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ABSTRACT In this study, the long-term mortality in the National Lung Screening Trial (NLST) was
investigated using a deep learning-based method. Binary classification of the non-lung-cancer mortality
(i.e. cardiovascular and respiratory mortality) was performed using neural network models centered around
a 3D-ResNet. The models were trained on a participant age, gender, and smoking history matched cohort.
Utilising both the 3D CT scan and clinical information, the models can achieve an AUC of 0.73 which
outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation
Coefficient are 0.60 and 0.38 respectively. By interpreting the trained models with 3D saliency maps,
we examined the features on the CT scans that correspond to the mortality signal. By extracting information
from 3D CT volumes, we can highlight regions in the thorax region that contribute to mortality that might
be overlooked by the clinicians. Therefore, this can help focus preventative interventions appropriately,

particularly for under-recognised pathologies and thereby reducing patient morbidity.

INDEX TERMS Computed tomography, deep learning, lung, saliency map.

I. INTRODUCTION
A. OVERVIEW
Cardiac and respiratory illnesses are the leading causes of
mortality globally [1], [2], especially amongst older age
groups. The ageing global population means that greater
numbers of patients with multimorbid conditions are utilising
healthcare services with increasing frequency and for ever
more complex problems. Responding to such growing health-
care needs requires cost-effective approaches for the early
detection of disease. Early detection allows timely interven-
tion before diseases become irreversible. In this study, a joint
human-computer approach is proposed to identify imaging
features on CT that are predictive of mortality in patients
undergoing Lung Cancer Screening (LCS).

Annual Computed Tomography (CT) imaging in LCS
studies has been demonstrated to be an effective screen-
ing tool for the early detection of lung cancer, reducing
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lung cancer mortality in the National Lung Screening Trial
(NLST) [3]-[5]. In this study, CT scans from NLST are
examined with a 3D-ResNet [6], [7] to predict imaging fea-
tures associated with long-term mortality outcomes. To allow
patients and clinicians to understand the morphological basis
for the mortality signal on the CT image, it is imperative
that the model is able explain the relationship between the
clinical outcome data and the imaging labels. Saliency map
methods [8], [9] are popular approaches to highlight relevant
features on images that can explain deep learning models
and localise contributing features to predictions. The visual
interpretation of model classifications through saliency maps,
for example when predicting long-term mortality, can aid
radiologists in the identification of unsuspected pathology
on a CT scan. In turn, this may allow early interventions
that may prevent or delay the occurrence of adverse health
events, thereby prolonging a patients’ life expectancy. This is
of particular relevance to LCS where patients have numerous
comorbidities but where detecting lung cancer is typically the
overarching aim of the radiologist.
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B. LITERATURE REVIEW

Lung cancer and Cardiovascular Diseases (CVD) share sev-
eral similar risk factors including smoking (both active and
passive) and exposure to fine particulates from air pollu-
tion [10]. Though the pathophysiological mechanisms differ,
it has been shown that smoking leads to increased mortal-
ity risk from both lung cancer and CVD [10], [11]. It is
therefore logical that patient cohorts enriched with heavy
smokers, such as LCS studies (e.g.the National Lung Screen-
ing Trial (NLST)) [3]-[5] can be used for the prediction of
CVD-related mortality.

Recently, attempts have been made to predict CVD-related
mortality in the NLST cohort [12], [13]. These studies have
adopted Deep Learning (DL) based approaches to analyse
NLST Low-Dose CT scans (LDCT). As demonstrated in van
Velzen et al. 2019 [12], a Convolutional Autoencoder (CAE)
was trained to derive abstract image features and the features
were fed into 3 separate classifiers to predict CVD-related
mortality. The CAE encoded the automatically extracted 3D
LDCT volume around the heart and exported the image
features to the subsequent classifiers. The support vector
machine classifier achieved performances in terms of Area
under ROC curve (AUC) of 0.72. Though the study recog-
nised the value of using clinical information for prediction,
including handcrafted variables such as the Coronary Artery
Calcium (CAC) score [14], [15] which is a known predic-
tor of CVD, such information was not utilised in making
predictions. Instead, the study demonstrated that it is pos-
sible to predict CVD-related mortality from LDCT scans
alone.

