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Abstract

The ability to exchange secret information is critical to many commercial, governmental, and

military networks. Theintrinsically secure communications graph(iS-graph) is a random graph which

describes the connections that can be securely establishedover a large-scale network, by exploiting

the physical properties of the wireless medium. This paper aims to characterize the global properties

of the iS-graph in terms of: (i) percolation on the infinite plane, and(ii) full connectivity on a finite

region. First, for the PoissoniS-graph defined on the infinite plane, the existence of a phase transition

is proven, whereby an unbounded component of connected nodes suddenly arises as the density of

legitimate nodes is increased. This shows that long-range secure communication is still possible in

the presence of eavesdroppers. Second, full connectivity on a finite region of the PoissoniS-graph is

considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate

nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate

the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how

the presence of eavesdroppers can compromise long-range secure communication.

Index Terms

Physical-layer security, wireless networks, stochastic geometry, percolation, connectivity.

I. INTRODUCTION

Contemporary security systems for wireless networks are based on cryptographic primitives

that generally ignore two key factors: (a) the physical properties of the underlying communication

channels, and (b) the spatial configuration of both the legitimate and malicious nodes. These two

factors are important since they affect the propagation channels between the nodes, which in

turn determine the fundamental secrecy potential of a wireless network. In fact, the randomness

introduced both by the physics of the wireless medium and by the spatial location of the nodes

can be leveraged to strengthen the overall security of the communications infrastructure.1

The basis for information-theoretic security, which builds on the notion of perfect secrecy [1],

was laid in [2] and later in [3], [4]. More recently, there hasbeen a renewed interest in

1In the literature, the term “security” typically encompasses 3 different characteristics:secrecy(or privacy), integrity, and

authenticity. This paper does not consider the issues of integrity or authenticity, and the terms “secrecy” and “security” are used

interchangeably.
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information-theoretic security over wireless channels, from the perspective of space-time com-

munications [5], multiple-input multiple-output communications [6]–[10], eavesdropper collu-

sion [11], [12], cooperative relay networks [13], fading channels [14]–[18], strong secrecy [19],

[20], secret key agreement [21]–[25], code design [26]–[28], among other topics. A fundamental

limitation of this literature is that it only considers scenarios with a small number of nodes. To ac-

count for large-scale networks composed of multiple legitimate and eavesdropper nodes,secrecy

graphswere introduced in [29] from a geometrical perspective, andin [30] from an information-

theoretic perspective. The local connectivity of secrecy graphs was extensively characterized in

[31], while the scaling laws of the secrecy capacity were presented in [32], [33].

Percolation theory studies the existence of phase transitions in random graphs, whereby an

infinite cluster of connected nodes suddenly arises as some system parameter is varied. Various

percolation models have been considered in the literature.The Poisson Boolean model was

introduced in [34], which derived the first bounds on the critical density, and started the field of

continuum percolation. The Poisson random connection model was introduced and analyzed in

[35]. The Poisson nearest neighbour model was considered in[36]. The signal-to-interference-

plus-noise ratio (SINR) model was characterized in [37]. A comprehensive study of the various

models and results in continuum percolation can be found in [38].

The connectivity of large but finite networks has also received attention the literature. The

asymptotic behavior of partial connectivity of the PoissonBoolean model restricted to a finite

box was studied in [39]. The asymptotic full connectivity ofthe same model was analyzed in

[40], [41], which obtained the rate of growth of the radius that ensures full connectivity. The

asymptotic full connectivity in finite nearest neighbour networks was considered in [42], [43].

In this paper, we characterize long-range secure connectivity in wireless networks by consid-

ering theintrinsically secure communications graph(iS-graph) as defined in [31]. TheiS-graph

describes the connections that can be established with information-theoretic security over a large-

scale network. We focus on percolation of theiS-graph on the infinite plane, and full connectivity

in a finite region. The main contributions of this paper are asfollows:

• Percolation in theiS-graph: We prove the existence of a phase transition in the Poisson

iS-graph defined on the infinite plane, whereby an unbounded component of connected

nodes suddenly arises as we increase the density of legitimate nodes. In particular, we

determine for which combinations of system parameters doespercolation occur. This shows
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that long-range communication is still possible in a wireless network when a secrecy

constraint is present.

• Full connectivity in theiS-graph: We analyze secure full connectivity on a finite region of

the PoissoniS-graph. We characterize the exact asymptotic behavior of full connectivity in

the limit of a large density of legitimate nodes. Then, we obtain simple, explicit expressions

that closely approximate the probability of full connectivity for a finite density of legitimate

nodes.

This paper is organized as follows. Section II describes thesystem model. Section III character-

izes continuum percolation in the PoissoniS-graph defined over the infinite plane. Section IV

analyzes full connectivity in the PoissoniS-graph restricted to a finite region. Section V con-

cludes the paper and summarizes important findings.

II. SYSTEM MODEL

We start by describing our system model and defining our measures of secrecy. The notation

and symbols used throughout the paper are summarized in Table I.

A. Wireless Propagation Characteristics

In a wireless environment, the received powerPrx(xi, xj) associated with the link−−→xixj can

modeled as

Prx(xi, xj) = Pℓ · g(xi, xj , Zxi,xj
), (1)

wherePℓ is the (common) transmit power of the legitimate nodes; andg(xi, xj , Zxi,xj
) is the

power gain of the link−−→xixj , where the random variable (RV)Zxi,xj
represents the random

propagation effects (such as multipath fading or shadowing) associated with link−−→xixj . The

channel gaing(xi, xj, Zxi,xj
) is considered constant (quasi-static) throughout the use of the

communications channel, corresponding to channels with a large coherence time. The gain

function is assumed to satisfy the following conditions, which are typically observed in practice:

1) g(xi, xj , Zxi,xj
) depends onxi andxj only through the link length|xi − xj |; with abuse

of notation, we can writeg(r, z) , g(xi, xj , z)||xi−xj |→r.

2) g(r, z) is continuous and strictly decreasing inr.

3) limr→∞ g(r, z) = 0.
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The proposed model is general enough to account for common choices ofg. One example is

the unbounded model whereg(r, z) = z
r2b

. The term 1
r2b

accounts for the far-field path loss with

distance, where the amplitude loss exponentb is environment-dependent and can approximately

range from0.8 (e.g., hallways inside buildings) to4 (e.g., dense urban environments), withb = 1

corresponding to free space propagation. This model is analytically convenient [44], but since

the gain becomes unbounded as the distance approaches zero,it must be used with care for

extremely dense networks. Another example is the bounded model whereg(r, z) = z
1+r2b

. This

model has the same far-field dependence as the unbounded model, but eliminates the singularity

at the origin. Unfortunately, it often leads to intractableanalytical results. The effect of the

singularity atr = 0 on the performance evaluation of a wireless system is considered in [45].

B. Wireless Information-Theoretic Security

We now define our measure of secrecy more precisely. While ourmain interest is targeted

towards the behavior of large-scale networks, we briefly review the setup for a single legitimate

link with a single eavesdropper. The results therein will serve as basis for the notion ofiS-graph

to be established later.

Consider the model depicted in Fig. 1, where a legitimate user (Alice) wants to send messages

to another user (Bob). Alice encodes a messages, represented by a discrete RV, into a codeword,

represented by the complex random sequence of lengthn, xn = (x(1), . . . , x(n)) ∈ Cn, for

transmission over the channel. Bob observes the output of a discrete-time channel (thelegitimate

channel), which at timei is given by

yℓ(i) = hℓ · x(i) + nℓ(i), 1 ≤ i ≤ n,

wherehℓ ∈ C is the quasi-static amplitude gain of the legitimate channel,2 andnℓ(i) ∼ Nc(0, σ
2
ℓ )

is AWGN with powerσ2
ℓ per complex sample.3 Bob makes a decision̂s on s based on the

output yℓ, incurring in an error probability equal toP{ŝℓ 6= s}. A third party (Eve) is also

2The amplitude gainhℓ can be related to the power gain in (1) asg(rℓ, Zℓ) = |hℓ|
2, whererℓ andZℓ are, respectively, the

length and random propagation effects of the legitimate link.

3We useNc(0, σ
2) to denote a circularly symmetric (CS) complex Gaussian distribution, where the real and imaginary parts

are IID N (0, σ2/2).
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capable of eavesdropping on Alice’s transmissions. Eve observes the output of a discrete-time

channel (theeavesdropper’s channel), which at timei is given by

ye(i) = he · x(i) + ne(i), 1 ≤ i ≤ n,

where he ∈ C is the quasi-static amplitude gain of the eavesdropper channel, andne(i) ∼
Nc(0, σ

2
e) is AWGN with powerσ2

e per complex sample. It is assumed that the signalsx, hℓ,

he, nℓ, andne are mutually independent. Each codeword transmitted by Alice is subject to the

average power constraint ofPℓ per complex symbol, i.e.,

1

n

n∑

i=1

E{|x(i)|2} ≤ Pℓ. (2)

We define the rate of transmission as

R ,
H(s)

n
,

whereH(·) denotes the entropy function.

Throughout the paper, we usestrong secrecyas the condition for information-theoretic security,

and define it as follows [19].

Definition 2.1 (Strong Secrecy):The rateR ∗ is said to beachievable with strong secrecyif

∀ǫ > 0, for sufficiently largen, there exists an encoder-decoder pair with rateR satisfying the

following conditions:

R ≥ R ∗ − ǫ,

H(s|yne ) ≥ H(s)− ǫ,

P{ŝℓ 6= s} ≤ ǫ.

We define themaximum secrecy rate(MSR)R s of the legitimate channel to be the maximum

rateR ∗ that is achievable with strong secrecy.4 If the legitimate link operates at a rate below

the MSRR s, there exists an encoder-decoder pair such that the eavesdropper is unable to obtain

additional information abouts from the observationyne , in the sense thatH(s|yne ) approaches

4See [20] for a comparison between the concepts of weak and strong secrecy. In the case of Gaussian noise, the MSR isthe

sameunder the weak and strong secrecy conditions.



