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Abstract—The ability to exchange secret information is critical
to many commercial, governmental, and military networks. The
intrinsically secure communications graph (iS-graph) is a random
graph which describes the connections that can be securely
established over a large-scale network, by exploiting the physical
properties of the wireless medium. This paper provides an
overview of the main properties of this new class of random
graphs. We first analyze the local properties of the iS-graph,
namely the degree distributions and their dependence on fading,
target secrecy rate, and eavesdropper collusion. To mitigate
the effect of the eavesdroppers, we propose two techniques
that improve secure connectivity. Then, we analyze theglobal
properties of the iS-graph, namely percolation on the infinite
plane, and full connectivity on a finite region. These results help
clarify how the presence of eavesdroppers can compromise secure
communication in a large-scale network.

Index Terms—Physical-layer security, wireless networks,
stochastic geometry, secrecy capacity, connectivity, percolation.

I. I NTRODUCTION

Contemporary security systems for wireless networks are
based on cryptographic primitives that generally ignore two
key factors: (a) the physical properties of the wireless medium,
and (b) the spatial configuration of both the legitimate and
malicious nodes. These two factors are important since they
affect the communication channels between the nodes, which
in turn determine the fundamental secrecy limits of a wireless
network. In fact, the inherent randomness of the wireless
medium and the spatial location of the nodes can be leveraged
to provideintrinsic securityof the communications infrastruc-
ture at the physical-layer level.1

The basis for information-theoretic security, which builds
on the notion of perfect secrecy [1], was laid in [2] and later
in [3], [4]. More recently, there has been a renewed interest
in information-theoretic security over wireless channels, from
the perspective of space-time communications [5], multiple-
input multiple-output communications [6]–[10], eavesdropper
collusion [11], [12], cooperative relay networks [13], fading
channels [14]–[18], strong secrecy [19], [20], secret key agree-
ment [21]–[25], code design [26]–[28], among other topics.
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1In the literature, the term “security” typically encompasses 3 different
characteristics:secrecy(or privacy), integrity, and authenticity. This paper
does not consider the issues of integrity or authenticity, and the terms
“secrecy” and “security” are used interchangeably.

A comprehensive treatment of physical-layer security can be
found in [29]. A fundamental limitation of the literature isthat
it only considers scenarios with a small number of nodes. To
account for large-scale networks composed of multiple legiti-
mate and eavesdropper nodes,secrecy graphswere introduced
in [30] from a geometrical perspective, and in [31] from an
information-theoretic perspective. The local connectivity of
secrecy graphs was extensively characterized in [32], while the
scaling laws of the secrecy capacity were presented in [33],
[34]. The feasibility of long-range secure communication was
proved in [35], in the context of continuum percolation.

In this paper, we present an overview of secure communi-
cation over large-scale networks, in terms of the properties of
the underlying random graph. The main contributions are as
follows:

• Framework for intrinsic security in stochastic networks:
We introduce an information-theoretic definition of the
intrinsically secure communications graph (iS-graph),
based on the notion of strong secrecy.

• Local connectivity in theiS-graph: We provide a proba-
bilistic characterization of both in-degree and out-degree
of a typical node.

• Techniques for communication with enhanced secrecy:
We propose sectorized transmission and eavesdropper
neutralization as two techniques for enhancing the secrecy
of communication.

• Maximum secrecy rate (MSR) in theiS-graph: We pro-
vide a probabilistic characterization of the MSR between
a typical legitimate node and each of its neighbors.

• The case of colluding eavesdroppers:We quantify the
degradation in secure connectivity arising from eaves-
droppers collusion.

• Percolation in the iS-graph: We prove the existence
of a phase transition in the PoissoniS-graph, showing
that long-range communication is still possible when a
secrecy constraint is present.

• Full connectivity in theiS-graph: We characterize se-
cure full connectivity on a finite region of the Poisson
iS-graph.

This paper is organized as follows. Section II describes the
system model. Section III characterizes local connectivity in
the PoissoniS-graph. Section IV analyzes two techniques for
enhancing the secrecy of communication. Section V considers
the MSR between a node and its neighbours. Section VI
characterizes the case of colluding eavesdroppers. Section VII
characterizes continuum percolation in the PoissoniS-graph
defined over the infinite plane. Section VIII analyzes full
connectivity in the PoissoniS-graph restricted to a finite
region. Section IX concludes the paper.
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II. SYSTEM MODEL

A. Wireless Propagation Characteristics

In a wireless environment, the received powerPrx(xi, xj)
associated with the link−−→xixj can modeled as

Prx(xi, xj) = Pℓ · g(xi, xj , Zxi,xj
), (1)

where Pℓ is the (common) transmit power of the legiti-
mate nodes; andg(xi, xj , Zxi,xj

) is the power gain of the
link −−→xixj , where the random variable (RV)Zxi,xj

represents
the random propagation effects (such as multipath fading or
shadowing) associated with link−−→xixj . We consider that the
Zxi,xj