Predicting CVD-related mortality was further improved by
Guo et al. 2020 [13]. A multimodal approach was adopted
in this study where models incorporated both LDCT imag-
ing information and handcrafted features to make mortality
predictions. Firstly, for imaging data, a dual branch CNN
network was adopted. Two 2D ResNets [6] were used to
analyse manually selected 2D axial slides at 2 different
resolutions/magnifications: the whole lung region and an
automatically cropped cardiac region. For the clinical data,
manually derived metrics such as CAC, were used to train a
linear support vector machine classifier. When the contribu-
tions of the imaging features and clinical data were optimised,
this approach improved the AUC performance to 0.82. Both
approaches show improvement over human performance in
this regard. In fact, as reported by Guo et al., visual inspection
of the coronary artery calcium measure by a radiologist could
only achieve performance with an AUC of 0.64. However,
despite the improvement in classification performance, there
are a few drawbacks that require further study. The 2D axial
slices were chosen from the 3D LDCT volumes based on the
visibility of the coronary artery and thus the task complexity
for the CNNs was reduced considerably. Additionally, the
amount of human effort in curating the imaging data means
that the approach can not scale well to real-world clinical
scenarios.
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One way to lessen the burden on clinicians to provide
image-derived variables to models would be to automate the
CAC score acquisition. The deep-learning based approach
proposed by van Velzen et al. 2020 [16] demonstrated the
feasibility of scoring CAC and thoracic aortic calcifica-
tion (TAC) automatically. More importantly, it had been
shown that the model can be performed on CT scans derived
using a variety of different CT imaging protocols.

Other than the direct prediction of mortality, the NLST
cohort has also been analysed for long-term mortality risk
stratification. In Lu et al. 2019 [17], a 2D CNN (inception-
v4 architecture) was used to analyse chest radiographs in the
NLST cohort. The study used Gradient-weighted Class Acti-
vation Maps (GradCAM) [9] to isolate the contributing imag-
ing features. As illustrated by the classification maps [17], the
deep learning model tended to focus on the cardiac region to
search for cardiovascular and respiratory mortality signals.
The results demonstrate that the proposed approach can strat-
ify long-term mortality risk, and help identify patients that
might benefit the most from preventative interventions.

More recently, various studies have attempted to incorpo-
rate medical imaging features together with temporal fea-
tures [18], [19] for diagnosis purposes. By combining 2D
CNN and RNN (Recurrent Neural Network), the joint model
outperformed the base CNN models in both studies. In addi-
tion, by explicitly address the irregular followup interval
which is common under clinical setting, Gao et al. 2020 [19]
improved the performance of a standard LSTM (Long Short-
Term Memory) network in evaluating the malignancy of pul-
monary nodules. These demonstrate the feasibility of using a
deep learning based approach to monitor the disease progres-
sion. More importantly, the findings illustrate the superior
performance of using time-series data over a single snapshot
in making the diagnosis.

C. OBJECTIVES

This study aims to use both 3D LDCT lung volumes and
readily available clinical data from NLST to make long-term
mortality predictions, with minimum human input. More
importantly, we aim to use saliency maps to identify con-
tributing features on CT images that link to long-term mor-
tality, particularly non-lung-cancer-related mortality. This
can help radiologists and clinicians diagnose pathology that
might not be obvious at first glance, or help corroborate the
presence of subtle but important damage. Such an approach,
highlighting neglected features on CT imaging in lung cancer
screening populations may speed up decision making for
radiologists and clinicians and help optimise patient care.

The key contributions of the study are as follows:

« A 3D deep-learning-based approach to predict long-term
outcome based on imaging of the thorax.

