6,595 research outputs found

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT:A validation study

    Get PDF
    Purpose: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. Methods: Automated calcium quantification was performed using a combination of deep-learning convolution neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial coordinate features. Calcifications were identified automatically, after which the algorithm automatically excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) and manually determined calcium volumes(chest-CTs) and risk classifications. Results: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a correlation coefficient of 0.921(p < 0.001) and R-2 of 0.91. According to the Agatston categories, a total of 67(70 %) were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes with a correlation coefficient of 0.923(p < 0.001) and R-2 of 0.96, no significant difference was found (p = 0.247). According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-coefficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an adjacent category. Conclusion: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical calcium scoring without additional acquisitions

    Deep Learning-Based Long Term Mortality Prediction in the National Lung Screening Trial

    Get PDF
    In this study, the long-term mortality in the National Lung Screening Trial (NLST) was investigated using a deep learning-based method. Binary classification of the non-lung-cancer mortality (i.e. cardiovascular and respiratory mortality) was performed using neural network models centered around a 3D-ResNet. The models were trained on a participant age, gender, and smoking history matched cohort. Utilising both the 3D CT scan and clinical information, the models can achieve an AUC of 0.73 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.60 and 0.38 respectively. By interpreting the trained models with 3D saliency maps, we examined the features on the CT scans that correspond to the mortality signal. By extracting information from 3D CT volumes, we can highlight regions in the thorax region that contribute to mortality that might be overlooked by the clinicians. Therefore, this can help focus preventative interventions appropriately, particularly for under-recognised pathologies and thereby reducing patient morbidity

    Lung cancer screening

    Get PDF
    Randomised controlled trials, including the National Lung Screening Trial (NLST) and the NELSON trial, have shown reduced mortality with lung cancer screening with low-dose CT compared with chest radiography or no screening. Although research has provided clarity on key issues of lung cancer screening, uncertainty remains about aspects that might be critical to optimise clinical effectiveness and cost-effectiveness. This Review brings together current evidence on lung cancer screening, including an overview of clinical trials, considerations regarding the identification of individuals who benefit from lung cancer screening, management of screen-detected findings, smoking cessation interventions, cost-effectiveness, the role of artificial intelligence and biomarkers, and current challenges, solutions, and opportunities surrounding the implementation of lung cancer screening programmes from an international perspective. Further research into risk models for patient selection, personalised screening intervals, novel biomarkers, integrated cardiovascular disease and chronic obstructive pulmonary disease assessments, smoking cessation interventions, and artificial intelligence for lung nodule detection and risk stratification are key opportunities to increase the efficiency of lung cancer screening and ensure equity of access.</p

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline

    Get PDF
    A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</p
    • …
    corecore