, xi 6= xj are independent identically distributed (IID)
RVs with common probability density function (PDF)fZ(z),
and thatZxi,xj

= Zxj,xi
due to channel reciprocity. The chan-

nel gaing(xi, xj , Zxi,xj
) is considered constant (quasi-static)

throughout the use of the communications channel, which
corresponds to channels with a large coherence time. The gain
function is assumed to satisfy the following conditions:

1) g(xi, xj , Zxi,xj
) depends onxi andxj only through the

link length |xi − xj |; with abuse of notation, we can
write g(r, z) , g(xi, xj , z)||xi−xj |→r.2

2) g(r, z) is continuous and strictly decreasing inr.
3) limr→∞ g(r, z) = 0.

The proposed model is general enough to account for common
choices ofg. One example is the unbounded model where
g(r, z) = z

r2b . The term 1
r2b accounts for the far-field path

loss with distance, where the amplitude loss exponentb is
environment-dependent and can approximately range from
0.8 (e.g., hallways inside buildings) to4 (e.g., dense urban
environments), withb = 1 corresponding to free space
propagation. Another example is the bounded model where
g(r, z) = z

1+r2b , which eliminates the singularity at the origin,
but often leads to intractable analytical results [36]. Further-
more, by appropriately choosing of the distribution ofZxi,xj

,
both models can account for various random propagation
effects, including Nakagami-m fading, Rayleigh fading, and
log-normal shadowing [37].

B. iS-Graph

Consider a wireless network where legitimate nodes and
potential eavesdroppers are randomly scattered in space, ac-
cording to some point process. TheiS-graph is a convenient
representation of the information-theoretically secure links that
can be established on such network, and is defined as follows.

Definition 2.1 (iS-Graph [31]): Let Πℓ = {xi} ⊂ R
d

denote the set of legitimate nodes, andΠe = {ei} ⊂ R
d

denote the set of eavesdroppers. TheiS-graph is the directed
graphG = {Πℓ, E} with vertex setΠℓ and edge set

E = {−−→xixj : R s(xi, xj) > ̺}, (2)

where ̺ is a threshold representing the prescribed infimum
secrecy rate for each communication link; andR s(xi, xj) is

2For notational simplicity, whenZ = 1, we omit the second argument of
the functiong(r, z) and simply useg(r).

Legitimate node

Eavesdropper node

Figure 1. Example of aniS-graph onR2.

the maximum secrecy rate(MSR) of the link−−→xixj , given by

R s(xi, xj) =

[
log2

(
1 +

Prx(xi, xj)

σ2
ℓ

)

− log2

(
1 +

Prx(xi, e
∗)

σ2
e

)]+
(3)

in bits per complex dimension, where[x]+ = max{x, 0};
σ2
ℓ , σ

2
e are the noise powers of the legitimate users and

eavesdroppers, respectively; ande∗ = argmax
ek∈Πe

Prx(xi, ek).3

This definition presupposes that the eavesdroppers are not
allowed to collude (i.e., they cannot exchange or combine
information), and therefore only the eavesdropper with the
strongest received signal fromxi determines the MSR between
xi andxj .

The iS-graph admits an outage interpretation, in the sense
that legitimate nodes set a target secrecy rate̺ at which they
transmit without knowing the channel state information (CSI)
of the legitimate nodes and eavesdroppers. In this context,
an edge between two nodes signifies that the corresponding
channel is not in secrecy outage.

Consider now the particular scenario where the following
conditions hold: (a) the infimum desired secrecy rate is zero,
i.e., ̺ = 0; (b) the wireless environment introduces only path
loss, i.e.,Zxi,xj

= 1 in (1); and (c) the noise powers of
the legitimate users and eavesdroppers are equal, i.e.,σ2

ℓ =
σ2

e = σ2. Note that by setting̺ = 0, we are considering the
existenceof secure links, in the sense that an edge−−→xixj is
present if and only ifR s(xi, xj) > 0. Under these special
conditions, the edge set in (2) simplifies to

E =
{−−→xixj : |xi − xj | < |xi − e∗|, e∗ = argmin

ek∈Πe

|xi − ek|
}
,

(4)
which corresponds the geometrical model proposed in [30].
Fig. 1 shows an example of such aniS-graph onR2.

The spatial location of the legitimate and eavesdropper
nodes can be modeled either deterministically or stochastically.
In many cases, the node positions are unknown to the network
designer a priori, so they may be treated as uniformly random
according to a Poisson point process [37]–[40].

Definition 2.2 (PoissoniS-graph): The Poisson iS-graph
is an iS-graph whereΠℓ,Πe ⊂ R

d are mutually independent,
homogeneous Poisson point processes with densitiesλℓ and
λe, respectively.

In the remainder of the paper (unless otherwise indicated),
we focus on PoissoniS-graphs inR2.

3This definition usesstrong secrecyas the condition for information-
theoretic security. See [19], [32] for more details.



