and independently.
The iS-graphG = {I1,, £} is then established using as edge set

&= {CLTSL’; cd(zy, ) < d(xi,e”) e = argrﬁin d(z;, ek)}, (40)

ex€lle

whered(-, -) is a toroidal distance metric, similarly to SectlonTll-Es Mliscussed in Footndiel21,
our definitions of full connectivity imply that legitimateodes outside the observation regi&n
can act as relays to connect other legitimate nodes irf8idehus, an Euclidean metrie; — z;|
over the finite regiomR would again give rise to boundary effects, so we use a tordidegance
metric to minimize such effects in the simulations. Aftee il5-graph is established, we check
whether: (a) there are any (in or out) isolated nodes, andh@hode at the origin is fully (in
or out) connected. Repeating the procedure over an ensarhble 000 spatial realizations of
IT, andIle, we calculate the various probabilities of interest.

Figure[14 considers full out-connectivity, comparing thifferent probabilities as a function
of e and \;:

. the simulated®{no in-isolated nodes iR }, which is an upper bound fgf,._.on @s given
in (35);

« the analyticalp,,;_..n, Whose expression is given in_{37);
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« the simulated probability of full out-connectivity,;_con-

From the plots, we observe that the analytical CUFyE_... approximate®,ui_con SUrprisingly
well for all A\, and )¢, considering the strong approximations associated wjth ... Further-
more, the approximation becomes tight in the extremes smmgere\;A — oo or \eA — 0
(i.e., pout—con =~ 1). This corresponds to a regime of practical interest wheréesirable to
operate the network, in the sense that secure out-conitgetivachieved with probability very
close to one.

Figure[15 is analogous to Fig.]14, but for the case of full amectivity. It compare®{no
out-isolated nodes iR}, pin_con, aNd Pin_con, @S @ function of)\e and \,. We observe the
approximation ofp;,_con BY Din_con DECOMES tight wheneA — 0 (i.€., pin_con =~ 1), but not
when A, A — oo, unlike what happens for full out-connectivity. The dittece in the behavior
Of Pout—con @NAPin_con @SN\, — 00 Was described in Section TV} B.

In general, based on the simulations we conclude that ... and for p;,_..,, are fairly
good approximations for the corresponding probabilitie$ui connectivity, for a wide range
of parameters. The main advantage is that_ ... and for p;,_..,, only depend on théocal
characterization of the network, namely on the isolatioobpbilities, and thus lead to simple
analytical expressions which can be used to infer aboufgtbbal behaviour of the network.
In particular, they are simple enough to be used in firstiodimensioning of the system,
providing the network designer with valuable insights owhg.; o, andp;,_.o. vary with the

parameters\,, A\, and A.

V. CONCLUSION

TheS-graph captures the connections that can be establishedW8R exceeding a thresh-
old o, in a large-scale networks. In [31], we characterizedltival propertiesof the iS-graph,
including the degrees and MSR of a typical node with respedtstneighbours. In this paper,
we build on that work and analyze tligobal propertiesof the :S-graph, namely percolation
on the infinite plane, and connectivity on a finite regionetestingly, some local metrics such
as the isolation probability, although quite simple to deriare able to provide insights into the
more complex phenomena such as global connectivity.

We first characterized percolation of the PoisgShgraph on the infinite plane. We showed

that each of the four components of th&-graph (in, out, weak, and strong) experiences a
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phase transition at some nontrivial critical densifyof legitimate nodes. Operationally, this is
important because it implies that long-range communicatieer multiple hops is still feasible
when a secrecy constraint is present. We proved that pémoolean occur for any prescribed
infimum secrecy rate satisfyingo < gmax = log, (1 + P%@) as long as the density of
legitimate nodes is made large enough. This implies thatufdsounded path loss models,
percolation can occur faany arbitrarily large secrecy requirementwhile for bounded models

the desiredp may be too high to allow percolation. Our results also shoat #s long as

0 < omax,» Percolation can be achieved even in cases where the eapests are arbitrarily

dense, by making the density of legitimate nodes large émoug

Using Monte Carlo simulations, we obtained estimates ferdfitical densities\¢. In the case
of o = 0, for example, we estimated that if the density of eavesdrops larger than roughly
30% that of the legitimate nodes, long-range communicatioméweak:S-graph is completely
disrupted, in the sense that no infinite cluster arises. énsthong:S-graph, we estimated this
fraction to be about6%. For a larger secrecy requiremesitan even more modest fraction of
attackers is enough to disrupt the network.

Besides considering the existence of an unbounded compamenhe infinite plane, we
also analyzed the existence of a fully-connectSedgraph on a finite region. Specifically, we
characterized the asymptotic behavior of secure full cotiviey for a large density), of
legitimate nodes. In particular, we showgd;:_... approaches one as — oo, and therefore
full out-connectivity can be improved as much as desired é&yiaying more legitimate nodes.
Full in-connectivity, however, remains bounded away frone,oregardless of how largk is
made. Operationally, this means a node can as@assmitsecret messages to all the nodes in a
finite regionR, but cannot a.s.seceivesecret messages from all the nodesiin

We derived simple expressions that closely approximate ... and p;,_.., for a finite
density \, of legitimate nodes. The advantage of these approximateessijons is that they
only depend on théocal characterization of the network, namely on the isolatiosbpbilities,
and thus lead to simple analytical expressions which candaeel o infer about thelobal
behaviour of the network. In particular, our expressionswsthat typically pout—con > Pin—cons
i.e., it is easier for a node to be fully out-connected (realtimodes) than fully in-connected (be
reached by all nodes). Our expressions explicitly show thiat fact can be directly explained

in terms of thelocal connectivity it is easier for an individual node to be locally in-conreztt
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than out-connected, and this is reflected in the behaviogtatifal connectivity described above.
Using Monte Carlo simulations, we showed that the approténgxpressions are surprisingly
accurate for a wide range of densitigsand Ae.