« Propose an approach to identify areas of concern on CT
volumes that by allowing preventative interventions can
improve healthcare efficiency and utilise personalised
intervention to improve patient quality of life.
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Il. METHODOLOGY

A. THE NATIONAL LUNG SCREENING TRIAL

The National Lung Screening Trial was a multi-centered
lung cancer screening study conducted in the US from
2002 to 2007 [3]-[5]. 53,454 heavy smokers, aged 55-74
years, who were at high risk for developing lung cancer were
recruited. They were randomly assigned to either the low-
dose CT (LDCT) branch (26,772 participants) or the chest
radiography branch (26,732 participants) of the study. Three
annual screening attendances for CT imaging, denoted as
TO-T2, were conducted. The NLST study’s primary end-
point was mortality. The participants’ survival status and the
cause of death were ascertained through evaluation of death
certificate ICD-10 (International Classification of Diseases,
10th edition) codes. In the LDCT branch, the main cause
of death (as of the end of 2009) was cardiovascular disease
(26.1%), followed by lung cancer (22.9%) and then other
types of cancer (22.3%) [4]. In 2015, the survival status of
the cohort was updated. In our study, the latest LDCT scan
(i.e. T2 screening) and accompanying clinical data, were
used to predict long-term mortality in the NLST population.
The participant’s survival status in 2015 was chosen as the
ground-truth label.

B. DATASET SELECTION

Based on the patients’ mortality status in 2015, the NLST
dataset can be grouped into 3 classes: lung-cancer-induced
mortality (LC), non-lung-cancer-induced mortality (NL), and
alive (AL). The first group (i.e. LC) was withheld for later
use to evaluate the ability of saliency maps models to localise
known imaging features associated with patient mortality.
For patients in the second group, only cases where the cause
of death related to cardiac (ICD-10 codes: 110-I52) or res-
piratory diseases (ICD-10 codes: J00-J99) were selected.
Furthermore, only cases with all three screenings timepoints
(i.e. TO, T1 and T2) and with CT scan thickness in the
axial plane of no more than 2.5mm were kept. The former
criterion aimed to avoid bias introduced by patients who left
the trial early for unknown reasons. 873 eligible NL cases
were identified from the metadata of the dataset based on
the above mentioned criteria. The corresponding CT images
were reviewed by a radiologist to exclude cases with imaging
artefacts and anatomical biases. As we had limited specialist’s
time for this manual review process, only 180 of the eligi-
ble NL cases (n=873) were randomly selected for analysis.
To ensure a homogeneous dataset, scans with streak artefacts
in the cardiac region (n=12) and patients with severe forms
of thoracic spinal scoliosis (n=2) were excluded, resulting in
a study population of 166 cases labelled as dying of either
cardiac or respiratory death. The selected NL mortality cases
were age, gender, and smoking history matched in a 1:2 ratio
with a control population of participants alive at the end of
the 2015 follow up period (the AL class). The final study
population therefore comprised 498 cases, a third of whom
(n=166) had died of cardiac or respiratory causes and n=332
remained alive in 2015.
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FIGURE 1. Pack-Year and age distribution of the matched dataset.

As a result of NLST’s inclusion criteria of having a pro-
longed smoking history (i.e. minimum pack-year of 30), the
pack-year distribution in the study population is skewed to the
right which is illustrated in Fig. 1. The non-lung-cancer mor-
tality class (NL) was older and had a greater smoking history
than the control class (AL). To allow equivalent matching,
criteria were relaxed to have a tolerance of +10 pack-year and
=+5 year age difference. As illustrated in Fig. 1, the pack-year
and age distribution of the control cases were shifted to the
right to satisfy the matching criteria.

C. LUNG CT VOLUME PRE-PROCESSING

The pre-processing approach used in Liao et al. [20] was
adopted for this study. For each axial CT slice, the image
was filtered with a Gaussian filter and a —600 Hounsfiled
Unit (HU) threshold was applied to create the binarised slice.
Absolute size and eccentricity of connected components were
then used to filter out small components and imaging noise.
The resulting 3D volumes were then filtered by their size
(0.68 - 7.5 L) and distance to the centre of the scan. The
results were joint to create the approximate lung mask. Mor-
phological transformations, i.e. erosion, dilation, and convex-
hull calculation, were performed to further separate the result
into the left and right lung masks.
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(a) From the original method.

(b) From the modified method.