Nin = 2

Rℓ,1

Rℓ,2
area A

Figure 2. In-degree of a node. In this example, the node at theorigin can
receive messages with information-theoretic security from Nin = 2 nodes.
The RVA is the area of a typical Voronoi cell, induced by the eavesdropper
Poisson processΠe with densityλe.

III. L OCAL CONNECTIVITY IN THE POISSONiS-GRAPH

The iS-graph is a random graph, and therefore the in-
and out-degrees of the legitimate nodes are RVs. In this
section, we provide a probabilistic characterization of both
in-degreeNin and out-degreeNout of a typical node in the
PoissoniS-graph.4 We first consider the simplest case of
̺ = 0 (the existenceof secure links),Zxi,xj

= 1 (path loss
only), andσ2

e = σ2
ℓ (equal noise powers) in Sections III-A,

III-B, and III-C. This scenario leads to aniS-graph with a
simple geometric description, thus providing various insights
that are useful in understanding more complex cases. Later,
in Sections III-D and III-E, we separately analyze how the
node degrees are affected by wireless propagation effects other
than path loss (e.g., multipath fading), a non-zero secrecyrate
threshold̺, and unequal noise powersσ2

e , σ
2
ℓ .

A. In-Degree Characterization

The following theorem uncovers a surprising connection
between a node’s in-degree and the area of a typical cell in a
Poisson-Voronoi tessellation.

Theorem 3.1 ([31]):The in-degreeNin of a typical node
in the PoissoniS-graph has the following moment generating
function (MGF)

MNin
(s) = E

{
exp

(
λℓ

λe
Ã(es − 1)

)}
, (5)

where Ã is the area of a typical Voronoi cell induced by a
unit-density Poisson process. Furthermore, all the moments of
Nin are given by

E{Nn
in} =

n∑

k=1

(
λℓ

λe

)k

S(n, k)E{Ãk}, n ≥ 1, (6)

4In this paper, we analyze the local properties of atypical node in the
PoissoniS-graph. This notion is made precise in [39, Sec. 4.4] using Palm
theory.

Nout = 3

Re,1
Rℓ,1

Rℓ,2

Rℓ,3

Figure 3. Out-degree of a node. In this example, the node at the origin can
transmit messages with information-theoretic security toNout = 3 nodes.

whereS(n, k), 1 ≤ k ≤ n, are the Stirling numbers of the
second kind [41, Ch. 24].

Figure 2 illustrates the in-degree of a legitimate node.
Equation (6) expresses the moments ofNin in terms of the
moments ofÃ. In general,E{Ãk} cannot be obtained in closed
form, except in the case ofk = 1 whereE{Ã} = 1. Fork = 2
andk = 3, E{Ãk} can be expressed as multiple integrals and
then computed numerically [42]. Alternatively, the moments of
Ã can be determined using Monte Carlo simulation of random
Poisson-Voronoi tessellations [43].

The above theorem can be used to obtain other in-
connectivity properties, as given in the following corollary.

Corollary 3.1: The average in-degree of a typical node in
the PoissoniS-graph is

E{Nin} =
λℓ

λe
(7)

and the probability that a typical node cannot receive from
anyone with positive secrecy rate (in-isolation) is

pin−isol = E

{
e−

λℓ
λe

Ã
}
. (8)

B. Out-Degree Characterization

Theorem 3.2 ([30], [31]): The out-degreeNout of a typical
node in the PoissoniS-graph has the following geometric
probability mass function (PMF)

pNout
(n) =

(
λℓ

λℓ + λe

)n(
λe

λℓ + λe

)
, n ≥ 0. (9)

Figure 3 illustrates the out-degree of a node. The above the-
orem can be used to obtain other out-connectivity properties,
as given in the following corollary.

Corollary 3.2: The average out-degree of a typical node in
the PoissoniS-graph is

E{Nout} =
λℓ

λe
, (10)
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and the probability that a typical node cannot transmit to
anyone with positive secrecy rate (out-isolation) is

pout−isol =
λe

λℓ + λe
. (11)

C. General Relationships Between In- and Out-Degree

We have so far considered the probabilistic distribution of
the in- and out-degrees in a separate fashion. This section
establishes a direct comparison between some characteristics
of the in- and out-degrees.

Property 3.1 ([32]): For the PoissoniS-graph withλℓ > 0
andλe > 0, the average degrees of a typical node satisfy

E{Nin} = E{Nout} =
λℓ

λe
. (12)

Furthermore, we can establish the following relationship
between the probabilities of in- and out-isolation.

Property 3.2 ([32]): For the PoissoniS-graph withλℓ > 0
and λe > 0, the probabilities of in- and out-isolation of a
typical node satisfy

pin−isol < pout−isol. (13)

An intuitive explanation for this property is provided in [32].
Figure 4 compares the PMFs of the in- and out-degree of a
node, while Figure 5 compares the probabilities of in- and
out-isolation for various ratiosλe

λℓ
.