We are hopeful that further efforts in combining stochaggometry with information-theoretic

principles will lead to a more comprehensive treatment aotlgss security.

APPENDIX A

PROOF OFLEMMA 3.3

Proof: In what follows, we use a coupling argument. For fixed paranset, and o, we
begin with aniS-graphG (A, ) whose underlying proceds, has density\, .. We then thin this
process by keeping each point Of with probability % where \;; < Ay, such that when
a point is removed, all its in- and out-connections a}e atsuaved. Because of the thinning
property [46, Section 5.1], the resulting process of legitie nodes has density ;, and we
have therefore obtained a valid neW-graphG(\,;), with the same parameterg and o as
before. By construction, the two graplig\,,) and G()\.2) are coupled in such a way that
K5,.(0) € K5, ,(0). As aresult, the everft| 5, | (0) = oo} implies that{ |, ,(0)| = oo}, and
it follows that pS_(Ar1) < pS(Ae2). O

APPENDIX B

ALTERNATIVE INTERPRETATION OF THEPERCOLATION PROBABILITY

We provide an alternative interpretation for the percolatprobabilitypS , which is helpful
to perform simulations of the percolation phenomenon.

Proposition B.1:Let R denote a square with dimensioRéd x /A, and N2, denote the
number of legitimate nodes iR whose component®(z) is infinite, i.e.,

NS 2 #{xcll,NR:|K°(x)] = oo}, (41)

whereo € {out in, weak strong. Then,

E{N2}
° = oof 42
Poo A (42)

Proof: Consider a partition of the squaf into /> subsquares{S;}/;. A subsquare is

said to befull if it contains exactly one legitimate node, aathptyotherwise. Let/; be a RV
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that has value 1 wheS§; is full with some noder for which K£°(z) is infinite, and O otherwise.

Then, we have
E{L} =P{I; =1}
= P{S, full} - P{|KC°(x)| = ool|S; full'}
= ;\\2—1;1exp (—%) P (x)]| = oolS; full}
Defining I, £ Zf‘ﬁ I;, we see thaf,; approachesVS a.s. asM — oo. Thus, we can write
E{NS} = lim E{ly)

= lim M’E{I;}

M—oo

= )\gApZO.

This is the result in[{42), and the proof is complete. O

The proposition suggests an alternative interpretatiantti@ percolation probabilityp?_:
although it was defined as the probability that a given nedas an infinite compone®(z),
it also represents the average fraction of nodes in re@dier which the component’®(z) is

infinite.
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Figure 1.

Symbol Usage
E{-} Expectation operator
P{-} Probability operator
H(X) Entropy of X
Iy = {z:}, e = {e:} Poisson processes of legitimate nodes and eavesdroppe
Ay Ae Spatial densities of legitimate nodes and eavesdroppers
I{R} Number of nodes of proceds in regionR
Nin, Nout In-degree and out-degree of a node
Bz(p) Ball centered at: with radiusp
D(a,b) Annular region between radiusesandb, centered at the origi
A{R} Area of regionR
K (z) Out, in, weak, or strong component of node
P Percolation probability associated with compongiit(0)
AS Critical density associated with componedt (0)
#S Number of elements in the sét
N(p, 0%) Gaussian distribution with megm and variancer?
Table |
NOTATION AND SYMBOLS.
Alice Legitimate channel Bob

hy

A

Wireless wiretap channel.

decoder Sy

s
)

= —(X)
P @t

Eavesdropper channel
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(a) The (directed) graply. (b) The weak graphG™eak, (c) The strong grapl:st=o"s,

Figure 2. Three different types 68-graphs onR?, considering thab = 0 ando? = o2.

open face

closed face

Figure 3. Conditions for a facgl in £, to be closed, according to Definitign B.1: each of the 6 ti@ngn # must have at

least one eavesdropper node each, Ahthust be free of eavesdroppers.
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O open face in £, O closed face in Ly

Figure 4. A finite open component at the origin, surroundedalnjosed circuit.
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Figure 5. The latticeCs = d - Z° and its dualC, = £ + (4, 4). We declare an edge af, to be open iff its dual edge in

L is open.
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Figure 6. Conditions for an edgein L to be open, according to Definitidn 8.2: the squasesand So must have at least
one legitimate node each, and the rectanglenust be free of eavesdroppers. In general, the radius—and therefore the
region Z—increase with the secrecy rate threshpldrhe figure plots the case of= 0.
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Figure 7. A finite open component at the origin, surroundedalmjosed circuit in the dual lattice.
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Figure 9. Percolation in th&S-graph forp = 0. The solid lines represent the edgesdfi***¢, while the dotted lines represent
the edges irG"eak,
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Figure 10.
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(a) Connection probabilities versus the eavesdropperitglehs for various values of\,.
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Figure 14. Full out-connectivity in the Poissaf-graph (A = 100 m?, o = 0).
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