7

H(s) as the codeword lengthn grows. It was shown in [4], [17] that for a given realization of

the channel gainshℓ, he, the MSR of the Gaussian wiretap channel is

R s(xi, xj) =

[
log2

(
1 +

Pℓ · |hℓ|2
σ2
ℓ

)
− log2

(
1 +

Pℓ · |he|2
σ2

e

)]+
, (3)

in bits per complex dimension, where[x] = max{x, 0}.5 In the next sections, we use these basic

results to analyze secrecy in large-scale networks.

C. iS-Graph

Consider a wireless network where the legitimate nodes and the potential eavesdroppers are

randomly scattered in space, according to some point processes. TheiS-graph is a convenient

representation of the information-theoretically secure links that can be established on such

network. In the following, we introduce a precise definitionof the iS-graph, based on the notion

of strong secrecy.

Definition 2.2 (iS-Graph [31]): Let Πℓ = {xi}∞i=1 ⊂ Rd denote the set of legitimate nodes,

andΠe = {ei}∞i=1 ⊂ R
d denote the set of eavesdroppers. TheiS-graph is the directed graphG =

{Πℓ, E} with vertex setΠℓ and edge set

E = {−−→xixj : R s(xi, xj) > ̺}, (4)

where̺ is a threshold representing the prescribed infimum secrecy rate for each communication

link; andR s(xi, xj) is the MSR, for a given realization of the channel gains, of the link between

the transmitterxi and the receiverxj , given by

R s(xi, xj) =

[
log2

(
1 +

Prx(xi, xj)

σ2
ℓ

)
− log2

(
1 +

Prx(xi, e
∗)

σ2
e

)]+
, (5)

with

e∗ = argmax
ek∈Πe

Prx(xi, ek). (6)

This definition presupposes that the eavesdroppers are not allowed tocollude(i.e., they cannot

exchange or combine information), and therefore only the eavesdropper with the strongest

5Operationally, the MSRR s can be achieved if Alice first estimateshℓ andhe (i.e., has full CSI), and then uses a code that

achieves MSR in the AWGN channel. Estimation ofhe is possible, for instance, when Eve is another active user inthe wireless

network, so that Alice can estimate the eavesdropper’s channel during Eve’s transmissions. As we shall see, theiS-graph model

presented in this paper relies on an outage formulation, andtherefore doesnot require assumptions concerning availability of

full CSI.
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received signal fromxi determines the MSR betweenxi and xj . The effect of eavesdropper

collusion on the local connectivity of theiS-graph is analyzed in [31].

The iS-graph admits an outage interpretation, in the sense that legitimate nodes set a target

secrecy rate̺ at which they transmit without knowing the channel state information (CSI) of

the legitimate nodes and eavesdroppers. In this context, anedge between two nodes signifies

that the corresponding channel is not in secrecy outage.

In the remainder of the paper, we consider the case where the following conditions hold:

(a) the wireless environment introduces only path loss, i.e., Zxi,xj
= 1 in (1); and (b) the noise

powers of the legitimate users and eavesdroppers are equal,i.e., σ2
ℓ = σ2

e = σ2. In such case,

we can combine (1), (4), and (5) to obtain the following edge set6

E =
{−−→xixj : g(|xi − xj |) > 2̺g(|xi − e∗|) + σ2

P
(2̺ − 1), e∗ = argmin

ek∈Πe

|xi − ek|
}
, (7)

wheree∗ denotes the eavesdropper closest to the transmitterxi. The particular case of̺ = 0

corresponds to considering theexistenceof secure links, in the sense that an edge−−→xixj is present

iff R s(xi, xj) > 0. Thus, a positive (but possibly small) rate exists at whichxi can transmit to

xj with information-theoretic security. In this case, the edge set in (7) simplifies to

E =
{−−→xixj : |xi − xj | < |xi − e∗|, e∗ = argmin

ek∈Πe

|xi − ek|
}
, (8)

which corresponds to the geometrical model proposed in [29]. Fig. 2(a) shows an example of

such aniS-graph onR2.

The spatial location of the legitimate and eavesdropper nodes can be modeled either determin-

istically or stochastically. In many important scenarios,only a statistical description of the node

positions is available, and thus a stochastic spatial modelis more suitable. In particular, when

the node positions are unknown to the network designer a priori, we may as well treat them

as completely random according to a homogeneous Poisson point process [46].7 The Poisson

process has maximum entropy among all homogeneous processes [47], and serves as a simple

and useful model for the position of nodes in a network [44], [48].

6For notational simplicity, whenZ = 1, we omit the second argument of the functiong(r, z) and simply useg(r).

7The spatial Poisson process is a natural choice in such situation because, given that a node is inside a regionR, the PDF of

its position is conditionally uniform overR.
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Definition 2.3 (PoissoniS-graph): The PoissoniS-graph is an iS-graph whereΠℓ,Πe ⊂ R
d

are mutually independent, homogeneous Poisson point processes with densitiesλℓ and λe,

respectively.

In the remainder of the paper (unless otherwise indicated),we focus on PoissoniS-graphs on

R2.

III. PERCOLATION IN THE POISSON iS-GRAPH

Percolation theory studies the behaviour of the connected components in random graphs.

Typically, a continuum percolation model consists of an underlying point process defined on the

infinite plane, and a rule that describes how connections areestablished between the nodes [38]. A

main property of all percolation models is that they exhibita phase transitionas some continuous

parameter is varied. If this parameter is the densityλ of nodes, then the phase transition occurs

at somecritical densityλc. When λ < λc, denoted as thesubcritical phase, all the clusters

are a.s. bounded.8 Whenλ > λc, denoted as thesupercritical phase, the graph exhibits a.s. an

unbounded cluster of nodes, or in other words, the graphpercolates.

Percolation theory plays an important role in the study of connectivity in multi-hop wireless

networks, where the formation of an infinite component of connected nodes is desirable for

communication over arbitrarily long distances. In the literature, percolation—and therefore long-

range communication—was shown to occur in the following models, all of them driven by a

Poisson point process:

1) Boolean model [34], where two nodes are directly connected iff their distance is smaller

than a fixed radiusr. This can be used to model unsecured communication subject to a

minimum received signal-to-noise ratio (SNR), in the absence of fading.

2) Random connection model [35], where each pair of nodes is directly connected with some

probabilityp(r) depending only on their distancer, and independently of every other pair.

This can be used to model unsecured communication in the presence of fading, subject to

a minimum received SNR.

3) SINR model [37], where two nodes are directly connected ifthe SINR exceeds the same

threshold at both ends. This can be used to model unsecured communication subject to a

8We say that an event occurs “almost surely” (a.s.) if its probability is equal to one.
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minimum received SINR, in the absence of fading.

4) Nearest neighbour model [36], where each node connects toits k nearest neighbours. This

can be used to model unsecured communication in a centralized network where a power

control scheme ensures connectivity to thek nearest nodes only.

In this section, we focus on theiS-graph model, and show that long-range communication with

information-theoretic security is feasible in the presence of eavesdroppers. The mathematical

characterization of theiS-graph presents two challenges: i) unlike the models 1–4 above, the

iS-graph is a directed graph, which leads to the study ofdirected percolation; and ii) similarly to

models 3 and 4, theiS-graph exhibits dependencies between the state of different edges, which

leads to the study ofdependent percolation.

In what follows, we start by introducing some definitions, then present and prove the main

theorem concerning percolation in theiS-graph, and lastly illustrate the percolation phenomenon

with various simulation results. The study of full connectivity in the iS-graph over a finite domain

(as opposed to percolation in the infinite plane) is also of interest, and is considered in Section IV.

A. Definitions

Graphs: As before, we useG = {Πℓ, E} to denote the (directed)iS-graph with vertex

set Πℓ and edge set given in (4). In addition, we define two undirected graphs: theweak

iS-graphGweak = {Πℓ, Eweak} , where

Eweak = {xixj : R s(xi, xj) > ̺ ∨ R s(xj , xi) > ̺},

and thestrong iS-graphGstrong = {Πℓ, E strong}, where

E strong = {xixj : R s(xi, xj) > ̺ ∧ R s(xj , xi) > ̺}.

The graphGweak represents the links where secureunidirectional communication is possible

with an MSR greater than̺. The graphGstrong, on the other hand, represents the links where

securebidirectional communication is possible with an MSR greater than̺. The various types

of iS-graphs are illustrated in Fig. 2.

Graph Components:While the notion of “component” is unambiguous in undirected graphs,

some subtleties arise in directed graphs. Specifically, thenotion of component is not clear in

a directed graph, because even if nodex can reachy through a sequence of directed edges,
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that does not imply thaty can reachx. We can, however, generalize the notion of component

associated with undirected graphs by defining 4 different graph components for theiS-graph.

In what follows, we use the notationx
G→ y to represent a path from nodex to nodey in a

directed graphG, andx G∗
— y to represent a path between nodex and nodey in an undirected

graphG∗. Let theout-componentKout(x) of nodex be the set of nodes which can be reached

from nodex in the iS-graphG, i.e.,

Kout(x) , {y ∈ Πℓ : ∃ x
G→ y}. (9)

Similarly, let the in-componentKin of nodex be the set of nodes from which nodex can be

reached in theiS-graphG, i.e.,

Kin(x) , {y ∈ Πℓ : ∃ y
G→ x}. (10)

Let the weak componentKweak(x) be the set of nodes which are connected to nodex in the

weak iS-graphGweak, i.e.,

Kweak(x) , {y ∈ Πℓ : ∃ x Gweak

— y}. (11)

Let thestrong componentKstrong(x) be the set of nodes which are connected to nodex in the

strongiS-graphGstrong, i.e.,

Kstrong(x) , {y ∈ Πℓ : ∃ x Gstrong

— y}. (12)

From these definitions, it is clear that for a given realization ofΠℓ andΠe the following properties

hold for anyx:

Kstrong(x) ⊆ Kout(x) ⊆ Kweak(x), (13)

Kstrong(x) ⊆ Kin(x) ⊆ Kweak(x), (14)

These properties are illustrated in Fig. 9(c).9

9In the literature, the weak and strong components of nodex are sometimes defined differently as

Kweak(x) , {y ∈ Π : ∃x
G

→ y ∨ ∃ y
G

→ x} = Kout(x) ∪ Kin(x),

and

Kstrong(x) , {y ∈ Π : ∃ x
G

→ y ∧ ∃ y
G

→ x} = Kout(x) ∩ Kin(x).