D. Effect of the Wireless Propagation Characteristics

We have so far analyzed the local connectivity of the
iS-graph in the presence of path loss only. However, the wire-
less medium typically introduces random propagation effects
such as multipath fading and shadowing, which are modeled
by the RVZxi,xj

in (1). Considering̺ = 0, σ2
ℓ = σ2

e = σ2,
and arbitrary propagation effectsZxi,xj

with PDF fZ(z), we
can combine (2) with the general propagation model of (1) to
obtain the edge set

E = {−−→xixj : g(|xi−xj |, Zxi,xj
) > g(|xi−e∗|, Zxi,e∗)}, (14)
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Figure 5. Probabilities of in- and out-isolation of a node, versus the ratioλe
λℓ

.

Note thatpin−isol < pout−isol for any fixed λe
λℓ

, according to Property 3.2.

where
e∗ = argmax

ek∈Πe

g(|xi − ek|, Zxi,ek).

Unlike the case of path-loss only, where the out-connections
of a node are determined only by theclosesteavesdropper,
here they are determined by the eavesdropper with theleast
attenuatedchannel. The following theorem characterizes the
distribution of the out-degree.

Theorem 3.3 ([32]):For the PoissoniS-graph with prop-
agation effectsZxi,xj

whose PDF is given by a continuous
function fZ(z), the PMF of the out-degreeNout of a typical
node is given in (9), and isinvariant with respect tofZ(z).

Intuitively, the propagation environment affects both the
legitimate nodes and eavesdroppers in the same way, such that
the PMF ofNout is invariant with respect to the PDFfZ(z).
However, the PMF ofNin doesdepend onfZ(z) in a non-
trivial way, although its mean remains the same, as specified
in the following corollary.

Corollary 3.3: For the PoissoniS-graph with propagation
effectsZxi,xj

distributed according tofZ(z), the average node
degrees are

E{Nin} = E{Nout} =
λℓ

λe
, (15)

for any distributionfZ(z).
We thus conclude that the expected node degrees are

invariant with respect to the distribution characterizing the
propagation effects.

E. Effect of the Secrecy Rate Threshold and Noise Powers

In this section, we study the effect of non-zero secrecy rate
threshold, i.e.,̺ > 0, and unequal noise powers, i.e.,σ2

ℓ 6=
σ2

e , on the iS-graph. ConsideringZxi,xj
= 1 and arbitrary

noise powersσ2
ℓ , σ

2
e , we can combine (2) with the general

propagation model of (1) and obtain the edge set

E =
{−−→xixj : g(|xi−xj |) >

σ2
ℓ

σ2
e
2̺g(|xi− e∗|)+ σ2

ℓ

Pℓ
(2̺− 1)

}
,

(16)
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Figure 6. Average node degree versus the secrecy rate threshold ̺, for
various values ofPℓ/σ

2 (σ2
ℓ = σ2

e = σ2 , g(r) = 1

r2b
, b = 2, λℓ = 1m−2,

λe = 0.1m−2).

where
e∗ = argmin

ek∈Πe

|xi − ek|.

Note that by setting̺ = 0 and σ2
ℓ = σ2

e in (16) we obtain
the edge set in (4) as a special case. The exact dependence of
the average node degree on the parameters̺, σ2

ℓ , σ
2
e depends

on the functiong(r). To gain further insights, we consider the
specific channel gain function

g(r) =
1

r2b
, r > 0. (17)

This function has been widely used in the literature to model
path loss behavior as a function of distance, and satisfies the
conditions in Section II-A. The following theorem character-
izes the average degrees of the resultingiS-graph.

Theorem 3.4 ([32]):For the PoissoniS-graph with secrecy
rate threshold̺ , noise powersσ2

ℓ , σ
2
e , and channel gain func-

tion g(r) = 1
r2b , the average node degrees are

E{Nin} = E{Nout}

= π2λℓλe

∫ ∞

0

xe−πλex

(
σ2
ℓ

σ2
e
2̺ +

σ2
ℓ

Pℓ
(2̺ − 1)xb

)1/b dx (18)

Figure 6 illustrates the effect of the secrecy rate threshold ̺
on the average node degrees. We observe that the average node
degree attains its maximum value ofλℓ

λe
= 10 at ̺ = 0, and

is monotonically decreasing with̺.

IV. T ECHNIQUES FORCOMMUNICATION WITH ENHANCED

SECRECY

Based on the results derived in Section III, we observe
that even a small density of eavesdroppers is enough to
significantly disrupt connectivity of theiS-graph. For example,
if the density of eavesdroppers is half the density of legitimate
nodes, then from (12) the average node degree is onlyλℓ

λe
= 2.

In this section, we propose two techniques—sectorized trans-
missionand eavesdropper neutralization—which achieve an
average degree higher thanλℓ

λe
.

Nout = 5
S(1)S(2)

S(3) S(4)

Figure 7. Secure communication with sectorized transmission. In this
example withL = 4 sectors, the node at the origin can transmit messages
with information-theoretic security toNout = 5 nodes.