FIGURE 2. Comparison of the two pre-processing methods.

The Hounsfield Unit (HU) range was clipped to an interval
—1200 HU to 600 HU. The range was linearly normalised to
the interval 0 and 255. The regions outside the masks corre-
sponding to the surrounding tissue were filled with an average
value of 170. The pre-processing pipeline was applied over all
axial layers to extract the lungs in three dimensions.

Given that cardiovascular disease contributes to major-
ity [4] of the mortality seen in the NLST dataset, it was felt
important to preserve the cardiac region. Thus, an additional
convex-hull calculation was performed on the joint lung
masks to recover the CT information overlying the heart. The
comparison between the original approach and the modified
approach on the same axial slice is illustrated in Fig. 2. The
region in blue corresponds to tissue outside the masks which
was given an average intensity of 170. As is evident from
Fig. 2(b), the modified pipeline preserves the cardiac region
during pre-processing.

D. MACHINE LEARNING MODELS

A two-tier approach was adopted to examine the effec-
tiveness of different types of data, i.e. medical imaging
and clinical data, in making mortality predictions. Firstly,
non-deep-learning models were used to evaluate classifica-
tion performance using only clinical data. Secondly, deep-
learning-based methods were applied to the medical images
to predict mortality. Finally, to assess whether the clinical
information complements the CT scans in making mortality
predictions, both clinical and imaging data were combined.

1) NON-DEEP-LEARNING MODELS

The Support Vector Machine (SVM) classifier (Model A),
the Gradient Boosting Machine (GBM) classifier (Model B),
and the Random Forest (RF) Classifier (Model C) were used
to analyse the clinical data in the NLST dataset. The clin-
ical data contained patient demographics, previous disease
diagnosis, age, smoking history, and pack-year etc. A grid
search with cross-validation was used to optimise the param-
eter settings for the three models. In addition to performing
long-term mortality classification, the tree-based methods
have the benefit of impurity-based feature selection. 11 fea-
tures, tabulated in Table 1, were selected to complement the
CT imaging when making mortality predictions in the later
part of the study. The 4 principal components encapsulating
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TABLE 1. Selected clinical features.

Feature Description
BMI Body mass index in kg/m?

gender Patient’s gender

diagchas Pre-NLST diagnosis of childhood asthma

diagemph | Pre-NLST diagnosis of emphysema

diaghear Pre-NLST diagnosis of heart diseases or heart attack
diaghype Pre-NLST diagnosis of hypertension

invaslc Lung-cancer related invasive procedure

PCA 1-4 Principal components of the patient’s smoking history.

The underlying features are:

smoking years, pack-year, age at smoke onset,
age at trial randomisation, and average number of
cigarettes per day

time information consistently ranked among the most impor-
tant mortality-predicting feature for both tree-based models.

2) DEEP-LEARNING

The deep-learning-based models in this study were based
on a 3D implementation of the ResNet [6]. The pre-trained
weights from Chen et. al. [7] were used for transfer learn-
ing purposes. The models were originally trained for med-
ical imaging (CT images) segmentation tasks and had been
shown effective in performing pulmonary nodule classifica-
tion through transfer learning.

Two variants of the neural network were investi-
gated: (1) the CT volume-only model (Model D), and (2) the
multimodal model combining clinical and imaging data
(Model E). They differ in the input data utilised and the
corresponding ResNet-based architectures are illustrated in
Fig. 3 and 4. The 3D ResNet backbone together with the
pre-trained weights were used to analyse the input 3D CT
volume. To transfer the pre-trained model to long-term mor-
tality prediction in this study, the 3D ResNet backbone’s
learning rate was reduced to 1/10 of the rest of the network.
The output from the ResNet backbone was converted to a 1D
tensor after passing through a global adaptive average pooling
layer. In the CT-scan-only model (i.e. Fig. 3), the tensor was
passed through 2 fully connected layers (including dropout
with p = 0.5 and ReLLU activation) with 512 and 32 neurons
respectively. By contrast, in the multimodal version (i.e.
Fig. 4), the clinical data (11 by 1 tensor) was concatenated
with the output from the first fully connected layer before
passing through the second layer with 43 neurons. Applying
the concatenation at the later layer had the aim of providing
more weight to the clinical information.