In this paper, we prefer the definitions in (11) and (12), since they only depend on the respective undirected graphsGweak and

Gstrong, and do not require explicit knowledge ofG. As we shall see, this choice will simplify many of the derivations, namely

by allowing us to translate an analysis ofdirectedgraphs into one ofundirectedgraphs.
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Percolation Probabilities: To study the percolation in theiS-graph, it is useful to define

percolation probabilities associated with the four graph components. Such probabilities depend

on the MSR threshold̺, and the node densitiesλℓ andλe. Specifically, letpout∞ , pin∞, pweak∞ , and

pstrong∞ respectively be the probabilities that the in, out, weak, and strong components containing

nodex = 0 have an infinite number of nodes, i.e.,10

p⋄∞(λℓ, λe, ̺) , P{|K⋄(0)| = ∞},

where⋄ ∈ {out, in,weak, strong}.11 Our goal is to study the properties and behavior of these

percolation probabilities.

B. Main Result

We now investigate the percolation phenomenon in theiS-graph. Specifically, we aim to

determine if percolation in theiS-graph is possible, and if so, for which combinations of system

parameters(λℓ, λe, ̺) does it occur. The result is given by the following main theorem.

Theorem 3.1 (Phase Transition in theiS-Graph): For anyλe > 0 and̺ satisfying

0 ≤ ̺ < ̺max , log2

(
1 +

P · g(0)
σ2

)
, (15)

there exist critical densitiesλout
c , λin

c , λweak
c , λstrong

c satisfying

0 < λweak
c ≤ λout

c ≤ λstrong
c < ∞ (16)

0 < λweak
c ≤ λin

c ≤ λstrong
c < ∞ (17)

such that

p⋄∞ = 0, for λℓ < λ⋄
c, (18)

p⋄∞ > 0, for λℓ > λ⋄
c, (19)

for any ⋄ ∈ {out, in,weak, strong}. Conversely, if̺ > ̺max, thenp⋄∞ = 0 for any λℓ, λe.

To prove the theorem, we introduce the following three lemmas.

10We condition on the event that a legitimate node is located atx = 0. According to Slivnyak’s theorem [49, Sec. 4.4], apart

from the given point atx = 0, the probabilistic structure of the conditioned process isidentical to that of the original process.

11Except where otherwise indicated, in the rest of the paper weuse the symbol⋄ to represent the out, in, weak, or strong

component.



13

Lemma 3.1:For anyλe > 0 and̺ satisfying (15), there exists anǫ > 0 such thatpweak∞ (λℓ) = 0

for all λℓ < ǫ.

Proof: Due to its length, the proof is postponed to Section III-C.

Lemma 3.2:For anyλe > 0 and̺ satisfying (15), there exists aζ < ∞ such thatpstrong∞ (λℓ) >

0 for all λℓ > ζ .

Proof: Due to its length, the proof is postponed to Section III-D.

Lemma 3.3:For anyλe > 0 and̺ ≥ 0, the percolation probabilityp⋄∞(λℓ) is a non-decreasing

function of λℓ.

Proof: See Appendix A.

With these lemmas we are now in condition to prove Theorem 3.1.

Proof of Theorem 3.1:We first show that if̺ > ̺max, then p⋄∞ = 0. The MSRR s of a

link −−→xixj , given in (5), is upper bounded by the channel capacityR of a link with zero length,

i.e., R s(xi, xj) ≤ R (xi, xi) = log2

(
1 + P ·g(0)

σ2

)
. If the threshold̺ is set such that̺ > ̺max,

the conditionR s(xi, xj) > ̺ in (4) for the existence of the edge−−→xixj is never satisfied by

any xi, xj . Thus, theiS-graphG has no edges and cannot percolate. We now consider the

case of0 ≤ ̺ < ̺max. From properties (13) and (14), we havepstrong∞ ≤ pout∞ ≤ pweak∞ and

pstrong∞ ≤ pin∞ ≤ pweak∞ . Then, Lemmas 3.1, 3.2, and 3.3 imply that each curvep⋄∞(λℓ) departs

from the zero value at some critical densityλ⋄
c, as expressed by (18) and (19). Furthermore,

these critical densities are nontrivial in the sense that0 < λ⋄
c < ∞. The ordering of critical

densities in (16) and (17) follows from similar coupling arguments.

We now present some remarks on Theorem 3.1. The theorem showsthat each of the four

components of theiS-graph experiences a phase transition at some critical density λ⋄
c. These

critical densities arenontrivial, in the sense that0 < λ⋄
c < ∞. As we increase the densityλℓ

of legitimate nodes, the componentKweak(0) percolates first, thenKout(0) or Kin(0), and finally

Kstrong(0). Furthermore, percolation can occur for any prescribed infimum secrecy rate̺ , as

long as it is below the channel capacity of a link with zero length, i.e.,̺max. This has different

implications depending on the type of path loss model, as presented in Section II-A:

• If g(0) = ∞, percolation can occur for any arbitrarily large secrecy requirement̺ , as long

as the densityλℓ of legitimate nodes is made large enough.

• If g(0) < ∞, percolation cannot occur if the threshold̺ is set above̺max = log2 (1 + SNR · g(0)),
whereSNR , P

σ2 . To ensure percolation for such̺, the signal-to-noise-ratioSNR must be
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increased until̺ max(SNR) decreases below the desired̺. At that point, the densityλℓ can

then be increased to achieve percolation.

Note that the theorem holds for any channel gain functiong(r) satisfying Conditions 1–3 in

Section II-A, including bounded and unbounded models. Concerning the densityλe of eaves-

droppers, the theorem says that as long as̺ < ̺max, percolation can occur even in scenarios

with arbitrarily dense eavesdroppers. This can be achievedjust by deploying more legitimate

nodes, so thatλℓ is large enough.

Operationally, the theorem is important because it shows that long-range secure communication

over multiple hops is still feasible, even in the presence ofarbitrarily dense eavesdroppers. In

particular, if we limit communication to the secure links whose MSR exceeds̺ (chosen such

that ̺ < ̺max), then for λℓ large enough, a component with an infinite number of securely-

connected nodes arises. Those nodes are able to communicatewith strong secrecy (in the sense

of Definition 2.1), at a rate greater than̺ bits per complex channel use. The specific type of the

secure connection (e.g., unidirectional or bidirectional) depends on the graph component under

consideration: out, in, weak, or strong component.

C. Proof of Lemma 3.1

In this section, we introduce a few definitions and propositions, which are then used to prove

the lemma. Note that the graphGweak(̺) depends on̺ , and it is sufficient to show thatGweak(̺)

for the case of̺ = 0 does not percolate for sufficiently smallλℓ. This is because for larger̺

the connectivity ofGweak(̺) is worse and thusGweak(̺) certainly does not percolate either. We

then proceed in two intermediate steps. First, we map the continuousiS-graphG onto a discrete

hexagonal latticeLh, and declare a face inLh to be closed in such a way that the absence of

face percolation inLh implies the absence of continuum percolation inGweak. Second, we show

that discrete face percolation does not occur inLh for sufficiently small (but nonzero)λℓ. The

details are presented next.

1) Mapping on a Lattice:We start with some definitions. LetLh be an hexagonal lattice as

depicted in Fig. 3, where each face is a regular hexagon with side lengthδ. Each face has a

state, which can be eitheropenor closed. A set of faces (e.g., a path or a circuit) inLh is said

to be open iff all the faces that form the set are open. We now define when a face isclosed

based on how the processesΠℓ andΠe behave inside that face.
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Definition 3.1 (Closed Face inLh): A faceH in Lh is said to beclosediff all the following

conditions are met:

1) Each of the 6 equilateral triangles{Ti}6i=1 that compose the hexagonH has at least one

eavesdropper.

2) The hexagonH is free of legitimate nodes.

The above definition was chosen such that discrete face percolation in Lh can be tied to

continuum percolation inGweak, as given by the following proposition.

Proposition 3.1 (Circuit Coupling):If there exists a closed circuit inLh surrounding the

origin, then the componentKweak(0) is finite.

Proof: Assume there is a closed circuitC in Lh surrounding the origin, as depicted in Fig. 4.

This implies that the open component inLh containing0, denoted byKLh(0), must be finite.

Since the area of the regionKLh(0) is finite, the continuous graphGweak has a finite number of

vertices falling inside this region. Thus, to prove thatKweak(0) is finite, we just need to show

that no edges ofGweak cross the circuitC. Consider Fig. 3, and suppose that the shaded faces

are part of the closed circuitC. Let x1, x2 be two legitimate nodes such thatx1 falls on an

open face on the inner side ofC, while x2 falls on the outer side ofC (note that Definition 3.1

specifies that the closed faces inC cannot contain legitimate nodes). Clearly, the most favorable

situation forx1, x2 being able to establish an edge acrossC is the one depicted in Fig. 3. The

edgex1x2 exists inGweak iff either Bx1(δ) or Bx2(δ) are free of eavesdroppers.12 This condition

does not hold, since Definition 3.1 guarantees that at least one eavesdropper is located inside

the triangleTi ⊂ Bx1(δ) ∩ Bx2(δ). Thus, no edges ofGweak cross the circuitC, which implies

thatKweak(0) has finite size.

2) Discrete Percolation:Having performed an appropriate mapping from a continuous to a

discrete model, we now analyze discrete face percolation inLh.

Proposition 3.2 (Discrete Percolation inLh): If the parametersλℓ, λe, δ satisfy
(
1− e−λe

√
3
4
δ2
)6

· e−λℓ
3
√

3
2

δ2 >
1

2
, (20)

then the origin is a.s. surrounded by a closed circuit inLh.