A. Sectorized Transmission

We have so far assumed that the legitimate nodes employ
omnidirectional antennas, distributing power equally among
all directions. We now consider that each legitimate node is
able to transmit independently inL sectors of the plane, with
L ≥ 1, as depicted in Figure 7. This can be accomplished, for
example, through the use ofL directional antennas. With each
nodexi ∈ Πℓ, we associateL transmission sectors{S(l)

i }Ll=1,
defined as

S(l)
i ,

{
z ∈ R

2 : φi + (l − 1)
2π

L
< ∠−→xiz < φi + l

2π

L

}

for l = 1 . . . L, where{φi}∞i=1 are random offset angles with
an arbitrary joint distribution. The resultingiS-graphGL =
{Πℓ, EL} has an edge set given by

EL = {−−→xixj : |xi − xj | < |xi − e∗|},
where

e∗ = argmin
ek∈Πe∩S∗

|xi − ek|, S∗ =
{
S(l)
i : xj ∈ S(l)

i

}
.

Here, S∗ is the transmission sector ofxi that contains the
destination nodexj , and e∗ is the eavesdropper insideS∗

that is closest to the transmitterxi. The following theorem
characterizes the average node degree as a function ofL.

Theorem 4.1 (Sectorized Transmission [44]):For the Pois-
son iS-graphGL with L sectors, the average node degrees
are

E{Nin} = E{Nout} = L
λℓ

λe
. (19)

We conclude that the average node degree increaseslinearly
with the number of sectorsL, and hence sectorized transmis-
sion is an effective technique for enhancing the secrecy of
communications. Figure 7 provides an intuitive understanding
of why sectorization works. Specifically, if there was no
sectorization, node0 would be out-isolated, due to the close
proximity of the eavesdropper in sectorS(4). However, if we
allow independent transmissions in four non-overlapping sec-
tors, that same eavesdropper can only hear the transmissions



Nout = 5

Re,1

ρ

B0(Re,1) ∩Θ

Figure 8. Secure communication with eavesdropper neutralization. In this
example, the node at the origin can transmit messages with information-
theoretic security toNout = 5 nodes.

inside sectorS(4). Thus, even though node0 is out-isolated
with respect to sectorS(4), it may still communicate securely
with some legitimate nodes inside sectorsS(1), S(2), andS(3).

B. Eavesdropper Neutralization

In some scenarios, each legitimate node may be able to
physically inspect its surroundings and deactivate the eaves-
droppers falling inside some neutralization region. With each
nodexi ∈ Πℓ, we associate aneutralization regionΘi inside
which all eavesdroppers have been deactivated. Thetotal
neutralization regionΘ can then be seen as a Boolean model
with points{xi} and associated sets{Θi}, i.e.,

Θ =

∞⋃

i=1

(xi +Θi).

Since the eavesdroppers insideΘ have been deactivated, the
effective eavesdropper processafter neutralization isΠe ∩ Θ,
whereΘ , R

2\Θ denotes the complement ofΘ. The resulting
iS-graphGΘ = {Πℓ, EΘ} has an edge set given by

EΘ =
{−−→xixj : |xi−xj | < |xi−e∗|, e∗ = argmin

ek∈Πe∩Θ

|xi−ek|
}
.

In the following, we consider the case of a circular neu-
tralization set, i.e,Θi = B0(ρ) where ρ is a deterministic
neutralization radius, as depicted in Fig. 8.

Theorem 4.2 (Eavesdropper Neutralization [44]):For the
enhanced PoissoniS-graphGρ with neutralization radiusρ,
the average node degrees of a typical node are lower-bounded
by

E{Nin} = E{Nout} ≥ λℓ

λe

(
πλeρ

2 + eπλℓρ
2
)
. (20)

We conclude that the average node degree increases at a
rate that is at leastexponentialwith the neutralization radiusρ,
making eavesdropper neutralization an effective technique for
enhancing the secrecy of communications.

Figure 9 plots the average node degree versus the neutral-
ization radiusρ, for various values ofλe. We observe that the
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Figure 9. Average node degree versus the neutralization radius ρ, for various
values ofλe (λℓ = 1m−2).

analytical lower-bound forE{Nout} given in (20) is very close
to the actual value ofE{Nout} obtained through Monte Carlo
simulation, becoming tight asρ → 0 or λe → ∞.

V. M AXIMUM SECRECY RATE IN THE POISSONiS-GRAPH

In this section, we analyze the MSR between a node and
each of its neighbours. Considering the coordinate system
depicted in Fig. 3 and the channel gaing(r) = 1

r2b
, the

MSR R s,i between the node at the origin and itsi-th closest
neighbour,i ≥ 1, can be written for a given realization of the
node positionsΠℓ andΠe as

R s,i =

[
log2

(
1 +

Pℓ

R2b
ℓ,iσ

2

)
− log2

(
1 +

Pℓ

R2b
e,1σ

2

)]+
(21)

in bits per complex dimension. For each instantiation of the
random Poisson processesΠℓ and Πe, a realization of the
RV R s,i is obtained. The following theorem provides the
distribution of this RV.

