311 research outputs found

    Sensor networks security based on sensitive robots agents. A conceptual model

    Full text link
    Multi-agent systems are currently applied to solve complex problems. The security of networks is an eloquent example of a complex and difficult problem. A new model-concept Hybrid Sensitive Robot Metaheuristic for Intrusion Detection is introduced in the current paper. The proposed technique could be used with machine learning based intrusion detection techniques. The new model uses the reaction of virtual sensitive robots to different stigmergic variables in order to keep the tracks of the intruders when securing a sensor network.Comment: 5 page

    Stigmergy in Web 2.0: a model for site dynamics

    Get PDF
    Building Web 2.0 sites does not necessarily ensure the success of the site. We aim to better understand what improves the success of a site by drawing insight from biologically inspired design patterns. Web 2.0 sites provide a mechanism for human interaction enabling powerful intercommunication between massive volumes of users. Early Web 2.0 site providers that were previously dominant are being succeeded by newer sites providing innovative social interaction mechanisms. Understanding what site traits contribute to this success drives research into Web sites mechanics using models to describe the associated social networking behaviour. Some of these models attempt to show how the volume of users provides a self-organising and self-contextualisation of content. One model describing coordinated environments is called stigmergy, a term originally describing coordinated insect behavior. This paper explores how exploiting stigmergy can provide a valuable mechanism for identifying and analysing online user behavior specifically when considering that user freedom of choice is restricted by the provided web site functionality. This will aid our building better collaborative Web sites improving the collaborative processes

    Utilizing Stigmergy in Support of Autonomic Principles

    Get PDF

    Enabling swarm aggregation of position data via adaptive stigmergy: a case study in urban traffic flows

    Get PDF
    Urban road congestion estimation is a challenge in traffic management. City traffic state can vary temporally and spatially between road links, depending on crossroads and lanes. In addition, congestion estimation requires some sort of tuning to “what is around” to trigger appropriate reactions. An adaptive aggregation mechanism of position data is therefore crucial for traffic control. We present a biologically-inspired technique to aggregate position samples coming from on-vehicle devices. In essence, each vehicle position sample is spatially and temporally augmented with digital pheromone information, locally deposited and evaporated. As a consequence, an aggregated pheromone concentration appears and stays spontaneously while many stationary vehicles and high density roads occur. Pheromone concentration is then sharpened to achieve a better distinction of critical phenomena to be triggered as detected traffic events. The overall mechanism can be actually enabled if structural parameters are correctly tuned for the given application context. Determining such correct parameters is not a simple task since different urban areas have different traffic flux and density. Thus, an appropriate tuning to adapt parameters to the specific urban area is desirable to make the estimation effective. In this paper, we show how this objective can be achieved by using differential evolution

    Ant colonies: building complex organizations with minuscule brains and no leaders

    Get PDF
    Thus far the articles in the series JOD calls the “Organization Zoo” have employed the notion of a “zoo” metaphorically to describe an array of human institutions. Here we take the term literally to consider the design of the most complex organizations in the living world beside those of humans, a favorite of insect zoos around the world: ant colonies. We consider individuality and group identity in the functioning of ant organizations; advantages of a flat organization without hierarchies or leaders; self-organization; direct and indirect communication; job specialization; labor coordination; and the role of errors in innovation. The likely value and limitations of comparing ant and human organizations are briefly examined

    A systematic approach to cancer: evolution beyond selection.

    Get PDF
    Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages

    Quality-sensitive foraging by a robot swarm through virtual pheromone trails

    Get PDF
    Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides
    • 

    corecore