Proof: According to Definition 3.1, the state of a faceH in Lh does not depend on the

behaviour of the processesΠℓ andΠe outsideH. Because the processes are Poisson, the state of

12We useBx(ρ) , {y ∈ R
2 : |y − x| ≤ ρ} to denote the closed two-dimensional ball centered at pointx, with radiusρ.
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different faces is then independent. Then, the model introduced in Section III-C1 can be seen as

a face percolation model on the hexagonal latticeLh, where each face is closed independently

of other faces with probability

p , P{faceH of Lh is closed}

= P

{(
6∧

i=1

Πe{Ti} ≥ 1

)
∧Πℓ{H} = 0

}

=
(
1− e−λe

√
3

4
δ2
)6

· e−λℓ
3
√

3
2

δ2 , (21)

where we used the independence between the processesΠℓ andΠe, and the fact thatA{Ti} =
√
3
4
δ2 andA{H} = 3

√
3

2
δ2. Face percolation on the hexagonal lattice can be equivalently described

as site percolation on the triangular lattice. In particular, recall that if

P{H is open} <
1

2
, (22)

then theopencomponent inLh containing the origin is a.s. finite [50, Ch. 5, Thm. 8], and sothe

origin is a.s. surrounded by aclosedcircuit in Lh. Combining (21) and (22), we obtain (20).

We now use the propositions to finalize the proof of Lemma 3.1,wherebypweak∞ (λℓ) = 0 for

sufficiently small (but nonzero)λℓ.

Proof of Lemma 3.1:For any fixedλe, it is easy to see that condition (20) can always be met

by making the hexagon sideδ large enough, and the densityλℓ small enough (but nonzero). For

any such choice of parametersλℓ, λe, δ satisfying (20), the origin is a.s. surrounded by a closed

circuit in Lh (by Proposition 3.2), and the componentKweak(0) is a.s. finite (by Proposition 3.1),

i.e., pweak∞ (λℓ) = 0.

D. Proof of Lemma 3.2

In this section, we introduce a few definitions and propositions, which are then used to prove

the lemma. We proceed in two intermediate steps. First, we associate with our continuous

iS-graphG a discrete square latticeLs as well as its dualL′
s, and declare an edge inLs to

be open in such a way that discrete edge percolation inL′
s implies continuum percolation in

Gstrong. Second, we show that discrete edge percolation occurs inL′
s for sufficiently large (but

finite) λℓ. The details are presented next.
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1) Mapping on a Lattice:We start with some definitions. LetLs , d ·Z2 be a square lattice

with edge lengthd. Let L′
s be the dual lattice ofLs, constructed by placing a vertex in the

center of every square ofLs, and placing an edgea′ across every edgea of Ls. SinceLs is a

square lattice, it is clear thatL′
s = Ls +

(
d
2
, d
2

)
, as depicted in Fig. 5. We make the origin of the

coordinate system coincide with a vertex ofL′
s. Each edge has astate, which can be eitheropen

or closed. We declare an edgea′ of L′
s to be open iff its dual edgea in Ls is open. Furthermore,

a set of edges (e.g., a path or a circuit) inLs or L′
s is said to be open iff all the edges that form

the set are open.

We now specify when an edge ofLs (and therefore ofL′
s) is open based on how the

processesΠℓ andΠe behave in the neighborhood of that edge. Consider Fig. 6, where a denotes

an edge inLs, andS1(a) andS2(a) denote the two squares adjacent toa. Let {vi}4i=1 denote

the four vertices of the rectangleS1(a) ∪ S2(a). We then have the following definition.

Definition 3.2 (Open Edge inLs): An edgea in Ls is said to beopen iff all the following

conditions are met:

1) Each squareS1(a) andS2(a) adjacent toa has at least one legitimate node.

2) The regionZ(a) is free of eavesdroppers, whereZ(a) is smallest rectangle such that
⋃4

i=1 Bvi(rfree) ⊂ Z(a) with13

rfree , g−1

(
2−̺g(

√
5d)− σ2

P
(1− 2−̺)

)
. (23)

The above definition was chosen such that discrete edge percolation in L′
s can be tied to

continuum percolation inGstrong, as given by the following two propositions.

Proposition 3.3 (Two-Square Coupling):If a is an open edge inLs, then all legitimate nodes

insideS1(a) ∪ S2(a) form a single connected component inGstrong.

Proof: If two legitimate nodesx1, x2 are to be placed inside the regionS1(a) ∪ S2(a),

the most unfavorable configuration in terms of MSR is the one where the distance|x1 − x2| is

maximized, i.e.,x1, x2 are on opposite corners of the rectangleS1(a)∪S2(a) and thus|x1−x2| =√
5d. In such configuration, we see from (7) that the edge−−→x1x2 exists inG iff g(|xi − xj |) >

2̺g(|xi − e∗|) + σ2

P
(2̺ − 1), wheree∗ is the eavesdropper closest tox1. This is equivalent to

13To ensure thatrfree in (23) is well-defined, in the rest of the paper we assume thatd is chosen such thatd <

1√
5
g−1

(

σ2

P
(2̺ − 1)

)

.
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requiring that

|x1 − e∗| > g−1

(
2−̺g(

√
5d)− σ2

P
(1− 2−̺)

)

, rfree,

which is a well-defined quantity ifd is chosen such thatd < 1√
5
g−1

(
σ2

P
(2̺ − 1)

)
. As a result,

the edgex1x2 exists inGstrong iff both Bx1(rfree) andBx2(rfree) are free of eavesdroppers. Now,

if Z(a) is the smallest rectangle containing the region
⋃4

i=1 Bvi(rfree), wherevi are the vertices

of S1(a) ∪ S2(a), then the conditionΠe{Z(a)} = 0 ensures the edgexixj exists inGstrong for

any xi, xj ∈ S1(a) ∪ S2(a), and thus all legitimate nodes insideS1(a) ∪ S2(a) form a single

connected component inGstrong.

Proposition 3.4 (Component Coupling):If the open component inL′
s containing the origin is

infinite, then the componentKstrong(0) is also infinite.

Proof: Consider Fig. 7. LetP = {a′i} denote a path of open edges{a′i} in L′
s. By the

definition of dual lattice, the pathP uniquely defines a sequenceS = {Si} of adjacentsquares

in Ls, separated by open edges{ai} (the duals of{a′i}). Then, each square inS has at least one

legitimate node (by Definition 3.2), and all legitimate nodes falling inside the region associated

with S form a single connected component inGstrong (by Proposition 3.3). Now, letKL′
s(0)

denote the open component inL′
s containing0, i.e., the set of vertexes inL′

s that are connected

to 0 by some path. Because of the argument just presented, we have|KL′
s(0)| ≤ |Kstrong(0)|.

Thus, if |KL′
s(0)| = ∞, then |Kstrong(0)| = ∞.

2) Discrete Percolation:Having performed an appropriate mapping from a continuous to a

discrete model, we now analyze discrete edge percolation inL′
s. LetNs be the number of squares

that compose the rectangleZ(a) introduced in Definition 3.2. We first study the behavior of

paths inLs with the following proposition.

Proposition 3.5 (Geometric Bound):The probability that a given path ofLs with lengthn is

closedis bounded by

P{path ofLs with lengthn is closed} ≤ qn/Ne , (24)

whereNe is a finite integer and

q = 1− (1− e−λℓd
2

)2 · e−λeNsd2 (25)
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is the probability that an edge ofLs is closed.

Proof: Using Definition 3.2, we can write

q , P{edgea of Ls is closed}

= 1− P{Πℓ{S1(a)} ≥ 1 ∧ Πℓ{S2(a)} ≥ 1 ∧ Πe{Z(a)} = 0}

= 1− (1− e−λℓd
2

)2 · e−λeNsd2 ,

where we used the properties of the independent processesΠℓ andΠe. This is the result in (25).

Now, lettingP = {ai}ni=1 denote a path ofLs with lengthn and edges{ai}, we wish to obtain

an upper bound onP{P is closed}. Considering two edgesai, aj ∈ P, the states of these edges

are statistically independent iff

Z(ai) ∩ Z(aj) = ∅. (26)

We consider a subsetQ of edges inP, constructed in the following way. Start with the first

edgea1 ∈ P, whose associated region isZ(a1), and add it to the subsetQ. Now, determine the

next edgeak ∈ P such thatZ(a1) ∩Z(ak) = ∅, and add it to the subsetQ. Repeat the process

until there are no more edges in pathP. By construction, it is easy to see thatQ ⊆ P, and any

two edges inQ have independent states since they satisfy (26). Thus,

P{P is closed} ≤ P{Q is closed}

= qm,

where m = #Q. After careful analysis of Fig. 6, we observe that the rectangle Z(a) has

dimensionsM × (M +1) squares, whereM = 2
⌈
rfree
d

⌉
+1. Furthermore, starting in edgea, we

can count at mostNe = 8M2 − 1 edges (includinga itself) until we reach the next element of

Q. As a result,

m ≥
⌈
n

Ne

⌉
≥ n

Ne

,

and the desired upper bound becomes

P{P is closed} ≤ qn/Ne ,

which is the result in (24). Sincerfree in (23) is guaranteed to be finite, thenNs andNe are also

finite (although possibly large).
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We have just shown that, although there is dependence between the state of different edges

of Ls, the probability of a path of lengthn being closed decays geometrically asqn/Ne . We can

now use a Peierls argument to study the existence of an infinite component.14

Proposition 3.6 (Discrete Percolation inL′
s): If the probabilityq satisfies

q <

(
11− 2

√
10

27

)Ne

, (27)

then

P{open component inL′
s containing0 is infinite} > 0. (28)

Proof: We start with the key observation that the open component inL′
s containing0

is finite iff there is a closed circuit inLs surrounding0. This is best seen by inspecting

Fig. 7, where the origin is surrounded by a necklace of closededges inL′
s, which block all

possible routes inLs from the origin to infinity. Thus, the inequality in (28) is equivalent to

P{∃ closed circuit inLs surrounding0} < 1. Let ρ(n) denote the possible number of circuits

of lengthn in Ls surrounding0 (a deterministic quantity). Letκ(n) denote the number ofclosed

circuits of lengthn in Ls surrounding0 (a random variable). From combinatorial arguments, it

can be shown [52, (1.17)] that

ρ(n) ≤ 4n3n−2.