Theorem 5.1 ([31]):The MSRR s,i between a typical node
and itsi-th closest neighbour,i ≥ 1, is a RV whose cumulative
distribution function (CDF)FR s,i(̺) is given by

FR s,i(̺) = 1− ln 2(πλℓ)
i

(i− 1)!b

(
Pℓ

σ2

) i
b
∫ +∞

̺

2z

(2z − 1)1+
i
b

× exp


−πλℓ

(
Pℓ

σ2

2z − 1

) 1
b

− πλe

(
Pℓ

σ2

2z−̺ − 1

) 1
b


 dz,

(22)

for ̺ ≥ 0.
From this result, we can trivially obtain the probability of

existence of a non-zero MSR, and the probability of secrecy
outage.

Corollary 5.1: Considering the link between a typical node
and its i-th closest neighbour,i ≥ 1, the probability of
existenceof a non-zero MSR,pexist,i = P{R s,i > 0}, is

pexist,i =

(
λℓ

λℓ + λe

)i

(23)
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and the probability of anoutage in MSR is poutage,i(̺) =
P{R s,i < ̺} = FR s,i(̺), as given in (22).

Figure 10 shows the probabilitypoutage,i of secrecy outage
of a typical node transmitting to itsi-th neighbour, as a
function of the desired secrecy rate̺. As expected, a secrecy
outage become more likely as we increase the target secrecy
rate̺ set by the transmitter.

VI. T HE CASE OFCOLLUDING EAVESDROPPERS

In this section, we consider that the eavesdroppers have
ability to collude, i.e., they can exchange and combine the
information received by all the eavesdroppers to decode the
secret message. The following theorem characterizes the re-
sulting average node degree in such graph.

Theorem 6.1 ([32]):For the PoissoniS-graph with collud-
ing eavesdroppers, secrecy rate threshold̺ = 0, equal noise
powersσ2

ℓ = σ2
e , and channel gain functiong(r) = 1

r2b
, b > 1,

the average degrees of a typical node are

E{Nin} = E{Nout} =
λℓ

λe
sinc

(
1

b

)
, (24)

where sinc(x) , sin(πx)
πx .

It is insightful to rewrite (24) asE{Nout|colluding} =
E{Nout|non-colluding} · η(b), where η(b) = sinc

(
1
b

)
, and

η(b) < 1 for b > 1. The functionη(b) can be interpreted
as the degradation factor in average connectivity due to
eavesdropper collusion.In the extreme whereb = 1, we have
complete loss of secure connectivity withη(1) = 0. This
is because the seriesPrx,e =

∑∞
i=1

Pℓ

R2b
e,i

diverges (i.e., the

total received eavesdropper power is infinite), so the resulting
average node degree is zero. In the other extreme where
b → ∞, we achieve the highest secure connectivity with
η(∞) = 1. This is because the first termPℓ

R2b
e,1

in the Prx,e

series (corresponding to the non-colluding term) is dominant,
so the average node degree in the colluding case approaches
the non-colluding one.
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Figure 11. Normalized average node degree of theiS-graph, E{Nout}
λℓ/λe

,
versus the amplitude loss exponentb, for the cases of colluding and non-
colluding eavesdroppers.

Figure 11 quantifies the (normalized) average node degree
of theiS-graph,E{Nout}

λℓ/λe
, versus the amplitude loss exponentb.

As predicted analytically, it is apparent that cluttered envi-
ronments with larger amplitude loss exponentsb are more
favorable for secure communication, in the sense that in such
environments collusion only provides a marginal performance
improvement for the eavesdroppers.

VII. PERCOLATION IN THE POISSONiS-GRAPH

Percolation theory studies the existence of phase transitions
in random graphs, whereby an infinite cluster of connected
nodes suddenly arises as some system parameter is varied. Per-
colation theory has been used to study connectivity of multi-
hop wireless networks, where the formation of an unbounded
cluster is desirable for communication over arbitrarily long
distances [45]–[47]. In this section, we prove the existence of
a phase transition in the PoissoniS-graph, showing that long-
range communication in a wireless network is still possible
when a secrecy constraint is present.

A. Definitions

Graphs: We useG = {Πℓ, E} to denote the (directed)
iS-graph with vertex setΠℓ and edge set given in (2).
In addition, we define two undirected graphs: theweak
iS-graphGweak = {Πℓ, Eweak}, where

Eweak = {xixj : R s(xi, xj) > ̺ ∨ R s(xj , xi) > ̺},

and thestrong iS-graphGstrong = {Πℓ, Estrong}, where

Estrong = {xixj : R s(xi, xj) > ̺ ∧ R s(xj , xi) > ̺}.