To counter the class imbalance in the 1:2 matched dataset
in this study, a weighted random sampler, which assigns a
sampling probability inversely proportional to the class size
was utilised. This approach attempts to produce, on average,
balanced batches during training. Cross entropy loss was used
as the loss function for the binary classification.

For the multimodal model as illustrated in Fig. 4, the two
branches of the network were trained separately. The imaging
branch of Model E inherited the weights from Model D and
the training of the CNN portion was not optimised while
training Model E. In contrast, the clinical data branch was
optimised during training and the clinical measures were
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FIGURE 4. 3D ResNet architecture for transfer learning (Model E). Both CT scans & clinical
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normalised to the range between O and 1. The alternative
training strategy where the two branches, i.e. medical imag-
ing and clinical data, are jointly trained were found to result
in inferior mortality prediction performance.

E. SALIENCY MAPS

The saliency map methods were used to interpret the neu-
ral networks and to localise the contributing features to the
predictions. As discussed earlier, performing saliency-map-
based checks on the withheld lung cancer mortality class pro-
vided confidence in the trained models. In a clinical setting,
saliency map visualisation of pathological regions on the CT
contributing to mortality risk are crucial for clinician interpre-
tation of potentially opaque neural network classifications.
Saliency maps can also focus the attention of clinicians on
potentially neglected or unrecognised structures on CT that
are contributors to morbidity and mortality. This is particu-
larly important in a setting where the detection of lung cancer
typically takes primacy.

Common saliency map methods include the gradient
approach [8], Gradient-weighted Class Activation Mapping
(GradCAM) [9], Guided Backpropagation [21], and Guided
GradCAM [9] etc. As elaborated in Adebayo et el. 2018 [22],
the Guided Backpropagation and Guided GradCAM
approaches tend to generate saliency maps that are indepen-
dent of the data and model parameters, and cannot be relied
upon to explain the model’s class prediction. The gradient
approach and GradCAM are free from such shortcomings
and are the approaches adopted in this study. Though both
approaches can highlight relevant features for model predic-
tions, the GradCAM approach tends to have lower resolution
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than the gradient approach, and thus can be limited when
focusing on subtle/small features.

To filter out noise, thresholding was applied to the vector
extracted from the last convolutional layer before it was
extrapolated in 3D to the same dimension as the input CT
volume. The rationale of applying thresholding before rather
than after the interpolation step was to maximise the locali-
sation capability of the resulting GradCAMs.

F. EXPERIMENTS

For both the machine learning and deep learning models,
a grid search approach was adopted to tune the hyper param-
eters. The hyperparameter value that produced the best AUC
value was chosen. The values and settings for the key param-
eters are tabulated in Table 2.

For the deep learning based approach, the 3D CT volumes
were interpolated into a 256 by 256 by 128 volume before
being passed into the neural networks. The 10-layer version
of the 3D ResNet backbone was adopted in this study as it
was felt that deeper models might only lead to marginal per-
formance improvement. The Adam algorithm [23], which is
an adaptive learning rate optimisation algorithm, was imple-
mented to train the network with an initial learning rate of
1E-4. The training was regularised by L2 regularisation (with
weight decay parameter of SE-3). The networks were trained
over 1,000 epochs.

To assess the performance of the models, 5-fold cross-
validation was performed. Of the 498 cases in the study
dataset, 48 (9.6%) were reserved for validation. The remain-
ing 450 cases were used as training (72.3%) and testing
(18.1%) sets and were split into 5 folds of 90. The rel-
ative class composition (i.e. 1:2 dead vs alive cases) was
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TABLE 2. Key hyperparameters.