Then, for a fixedn,

P{κ(n) ≥ 1} ≤ ρ(n)P{path ofLs with lengthn is closed}

≤ 4n3n−2qn/Ne,

14A “Peierls argument”, so-named in honour of Rudolf Peierls and his 1936 article on the Ising model [51], refers to an

approach based on enumeration. For a simple example, see [52, pp. 16–19].
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where we used the union bound and Proposition 3.5. Also,

P{∃ closed circuit inLs surrounding0} = P{κ(n) ≥ 1 for somen}

≤
∞∑

n=1

P{κ(n) ≥ 1}

≤
∞∑

n=1

4n3n−2qn/Ne

=
4q1/Ne

3(1− 3q1/Ne)2
, (29)

for q <
(
1
3

)Ne . We see that ifq satisfies (27), then (29) is strictly less than one, and (28)

follows.

We now use the propositions to finalize the proof of Lemma 3.2,wherebypstrong∞ (λℓ) > 0 for

sufficiently large (but finite)λℓ.

Proof of Lemma 3.2:For any fixedλe, it is easy to see the probabilityq in (25) can be

made small enough to satisfy condition (27), by making the edge lengthd sufficiently small,

and the densityλℓ sufficiently large (but finite). For any such choice of parameters λℓ, λe, d

satisfying (27), the open component inL′
s containing0 is infinite with positive probability (by

Proposition 3.6), and the componentKstrong(0) is also infinite with positive probability (by

Proposition 3.4), i.e.,pstrong∞ (λℓ) > 0.

E. Simulation Results

In this section, we obtain additional insights about percolation in the iS-graph via Monte

Carlo simulation. Specifically, we aim to evaluate the percolation probabilitiesp⋄∞ as a function

of the densityλℓ of legitimate nodes, and thus estimate the corresponding critical densitiesλ⋄
c.

We now describe the simulation procedure for evaluating thepercolation probabilities. We

consider a squareR with dimensions
√
A×

√
A. The areaA is adjusted according toA = Nℓ

λℓ
,

where the average numberNℓ of legitimate nodes inR is kept fixed. This ensures that the

simulation time is approximately constant with respect to the parameterλℓ. In the simulations,

we useNℓ = 5000 nodes andλe = 1m−2. We first placeΠℓ{R} ∼ P(λℓA) legitimate nodes and

Πe{R} ∼ P(λeA) legitimate nodes insideR, uniformly and independently.15 The iS-graphG =

15We useP(µ) to denote a discrete Poisson distribution with meanµ.
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{Πℓ, E} is then established using as edge set

E =
{−−→xixj : g(d(xi, xj)) > 2̺g(d(xi, e

∗)) +
σ2

P
(2̺ − 1), e∗ = argmin

ek∈Πe

d(xi, ek)
}
, (30)

where d(·, ·) is a toroidal distance metric [53], [54].16 After the iS-graph is established, we

determine the various components inG, Gweak, andGstrong. The percolation probabilities are

then calculated using the result in Appendix B:

p⋄∞ =
E{N⋄

∞}
λℓA

≈ E{N⋄
largest}
λℓA

, (31)

where⋄ refers to the weak or strong component, andN⋄
largest is the size of the largest component

of the weak or strongiS-graph restricted to the regionR. The need for the approximation is

the following: since the simulation regionR is finite, it is not possible to determine whether a

nodex in R has an infinite componentK⋄(x) or not. Thus, the number of nodes inR whose

componentK⋄(x) is infinite is approximated by the number of nodes belonging to the largest

component insideR, similarly to [34]. A little reflection also shows that the above approximation

is only reasonable for the weak and strong components, but not for the out- and in-components,

and so we consider only the first two. The expectation in (31) is computed over an ensemble of

20 spatial realizations ofΠℓ andΠe.

Figure 8 shows the simulated percolation probabilities forthe weak and strong components of

theiS-graph, versus the densityλℓ of legitimate nodes. It considers the simplest case of̺ = 0, for

which the percolation probabilities depend only on the ratio λℓ

λe
.17 As predicted by Theorem 3.1,

the weak and strong components experience phase transitions asλℓ is increased. Indeed, the

curvesp⋄∞(λℓ) exhibit a fast increase immediately after the critical density λ⋄
c is reached. The

reason whyp⋄∞(λℓ) is not exactly zero forλℓ < λ⋄
c is the approximation made in (31): even

though there is no infinite component in such regime, there isa nonzero probability that large

finite components arise, and these contribute to a nonzeroE{N⋄
largest}. Figure 8 suggests that

λweak
c ≈ 3.4m−2 andλstrong

c ≈ 6.2m−2, for the case ofλe = 1m−2 and̺ = 0. Operationally, this

16The use of the Euclidean metric|xi − xj | over the finite regionR would give rise to boundary effects, since legitimate

nodes near the borders would be isolated with higher probability than the nodes in the middle. The toroidal distance metric,

on the other hand, transforms the square regionR into a torus, and minimizes such boundary effects in the simulations. Other

edge correction methods are discussed in [54].

17The proof of this fact is entirely analogous to the proof of [31, Property 3.1].



23

means that if long-range bidirectional secure communication is desired in a wireless network,

the density of legitimate nodes must be at least6.2 times that of the eavesdroppers. In practice,

this ratio must be even larger, because a security requirement greater than̺ = 0 is typically

required.18 Furthermore, increasingλℓ also leads to an increased average fraction of nodespstrong∞

which belong to the infinite component, thus ensuring betterconnectivity of the network.

Figure 9 illustrates the subcritical and supercritical phases of theiS-graph. In Fig. 9(a), we

have λℓ

λe
= 2, and theiS-graph exhibits only small, bounded clusters of legitimatenodes. This

is in agreement with Fig. 8, which suggests that for a ratio ofλℓ

λe
= 2, all four out, in, weak,

and strong components are subcritical. In Fig. 9(b), we haveλℓ

λe
= 10, and theiS-graph exhibits

a large cluster of connected nodes. This also agrees with Fig. 8, which suggests that for a ratio

of λℓ

λe
= 10, all four out, in, weak, and strong components are supercritical.

Figure 10 illustrates the dependence of the percolation probability pweak∞ on the secrecy rate

threshold̺. As expected, we observe that the critical densityλweak
c is increasing with respect to

̺. This is because as we increase the threshold̺, the requirementR s(xi, xj) > ̺ for any two

nodesxi, xj to be securely connected becomes stricter. Thus, the connectivity of the iS-graph

becomes worse and a higher density of legitimate nodes is needed for percolation.

Figure 11 illustrates the dependence of the percolation probability pweak∞ on the wireless

propagation effects, such as lognormal shadowing and Rayleigh fading. From the curves, we

observe thatλweak
c (lognormal) < λweak

c (Rayleigh) < λweak
c (deterministic), i.e., the randomness

of the wireless channel—as observed in realistic environments—improves long-range secure

connectivity, by decreasing the critical density at which percolation occurs. This phenomenon

contrasts with the behavior of local connectivity, where channel randomnessdoes notchange

the PMF of the out-degreeNout [31]. However, channel randomnessdoesaffect the PMF of the

in-degreeNin, as well as the statistical dependencies between the degrees of different nodes, and

therefore affects the properties of multi-hop connectivity.19 Furthermore, we conclude that by

18The critical densitiesλ⋄
c(λe, ̺) are non-decreasing functions ofλe and̺, as can be shown using a coupling argument similar

to the proof of Lemma 3.3.

19Note that in the absence of fading, the degrees of different legitimate nodes arestatistically dependent, because different

edges depend on acommonunderlying processΠe of eavesdroppers. For example, given that a legitimate nodeis isolated (due

to the proximity of an eavesdropper), then it is also likely that nearby legitimate nodes will also be isolated. By introducing

random fading, such dependence on the underlying eavesdropper process is decreased, and multi-hop connectivity is improved.
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assuming the absence of fading—as we do in the majority of this chapter to ensure mathematical

tractability—we are in effect considering themost pessimistic scenarioin terms of long-range

secure connectivity.

IV. FULL CONNECTIVITY IN THE POISSON iS-GRAPH

In the previous sections, we studied percolation in theiS-graph defined over the infinite plane.

We showed that for some combinations of the parameters(λℓ, λe, ̺), the regime is supercritical

and an infinite component arises. However, the existence of an infinite component does not

ensure connectivity between any two nodes, e.g., one node inside the infinite component cannot

communicate with a node outside. In this sense, percolationensures onlypartial connectivity

of the network. In some scenarios, it is of interest to guarantee full connectivity, i.e., that all

nodes can communicate with each other, possibly through multiple hops. Note, however, that

for networks defined over an infinite region, the probabilityof full connectivity is exactly zero.

Thus, to study of full connectivity, we need to restrict our attention to a finite regionR.

Throughout this section, we consider the simplest case of̺ = 0, i.e., theexistenceof secure

links with a positive (but possibly small) MSR. Because thisscenario is characterized by the

simple geometric description in (8), it provides various insights that are useful in understanding

more complex scenarios.20 Furthermore, the case of̺ = 0 represents themost favorable scenario

in terms of full connectivity, since a higher security requirement̺ leads to degraded connectivity.

In what follows, we start by defining full connectivity in theiS-graph. We then characterize

the exact asymptotic behavior of full connectivity in the limit of a large density of legitimate

nodes. Lastly, we derive simple, explicit expressions thatclosely approximate the probability of

full in- and out-connectivity for a finite density of legitimate nodes, and determine the accuracy

of such approximations using simulations.

A. Definitions

Since theiS-graph is a directed graph, we start by distinguishing between full out- and in-

connectivity with the following definitions.

20Specifically, the case of̺ = 0 brings the following mathematical simplifications. First,the iS-graph is completely

independent of channel gain functiong(r), thus no assumptions about the propagation model are needed. Second, there

exist simple (often closed-form) expressions for characterizing local connectivity [31] which will be useful in analyzing full

connectivity.
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Definition 4.1 (Full Out-Connectivity):A legitimate nodexi ∈ Πℓ ∩R is fully out-connected

with respect to a regionR if in the iS-graphG = {Πℓ, E} there exists a directed path fromxi

to everynodexj ∈ Πℓ ∩ R, for xj 6= xi.