Graph Components:We use the notationx
G→ y to represent

a path from nodex to nodey in a directed graphG, andx G∗

— y
to represent a path between nodex and nodey in an undirected



graphG∗. We define four components:

Kout(x) , {y ∈ Πℓ : ∃x
G→ y}, (25)

Kin(x) , {y ∈ Πℓ : ∃ y
G→x}, (26)

Kweak(x) , {y ∈ Πℓ : ∃x Gweak

— y}, (27)

Kstrong(x) , {y ∈ Πℓ : ∃x Gstrong

— y}. (28)

Percolation Probabilities: To study percolation in the
iS-graph, it is useful to define percolation probabilities asso-
ciated with the four graph components. Specifically, letpout∞ ,
pin∞, pweak

∞ , andpstrong∞ respectively be the probabilities that the
in, out, weak, and strong components containing nodex = 0
have an infinite number of nodes, i.e.,

p⋄∞(λℓ, λe, ̺) , P{|K⋄(0)| = ∞}
for ⋄ ∈ {out, in,weak, strong}.5

B. Main Result

Typically, a continuum percolation model consists of an
underlying point process defined on the infinite plane, and
a rule that describes how connections are established between
the nodes [48]. A main property of all percolation models
is that they exhibit aphase transitionas some continuous
parameter is varied. If this parameter is the densityλ of nodes,
then the phase transition occurs at somecritical densityλc.
Whenλ < λc, denoted as thesubcritical phase, all the clusters
are a.s. bounded.6 Whenλ > λc, denoted as thesupercritical
phase, the graph exhibits a.s. an unbounded cluster of nodes,
or in other words, the graphpercolates.

We now determine if percolation in theiS-graph is pos-
sible, and if so, for which combinations of system parame-
ters (λℓ, λe, ̺) does it occur. The mathematical characteriza-
tion of the iS-graph presents two challenges: i) theiS-graph
is a directed graph, which leads to the study ofdirected perco-
lation; and ii) theiS-graph exhibits dependencies between the
state of different edges, which leads to the study ofdependent
percolation. The result is given by the following main theorem.

Theorem 7.1 (Phase Transition in theiS-Graph [35]):
For anyλe > 0 and̺ satisfying

0 ≤ ̺ < ̺max , log2

(
1 +

P · g(0)
σ2

)
, (29)

there exist critical densitiesλout
c , λin

c , λweak
c , λstrong

c satisfying

0 < λweak
c ≤ λout

c ≤ λstrong
c < ∞ (30)

0 < λweak
c ≤ λin

c ≤ λstrong
c < ∞ (31)

such that

p⋄∞ = 0, for λℓ < λ⋄
c , (32)

p⋄∞ > 0, for λℓ > λ⋄
c , (33)

for any ⋄ ∈ {out, in,weak, strong}. Conversely, if̺ > ̺max,
thenp⋄∞ = 0 for anyλℓ, λe.

5Except where otherwise indicated, we use the symbol⋄ to represent the
out, in, weak, or strong component.

6We say that an event occurs “almost surely” (a.s.) if its probability is equal
to one.
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Figure 12. Simulated percolation probabilities for the weak and strong
components of theiS-graph, versus the densityλℓ of legitimate nodes
(λe = 1m−2, ̺ = 0).

Theorem 7.1 shows that each of the four components of
the iS-graph (in, out, weak, and strong) experiences a phase
transition at some nontrivial critical densityλ⋄

c of legitimate
nodes. In addition, it shows that percolation can occur for
any prescribed secrecy threshold̺ satisfying ̺ < ̺max =

log2

(
1 + P ·g(0)

σ2

)
, as long as the density of legitimate nodes

is made large enough. This implies that for unbounded path
loss models such asg(r) = 1/rγ , percolation can occur for
anyarbitrarily large secrecy requirement̺, while for bounded
models such asg(r) = 1/(1 + rγ), the desired̺ may be too
high to allow percolation. Our results also show that as long
as̺ < ̺max, percolation can be achieved even in cases where
the eavesdroppers are arbitrarily dense, by making the density
of legitimate nodes large enough.

Figure 12 shows the percolation probabilities for the weak
and strong components of theiS-graph, versus the densityλℓ

of legitimate nodes. As predicted by Theorem 7.1, the figure
suggests that these components experience a phase transition
as λℓ is increased. In particular,λweak

c ≈ 3.4m−2 and
λstrong
c ≈ 6.2m−2, for the case ofλe = 1m−2 and̺ = 0. Op-

erationally, this means that if long-range bidirectional secure
communication is desired in a wireless network, the density
of legitimate nodes must be at least6.2 times that of the
eavesdroppers. In practice, the density of legitimate nodes
must be even larger, because a secrecy requirement greater
than ̺ = 0 is typically required. This dependence on̺ is
illustrated in Figure 13. In practice, it might also be of interest
to increaseλℓ fairly beyond the critical density, since this leads
to an increased average fractionp⋄∞ of nodes which belong to
the infinite component, thus improving secure connectivity.

VIII. F ULL CONNECTIVITY IN THE POISSONiS-GRAPH

In the previous section, we studied percolation in the
iS-graph defined over the infinite plane. We showed that for
some combinations of the parameters(λℓ, λe, ̺), the regime
is supercritical and an infinite component arises. However,
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the existence of an infinite component does not ensure con-
nectivity between any two nodes, e.g., one node inside the
infinite component cannot communicate with a node outside.
In this sense, percolation ensures onlypartial connectivityof
the network. In some scenarios, it is of interest to guarantee
full connectivity, i.e., that all nodes can communicate with
each other, possibly through multiple hops. Note, however,that
for networks defined over an infinite region, the probability
of full connectivity is exactly zero. Thus, to study of full
connectivity, we need to restrict our attention to a finite
regionR. Throughout this section, we consider the simplest
case of̺ = 0, i.e., theexistenceof secure links with a positive
(but possibly small) MSR.

A. Definitions

Since theiS-graph is a directed graph, we start by dis-
tinguishing between full out- and in-connectivity with the
following definitions.

Definition 8.1 (Full Out-Connectivity):A legitimate
node xi ∈ Πℓ ∩ R is fully out-connectedwith respect to
a regionR if in the iS-graphG = {Πℓ, E} there exists a
directed path betweenxi and every nodexj ∈ Πℓ ∩ R, for
xi 6= xj .

Definition 8.2 (Full In-Connectivity):A legitimate
node xi ∈ Πℓ ∩ R is fully in-connectedwith respect to
a regionR if in the iS-graphG = {Πℓ, E} there exists a
directed path betweenevery nodexj ∈ Πℓ ∩ R and xi, for
xi 6= xj .

The iS-graph is a random graph, and therefore we can
consider the probabilities of a nodexi being fully in- or out-
connected. For analysis purposes, we consider that a probe
legitimate node (node0) placed at the origin of the coordinate
system, i.e.,xprobe = 0 ⊂ R. We then definepout−con and
pin−con as the probability that node0 is, respectively, fully out-
and fully in-connected. These probabilities are a deterministic
function of the densitiesλℓ andλe, and the areaA of regionR.
Our goal is to characterizepout−con andpin−con.

B. Main Result

In what follows, we focus on the asymptotic behavior of
secure connectivity in the limit of a large density of legitimate
nodes.7 Specifically, for a fixed region of areaA and a fixed
densityλe of eavesdroppers, we would like to determine if
by increasingλℓ → ∞, we can asymptotically achieve full
in- and out-connectivity with probability1.8 The following
theorem characterizes the asymptotic out-connectivity inthe
iS-graph.

Theorem 8.1 (Asymptotic Out-Connectivity [49]):For the
PoissoniS-graph withλe > 0 andA > 0, we have

lim
λℓ→∞

pout−con = 1,

i.e., the legitimate node at the origin is asymptotically out-
connected.

The following theorem characterizes the asymptotic in-
connectivity in theiS-graph.

Theorem 8.2 (Asymptotic In-Connectivity [49]):For the
PoissoniS-graph withλe > 0 andA > 0, we have

lim
λℓ→∞

pin−con ≤ 1− 6π

8π + 3
√
3
(1 − e−λeA), (34)

i.e., the legitimate node at the origin isnot asymptotically in-
connected.

The theorems show that full out-connectivity can be im-
proved as much as desired by deploying more legitimate
nodes. Full in-connectivity, however, remains bounded away
from 1, no matter how largeλℓ is made (an intuitive explana-
tion for this fact is provided in [49]). Operationally, thismeans
that a node can a.a.s.transmitsecret messages to all the nodes
in a finite regionR, but cannot a.a.s.receivesecret messages
from all the nodes inR.

IX. CONCLUSION

Using the notion of strong secrecy, we provided an
information-theoretic definition of theiS-graph as a model
for intrinsically secure communication in large-scale networks.
The iS-graph captures the connections that can be established
with MSR exceeding a threshold̺, in a large network. This
paper provided an overview of the main properties of this new
class of random graphs.

Perhaps the most interesting insight to be gained from our
results, is the exact quantification of the impact of the eaves-
dropper densityλe on secure connectivity—a modest density
of scattered eavesdroppers can potentially cause a drastic
reduction in the MSR provided at the physical layer of wireless
communication networks. Our work has not yet addressed all
of the far reaching implications of the broadcast property of
the wireless medium. In the most general scenario, legitimate
nodes could for example transmit their signals in a cooperative
fashion, whereas malicious nodes could use jamming to disrupt
all communications. We hope that further efforts in combining
stochastic geometry with information-theoretic principles will
lead to a more comprehensive treatment of wireless security.

7For a non-asymptotic analysis of secure full connectivity,see [49].
8We say that an event occurs “asymptotically almost surely” (a.a.s.) if its

probability approaches one asλℓ → ∞.
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