Definition 4.2 (Full In-Connectivity):A legitimate nodexi ∈ Πℓ ∩ R is fully in-connected

with respect to a regionR if in the iS-graphG = {Πℓ, E} there exists a directed path toxi

from everynodexj ∈ Πℓ ∩ R, for xj 6= xi.21

Since theiS-graph is a random graph, we can consider the probabilities of a nodexi being

fully out- or in-connected. For analysis purposes, we consider that probe legitimate node (node0)

placed at the origin of the coordinate system, i.e.,xprobe = 0 ∈ R. We then definepout−con and

pin−con as the probability that node0 is, respectively, fully out- and fully in-connected. These

probabilities are a deterministic function of the densities λℓ andλe, and the areaA of regionR.

Our goal is to characterizepout−con andpin−con.

B. Full Connectivity: Asymptotic Regime

In this section, we focus on the asymptotic behavior of secure connectivity as we increase

the density of legitimate nodes. Specifically, for a fixed region of areaA and a fixed densityλe

of eavesdroppers, we would like to determine if by increasing λℓ → ∞, we can asymptotically

achieve full in- and out-connectivity with probability one.22 Note that a.s. full connectivity can

only be achievedasymptotically, since for any finiteλℓ, the probabilitiespout−con andpin−con are

strictly less than one.

Definition 4.3 (Asymptotic Out-Connectivity):A legitimate nodex ∈ Πℓ∩R is asymptotically

out-connectedwith respect to a regionR with areaA if limλℓ→∞ pout−con = 1, for anyλe > 0

andA > 0.

21Note that these two definitions imply that that legitimate nodesoutsidethe regionR can act as relays between legitimate

nodesinsideR. Essentially, we are considering theiS-graph defined on the infinite plane, but are only interested in the full

connectivity of the nodes inside an observation regionR. In this paper, we will refer to this as theobservation model. In the

literature, other models for finite networks include: i) therestriction model, where the network graph is strictly limited to a finite

square, with no nodes outside the square (e.g., [39]), and ii) the toroidal model, where the network graph is defined over a torus

(e.g., [40]). The main advantage of the observation and toroidal models is their homogeneity, since they eliminate boundary

effects associated with the restriction model, leading to mathematically more elegant results.

22We say that an event occurs “asymptotically almost surely” (a.a.s.) if its probability approaches one asλℓ → ∞.
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Definition 4.4 (Asymptotic In-Connectivity):A legitimate nodex ∈ Πℓ ∩R is asymptotically

in-connectedwith respect to a regionR with areaA if limλℓ→∞ pin−con = 1, for anyλe > 0 and

A > 0.23

The following theorem characterizes the asymptotic out-connectivity in theiS-graph.

Theorem 4.1 (Asymptotic Out-Connectivity):For the PoissoniS-graph withλe > 0 andA >

0, the legitimate node at the origin is asymptotically out-connected.

Proof: Without loss of generality, consider that a legitimate nodeis placed at the origin, and

let the regionR be a square of size
√
A×

√
A containing at the origin. Let us partitionR into

equal subsquaresSi of size
√

log λℓ−ǫ(λℓ)
λℓ

×
√

logλℓ−ǫ(λℓ)
λℓ

, such whereǫ(λℓ) > 0 is the smallest

number that the total number Aλℓ

log λℓ−ǫ(λℓ)
of subsquares is an integer.24 This partition is depicted

in Fig. 12(a). A subsquare is said to befull if it contains at least one legitimate node, andempty

otherwise. The probability that a subsquare is full is1 − e− log λℓ+ǫ(λℓ), and the probability that

every subsquare ofR is full is

P





Aλℓ
logλℓ−ǫ(λℓ)∧

i=1

Si is full





=
(
1− e− log λℓ+ǫ(λℓ)

) Aλℓ
log λℓ−ǫ(λℓ) , (32)

where we used the fact thatΠℓ is a Poisson process. When we take the limitλℓ → ∞, it is easy

to see thatǫ(λℓ) → 0 and that (32) converges to one. In other words, the describedpartition of

R ensures that every subsquareSi will be full a.a.s.

Next, we analyze the secure connectivity between legitimate nodes belonging toadjacent

subsquares ofR. Recall Fig. 6, whereS1 andS2 denote two adjacent squares. Using an argument

analogous to Section III-D1, we know that if the7×8-subsquare rectangle (Z(a) in the figure) is

free of eavesdroppers, then all legitimate nodes insideS1∪S2 form a single strong component.25

Now consider a regionRsc ⊆ R constructed in the following way. For every possible pair of

23In our study of asymptotic connectivity, it is irrelevant whether we consider the observational, restriction, or toroidal model.

The reason is that, as we shall see, full connectivity is determined by the behavior of the legitimate nodesin the vicinity of the

eavesdroppers. Therefore, when we letλℓ → ∞, there exist enough legitimate nodes between the border of the regionR and

any eavesdropper, so the border effects essentially vanishbefore they can affect the vicinity of the eavesdroppers (and thus, full

connectivity).

24We have explicitly indicated the dependence ofǫ on λℓ, and for simplicity omitted its dependence onA (which will be

kept fixed).

25Note that here we are considering the case of̺ = 0, while the discussion in Section III-D1 was valid for nonzero ̺ as well.
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adjacent subsquares(Si,Sj) in R, determine whether the associated rectangleZ(Si,Sj) is free

of eavesdroppers. If so, updateRsc such that it now becomesRsc ∪Si ∪ Sj . Repeat the process

until there are no more pairs of adjacent subsquares. With this definition, it is possible for large

enoughλℓ to partition the squareR into two regions as

R = Rsc ∪ Re,

whereRe = R\Rsc is simply the remaining region ofR afterRsc is constructed as above. This

partition is shown in Fig. 12(a). By construction, it is easyto see that asλℓ approaches infinity

(or, equivalently, the size of the subsquares{Si} approaches zero) the following properties hold

a.s.:

1) The regionRe can be decomposed into non-overlapping regions asRe =
⋃Ne

n=1R
(n)
e ,

whereNe , Πe{R} is the number of eavesdroppers insideR, andR(n)
e ⊂ R is a square

of size7× 7 subsquares centered at then-th eavesdropper ofR. If Ne = 0, thenRe = ⊘.

2) The origin belongs toRsc.

3) There exists a lattice path (i.e., a path composed only of horizontal and vertical segments

insideR) between every two subsquares ofRsc, and thus all legitimate nodes insideRsc

form a single strong component.

We thus conclude that the origin is a.a.s. out-connected to all legitimate nodes insideRsc. It

remains to determine whether it is also out-connected to alllegitimate nodes insideRe. For that

purpose, we consider the behaviour of theiS-graph in the vicinity of then-th eavesdropper of

R, which we denote byen.26 We know that a nodexi ∈ Πℓ ∩ R(n)
e will be in-connected iff

the corresponding Voronoi cell induced by the processΠe∪ {xi} has at least another legitimate

node [31]. A little reflection shows that asλℓ → ∞ this Voronoi cell approaches the half-plane

H(xi) , {y ∈ R
2 : |y − xi| < |y − en|},

as depicted in Fig. 12(b). Now, it is easy to see that for everyxi ∈ Πℓ ∩ R(n)
e , there is a.a.s.

at least one legitimate node inside the regionH(xi) ∩ Rsc, and thus every such nodexi has

an in-connection from the strong component inRsc. This argument holds similarly for every

region R(n)
e , n = 1, . . . , Ne, and so we conclude that the origin is a.a.s. out-connected to all

26In the trivial case of zero eavesdroppers inR, the origin is out-connected to all legitimate nodes insideR, and the theorem

follows.
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legitimate nodes insideRe, in addition to those inRsc. This is the result of the theorem and the

proof is concluded.

The following theorem characterizes the asymptotic in-connectivity in theiS-graph.

Theorem 4.2 (Asymptotic In-Connectivity):For the PoissoniS-graph withλe > 0 andA > 0,

we have that

lim
λ→∞

pin−con ≤ 1− 6π

8π + 3
√
3
(1− e−λeA), (33)

i.e., the legitimate node at the origin isnot asymptotically in-connected.

Proof: Consider a regionR with areaA, where a probe legitimate node (node0) is placed

at the origin. Let andΠℓ{R} andΠe{R} denote the number of nodes inΠℓ ∩ R andΠe ∩ R,

respectively. Consider that the event that there is at leastone eavesdropper and one legitimate

node in regionR, as depicted in Fig. 13. Letχ1 denote the distance between a arbitrarily selected

eavesdroppere and itsclosestlegitimate nodex1 ∈ R, i.e., χ1 , |e− x1|. In addition, letS be

the set of possible locations inR2 where a node can connect tox1, given thatx1 is the closest

legitimate node toe, i.e.,

S , {x ∈ R
2 : −→x1x is possible∧ |x− e| > χ1}

= {x ∈ R
2 : |x− x1| < χ1 ∧ |x− e| > χ1}

= Bx1(χ1)\Be(χ1),

and is shown in Fig. 13. We now define the eventE3 , {Πe{R} ≥ 1∧Πℓ{R} ≥ 1∧Πℓ{S} = 0}.

Note that if there are no legitimate nodes insideS, thenx1 is out-isolated, and the origin isnot

fully in-connected, i.e.,E3 ⊆ E2. As a consequence, we have that

P{E2} ≥ P{E3}

or

1− pin−con ≥ P{Πe{R} ≥ 1 ∧Πℓ{R} ≥ 1 ∧ Πℓ{S} = 0},

which can be manipulated as follows

pin−con ≤ 1− P{Πe{R} ≥ 1 ∧ Πℓ{R} ≥ 1 ∧Πℓ{S} = 0}

= 1− (1− eλEA) · P{Πℓ{R} ≥ 1 ∧Πℓ{S} = 0},
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where we used the fact thatΠℓ andΠe are independent processes. We now take limits asλℓ → ∞
on both sides while keepingλe and A fixed. For the purposes of determiningP{Πℓ{R} ≥
1 ∧ Πℓ{S} = 0}, letting λℓ → ∞ with A fixed is equivalent to lettingA → ∞ with λℓ fixed.

In such limiting regime of aninfinite areaPoisson process, the event{Πℓ{R} ≥ 1} occurs a.s.,

and limλ→∞ P{Πℓ{R} ≥ 1 ∧Πℓ{S} = 0} = P{Πℓ{S} = 0}. Then,

lim
λℓ→∞

pin−con ≤ 1− (1− eλeA) · P{Πℓ{S} = 0}. (34)

To determineP{Πℓ{S} = 0}, we use two facts: 1) when conditioned onχ1, the area ofS is

equal toπχ2
1

(
1
3
+

√
3

2π

)
; and 2) whenλℓ → ∞, the boundary effects vanish, and the RVζ , χ2

1

becomes exponentially distributed with rateπλℓ. Then,

P{Πℓ{S} = 0} = Eχ1{P{Πℓ{S} = 0|χ1}}

= Eχ1

{
exp

(
−λπχ2

1

(
1

3
+

√
3

2π

))}

=

∫ ∞

0

exp

(
−λℓπζ

(
1

3
+

√
3

2π

))
πλℓ exp(−πλℓζ)dζ

=
6π

8π + 3
√
3
.

With this result, (34) becomes

lim
λℓ→∞

pin−con ≤ 1− 6π

8π + 3
√
3
(1− e−λeA),

which is the bound in (33). Thus, the legitimate node at the origin is not asymptotically in-

connected, and the proof is concluded.

The theorem has the following intuitive explanation. Consider λℓ (or A) large enough that

border effects can be ignored. Given that exactly one eavesdropper occurs inside regionR, there

is a constant probabilityP{Πℓ{S} = 0} = 6π
8π+3

√
3
≈ 0.62 that the legitimate node closest to

the eavesdropper is out-isolated, and this probability does not decrease withλℓ. In fact, when

λℓ increased, the area ofS decreases in such a way thatP{Πℓ{S} = 0} remains constant. As a

result, regardless of how largeλℓ is made, there is a constant probability of≈ 0.62 that the nearest

node is out-isolated, and therefore a positive probabilitythat the origin isnot in-connected.

Theorems 4.1 and 4.2 clearly show that increasing the density λℓ of legitimate nodes is an

effective way to improve the full out-connectivity, in the sense that the corresponding probability
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approaches one. However, the probability of full in-connectivity cannotbe made arbitrarily close

to one by increasingλℓ. In essence, full (in or out) connectivity is determined by the behavior

of the legitimate nodes in the vicinity of the eavesdroppers. It is more likely that a legitimate

node in such vicinity islocally in-connected than out-connected [31, Property 3.3], whichis

reflected in the fact that the origin achieves full out-connectivity a.a.s., but not full in-connectivity.

Operationally, this means a node can a.a.s.transmitsecret messages to all the nodes in a finite

regionR, but cannot a.s.s.receivesecret messages from all the nodes inR.

Recall that for the study of full connectivity, we considered only the simplest scenario of

̺ = 0. Using a coupling argument similar to the proof of Lemma 3.3,it is easy to show that

the probabilities pout−con(̺) and pin−con(̺) are decreasing functions of̺. In other words, the

case of̺ = 0 represents of the most favorable scenario in terms of full connectivity.

C. Full Connectivity: Finite Regime

We now attempt to characterize full connectivity for a finitedensity of legitimate nodes. We

start with the simple observation that if node0 is fully-out connected, then there are no in-isolated

nodes inR. Then, we immediately obtain an upper bound forpout−con as

pout−con ≤ P{no in-isolated nodes inR}. (35)

We would like to express the right-hand side in terms of the individual in-isolation probability

determined in [31, eq. (13)]. In general, this is non-trivial because the in-isolation events for

different nodes are statistically dependent. For example,if legitimate nodexA is in-isolated

and nodexB is close toxA, then it is most likely thatxB is also in-isolated. Full-connectivity

has been previously studied in the case of the Poisson Boolean model for unsecured wireless

networks.27 For such scenario, it has been shown in [35], [55], [56] that as the average node

degreeπλr2max becomes large, two phenomena are observed: 1) the isolationevents for different

nodes become almost independent; and 2)P{full connectivity} ≈ P{no isolated nodes}, i.e., a

bound analogous to (35) becomes tight. These two facts implythat for the Poisson Boolean

model, theP{no isolated nodes} is both a simple and accurate analytical approximation for

P{full connectivity}, whenπλr2max → ∞.

27The Poisson Boolean model is an undirected model where each node can establish wireless links to all nodes within a fixed

connectivity rangermax, but to no other.
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We now investigate under which conditions similar phenomena occur in theiS-graph. For

that purpose, we introduce the following definition:

p̃out−con , ENR{(1− pin−isol)
NR}, (36)

whereNR = Πℓ{R} is the random number of legitimate nodes inside the regionR (excluding

the probe node at the origin). The quantityp̃out−con represents the probability that none of the

NR legitimate nodes are in-isolated, under the approximationthat the in-isolation events are

independentand have the same probabilitypin−isol given in [31, eq. (13)]. As we will show

later, this quantity can serve as a good approximation ofpout−con, with the advantage that it only

depends on local characteristics (the isolation probabilities) of theiS-graph and is analytically

tractable. This can be shown by rewriting (36) as

p̃out−con =

∞∑

n=0

(λℓA)
n exp(−λℓA)

n!
(1− pin−isol)

n

= exp(−λℓApin−isol)

∞∑

n=0

[λℓA(1− pin−isol)]
n exp (−λℓA(1− pin−isol))

n!
︸ ︷︷ ︸

=1

= exp(−λℓApin−isol)

= exp
(
−λℓAE

{
e−

λℓ
λe

Ã
})

, (37)

whereÃ is the (random) area of a typical Voronoi cell induced by a unit-density Poisson process.

Here, we used the expression forpin−isol in [31, eq. (13)].

For the case of full in-connectivity, we can proceed in a completely analogous way to write

pin−con ≤ P{no out-isolated nodes inR}, (38)

and

p̃in−con , ENR{(1− pout−isol)
NR}

= exp(−λℓApout−isol)

= exp

(
−A

λℓλe

λℓ + λe

)
, (39)

where we used the expression forpout−isol in [31, Eq. (18)].
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Furthermore, according to [31, Property 3.3], we know thatpin−isol < pout−isol for λℓ > 0 and

λe > 0, and therefore

p̃out−con > p̃in−con.

As as result, in the regime wherẽpin−con and p̃out−con closely approximatepin−con andpout−con,

respectively, thenpout−con will be typically larger thanpin−con. Intuitively, it is easier for an

individual node to belocally in-connectedthan out-connected, and this fact is reflected in the

global connectivity properties of theiS-graph, in the sense that iseasier for the origin to be

fully out-connected(reach all nodes) than fully in-connected (be reached by allnodes).

D. Simulation Results

We resort to Monte Carlo simulations to study full-connectivity in the iS-graph, and in particu-

lar the accuracy of the approximations introduced in the previous section. In our environment, we

define the regionR = [−5, 5]m× [−5, 5]m with areaA = 100m2. We placeΠℓ{R} ∼ P(λℓA)

legitimate nodes andΠe{R} ∼ P(λeA) legitimate nodes insideR, uniformly and independently.

The iS-graphG = {Πℓ, E} is then established using as edge set

E =
{−−→xixj : d(xi, xj) < d(xi, e

∗) e∗ = argmin
ek∈Πe

d(xi, ek)
}
, (40)

whered(·, ·) is a toroidal distance metric, similarly to Section III-E. As discussed in Footnote 21,

our definitions of full connectivity imply that legitimate nodes outside the observation regionR
can act as relays to connect other legitimate nodes insideR. Thus, an Euclidean metric|xi−xj |
over the finite regionR would again give rise to boundary effects, so we use a toroidal distance

metric to minimize such effects in the simulations. After the iS-graph is established, we check

whether: (a) there are any (in or out) isolated nodes, and (b)the node at the origin is fully (in

or out) connected. Repeating the procedure over an ensembleof 20, 000 spatial realizations of

Πℓ andΠe, we calculate the various probabilities of interest.

Figure 14 considers full out-connectivity, comparing three different probabilities as a function

of λe andλℓ:

• the simulatedP{no in-isolated nodes inR}, which is an upper bound forpout−con as given

in (35);

• the analytical̃pout−con, whose expression is given in (37);
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• the simulated probability of full out-connectivity,pout−con.

From the plots, we observe that the analytical curvep̃out−con approximatespout−con surprisingly

well for all λℓ andλe, considering the strong approximations associated withp̃out−con. Further-

more, the approximation becomes tight in the extremes ranges whereλℓA → ∞ or λeA → 0

(i.e., pout−con ≈ 1). This corresponds to a regime of practical interest where is desirable to

operate the network, in the sense that secure out-connectivity is achieved with probability very

close to one.

Figure 15 is analogous to Fig. 14, but for the case of full in-connectivity. It comparesP{no

out-isolated nodes inR}, pin−con, and p̃in−con, as a function ofλe and λℓ. We observe the

approximation ofpin−con by p̃in−con becomes tight whenλeA → 0 (i.e., pin−con ≈ 1), but not

whenλℓA → ∞, unlike what happens for full out-connectivity. The difference in the behavior

of pout−con andpin−con asλℓ → ∞ was described in Section IV-B.

In general, based on the simulations we conclude thatp̃out−con and for p̃in−con are fairly

good approximations for the corresponding probabilities of full connectivity, for a wide range

of parameters. The main advantage is thatp̃out−con and for p̃in−con only depend on thelocal

characterization of the network, namely on the isolation probabilities, and thus lead to simple

analytical expressions which can be used to infer about theglobal behaviour of the network.

In particular, they are simple enough to be used in first-order dimensioning of the system,

providing the network designer with valuable insights on how pout−con andpin−con vary with the

parametersλℓ, λe, andA.

V. CONCLUSION

The iS-graph captures the connections that can be established with MSR exceeding a thresh-

old ̺, in a large-scale networks. In [31], we characterized thelocal propertiesof the iS-graph,

including the degrees and MSR of a typical node with respect to its neighbours. In this paper,

we build on that work and analyze theglobal propertiesof the iS-graph, namely percolation

on the infinite plane, and connectivity on a finite region. Interestingly, some local metrics such

as the isolation probability, although quite simple to derive, are able to provide insights into the

more complex phenomena such as global connectivity.

We first characterized percolation of the PoissoniS-graph on the infinite plane. We showed

that each of the four components of theiS-graph (in, out, weak, and strong) experiences a
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phase transition at some nontrivial critical densityλ⋄
c of legitimate nodes. Operationally, this is

important because it implies that long-range communication over multiple hops is still feasible

when a secrecy constraint is present. We proved that percolation can occur for any prescribed

infimum secrecy rate̺ satisfying ̺ < ̺max = log2

(
1 + P ·g(0)

σ2

)
, as long as the density of

legitimate nodes is made large enough. This implies that forunbounded path loss models,

percolation can occur forany arbitrarily large secrecy requirement̺, while for bounded models

the desired̺ may be too high to allow percolation. Our results also show that as long as

̺ < ̺max, percolation can be achieved even in cases where the eavesdroppers are arbitrarily

dense, by making the density of legitimate nodes large enough.

Using Monte Carlo simulations, we obtained estimates for the critical densitiesλ⋄
c. In the case

of ̺ = 0, for example, we estimated that if the density of eavesdroppers is larger than roughly

30% that of the legitimate nodes, long-range communication in the weakiS-graph is completely

disrupted, in the sense that no infinite cluster arises. In the strongiS-graph, we estimated this

fraction to be about16%. For a larger secrecy requirement̺, an even more modest fraction of

attackers is enough to disrupt the network.

Besides considering the existence of an unbounded component on the infinite plane, we

also analyzed the existence of a fully-connectediS-graph on a finite region. Specifically, we

characterized the asymptotic behavior of secure full connectivity for a large densityλℓ of

legitimate nodes. In particular, we showedpout−con approaches one asλℓ → ∞, and therefore

full out-connectivity can be improved as much as desired by deploying more legitimate nodes.

Full in-connectivity, however, remains bounded away from one, regardless of how largeλℓ is

made. Operationally, this means a node can a.a.s.transmitsecret messages to all the nodes in a

finite regionR, but cannot a.s.s.receivesecret messages from all the nodes inR.

We derived simple expressions that closely approximatepout−con and pin−con for a finite

densityλℓ of legitimate nodes. The advantage of these approximate expressions is that they

only depend on thelocal characterization of the network, namely on the isolation probabilities,

and thus lead to simple analytical expressions which can be used to infer about theglobal

behaviour of the network. In particular, our expressions show that typicallypout−con > pin−con,

i.e., it is easier for a node to be fully out-connected (reachall nodes) than fully in-connected (be

reached by all nodes). Our expressions explicitly show thatthis fact can be directly explained

in terms of thelocal connectivity: it is easier for an individual node to be locally in-connected
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than out-connected, and this is reflected in the behaviour ofglobal connectivity described above.

Using Monte Carlo simulations, we showed that the approximate expressions are surprisingly

accurate for a wide range of densitiesλℓ andλe.

We are hopeful that further efforts in combining stochasticgeometry with information-theoretic

principles will lead to a more comprehensive treatment of wireless security.

APPENDIX A

PROOF OFLEMMA 3.3

Proof: In what follows, we use a coupling argument. For fixed parameters λe and ̺, we

begin with aniS-graphG(λℓ,2) whose underlying processΠℓ has densityλℓ,2. We then thin this

process by keeping each point ofΠℓ with probability λℓ,1

λℓ,2
whereλℓ,1 ≤ λℓ,2, such that when

a point is removed, all its in- and out-connections are also removed. Because of the thinning

property [46, Section 5.1], the resulting process of legitimate nodes has densityλℓ,1, and we

have therefore obtained a valid newiS-graphG(λℓ,1), with the same parametersλe and ̺ as

before. By construction, the two graphsG(λℓ,1) and G(λℓ,2) are coupled in such a way that

K⋄
λℓ,1

(0) ⊆ K⋄
λℓ,2

(0). As a result, the event{|K⋄
λℓ,1

(0)| = ∞} implies that{|K⋄
λℓ,2

(0)| = ∞}, and

it follows that p⋄∞(λℓ,1) ≤ p⋄∞(λℓ,2).

APPENDIX B

ALTERNATIVE INTERPRETATION OF THEPERCOLATION PROBABILITY

We provide an alternative interpretation for the percolation probabilityp⋄∞, which is helpful

to perform simulations of the percolation phenomenon.

Proposition B.1:Let R denote a square with dimensions
√
A ×

√
A, and N⋄

∞ denote the

number of legitimate nodes inR whose componentK⋄(x) is infinite, i.e.,

N⋄
∞ , #{x ∈ Πℓ ∩R : |K⋄(x)| = ∞}, (41)

where⋄ ∈ {out, in,weak, strong}. Then,

p⋄∞ =
E{N⋄

∞}
λℓA

. (42)

Proof: Consider a partition of the squareR into M2 subsquares,{Si}M2

i=1. A subsquare is

said to befull if it contains exactly one legitimate node, andemptyotherwise. LetIi be a RV
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that has value 1 whenSi is full with some nodex for which K⋄(x) is infinite, and 0 otherwise.

Then, we have

E{Ii} = P{Ii = 1}

= P{Si full} · P{|K⋄(x)| = ∞|Si full}

=
λℓA

M2
exp

(
−λℓA

M2

)
· P{|K⋄(x)| = ∞|Si full}

Defining IM ,
∑M2

i=1 Ii, we see thatIM approachesN⋄
∞ a.s. asM → ∞. Thus, we can write

E{N⋄
∞} = lim

M→∞
E{IM}

= lim
M→∞

M2
E{Ii}

= λℓAp
⋄
∞.

This is the result in (42), and the proof is complete.

The proposition suggests an alternative interpretation for the percolation probabilityp⋄∞:

although it was defined as the probability that a given nodex has an infinite componentK⋄(x),

it also represents the average fraction of nodes in regionR for which the componentK⋄(x) is

infinite.
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Symbol Usage

E{·} Expectation operator

P{·} Probability operator

H(X) Entropy ofX

Πℓ = {xi},Πe = {ei} Poisson processes of legitimate nodes and eavesdroppers

λℓ, λe Spatial densities of legitimate nodes and eavesdroppers

Π{R} Number of nodes of processΠ in regionR

Nin, Nout In-degree and out-degree of a node

Bx(ρ) Ball centered atx with radiusρ

D(a, b) Annular region between radiusesa and b, centered at the origin

A{R} Area of regionR

K⋄(x) Out, in, weak, or strong component of nodex

p⋄∞ Percolation probability associated with componentK⋄(0)

λ⋄
c Critical density associated with componentK⋄(0)

#S Number of elements in the setS

N (µ, σ2) Gaussian distribution with meanµ and varianceσ2

Table I

NOTATION AND SYMBOLS.

Alice Bob

Eve

Legitimate channel

Eavesdropper channel

encoder

decoder

decoders ŝℓ

ŝe

xn

hn
ℓ
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e

ynℓ
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Figure 1. Wireless wiretap channel.
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Legitimate node

Eavesdropper node

(a) The (directed) graphG. (b) The weak graphGweak. (c) The strong graphGstrong.

Figure 2. Three different types ofiS-graphs onR2, considering that̺ = 0 andσ2
ℓ = σ2

e .

δLh

H

Ti

x1

x2

closed face

open face

Figure 3. Conditions for a faceH in Lh to be closed, according to Definition 3.1: each of the 6 triangles inH must have at

least one eavesdropper node each, andH must be free of eavesdroppers.



42

0

δLh

closed circuit in Lh

open component in Lh

open face in Lh closed face in Lh

Figure 4. A finite open component at the origin, surrounded bya closed circuit.

0
d

Ls

L′
s

open edge in Ls

closed edge in Ls

open edge in L′
s

closed edge in L′
s

Figure 5. The latticeLs = d · Z2 and its dualL′
s = Ls +

(

d
2
, d
2

)

. We declare an edge ofL′
s to be open iff its dual edge in

Ls is open.
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d

Ls

a

S1

S2

Z(a)

rfree

open edge in Ls

closed edge in Ls

Figure 6. Conditions for an edgea in Ls to be open, according to Definition 3.2: the squaresS1 andS2 must have at least

one legitimate node each, and the rectangleZ must be free of eavesdroppers. In general, the radiusrfree—and therefore the

regionZ—increase with the secrecy rate threshold̺. The figure plots the case of̺= 0.

0

closed circuit in Ls

open component in L′
s

open edge in Ls

closed edge in Ls

open edge in L′
s

closed edge in L′
s

Figure 7. A finite open component at the origin, surrounded bya closed circuit in the dual lattice.
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Figure 8. Simulated percolation probabilities for the weakand strong components of theiS-graph, versus the densityλℓ of

legitimate nodes (λe = 1m−2, ̺ = 0).
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(a) Subcritical graph (λℓ/λe = 2).
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(b) Supercritical graph (λℓ/λe = 10).
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(c) Structure and color legend of the various

graph components of nodex = 0.

Figure 9. Percolation in theiS-graph for̺ = 0. The solid lines represent the edges inGstrong, while the dotted lines represent

the edges inGweak.
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Figure 10. Effect of the secrecy rate threshold̺ on the percolation probabilitypweak
∞ (λe = 1m−2, g(r) = 1

r2b
, b = 2,

Pℓ/σ
2 = 10).
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Figure 11. Effect of the wireless propagation characteristics on the percolation probabilitypweak
∞ (λe = 1m−2, ̺ = 0,

σdB = 10).
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ReRsc
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Figure 12. Auxiliary diagrams for proving thatlimλℓ→∞ pout−con = 1.
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Figure 13. Auxiliary diagram for proving thatlimλℓ→∞ pin−con < 1.
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Figure 14. Full out-connectivity in the PoissoniS-graph (A = 100m2, ̺ = 0).
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Figure 15. Full in-connectivity in the PoissoniS-graph (A = 100m2, ̺ = 0).
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