Model Key Parameter Value /Option
Support Kernel Linear
Vector C 10
Machine
Gradient Learning rate 0.2
Boosting Maximum Depth 4
Machine Number of boosting stages 16
Random Number of trees in the forest 32
Forest Maximum depth 8
Minimum number of samples 5%
required to split a node (of the dataset)
3D ResNets | ResNet depth 10 layers
Dropout probability 0.5
Optimiser Adam
Learning rate 1.00E-04
Weight decay 5.00E-03

maintained in all the subsets. The selection of cases in the
cross-validation folds was kept the same for all the mod-
els used. In each of the 5 cross-validation experiments,
a machine-learning /deep-learning model was trained and
evaluated. 39 lung-cancer-induced mortality (LC) cases with
malignant nodules were held out for later saliency map visu-
alisation.

To compare the performance with related studies [12],
[13], the models were assessed with the Area Under the
Curve (AUC) metric. The average value and the standard
deviation of the AUC values from the 5-fold cross validation
were used to gauge the overall performance of the models.
Additionally, other performances metrics such as sensitivity,
specificity, F1 scores, and Matthews Correlation Coefficient
(MCC) [24] were also examined.

The tools used in the study was developed using
Python (v3.8.5). The non-deep-learning models (e.g. SVM)
in this study were implemented through the Scikit-Learn
library (v0.23.2) while the neural networks were imple-
mented through the PyTorch library (v1.7.1). Each neural
network was trained with a batch size of 24 on a single
Nvidia RTX 8000 GPU (with 48GB of memory) on the UCL
Computer Science cluster. The average training time for each
network model was less than 24 hours.

IIl. RESULTS
The median age in dataset used in this study was 66 and
the median pack-year history was 54. Among the mortality
cases, as shown in Fig. 5, the time difference between the
latest screening point li.e. T2) and the time to patient death
ranged from O to 10 years. Overall, 53.6% (89 patients) of the
NL deaths were caused by cardiovascular diseases whilst the
remainder (46.4%, 77 cases) were due to respiratory illnesses.
The performance metrics of the models, in terms of the
average performance of the 5-fold cross-validation, are tab-
ulated in Table 3. Models A-C, the non-deep-learning mod-
els were only trained with clinical data. Of the two neural
network models, Model D was trained on CT images while
Model E was trained on both medical imaging and clinical
data. The corresponding ROC curves from the neural network
models are grouped according to the type of input used and
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FIGURE 5. Cumulative distribution of the survival time.

illustrated in Fig. 6. Similarly, the precision-recall curves are
presented in Fig. 7. The composition of the cross-validation
folds was maintained across the models.

Among the non-deep-learning-based methods, the Ran-
dom Forest model (Model C) achieved the best performance
albeit limited with an average F1 score of 0.53 and an average
AUC of 0.58. This suggests that the clinical data analysed
in this study has limited utility in making long-term mor-
tality predictions. The available clinical data was primarily
collected to inform recruitment eligibility into the NLST and
therefore might not have contained the most relevant prog-
nostic variables. The deep-learning-based methods utilising
medical images for classification performed better than non-
deep-learning methods. The neural network model (Model D)
trained with the 3D CT volume achieved a mean F1 of
0.61 and a mean AUC of 0.73.

IV. DISCUSSION

A. LONG TERM MORTALITY PREDICTION

Though the clinical data denoting time information, i.e. PCA
1-4 in Table 1, were ranked as the most important feature
in mortality prediction by the tree-based models, their inclu-
sion in Model E did not contribute to an improvement in
performance over Model D. This was also true for clinical
features encoding prior clinical diagnoses in patients. It is
possible that the clinical variable of patient age, or more
specifically biological age, might already be embedded in the
imaging features, in the morphological appearances of the
bones. In fact, as demonstrated recently by Raghu et al. [25],
the imaging information in chest radiographs can be used
to predict the biological age of the patients and be used
to predict patients’ survival. Therefore, the introduction of
chronological age through the clinical data offers limited
additional information to the networks.

As shown in Table 3, the performance of the current deep
learning models for cardiovascular and respiratory mortality
prediction, is on par with the cardiovascular mortality predic-
tion models from van Velzen et al. 2019 [12] which has an
average AUC of 0.72 and standard deviation of 0.07. Other
performance metrics, i.e. sensitivity, specificity, and F1 score,
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TABLE 3. Performance metrics.

Model Input AUC (std)  Precision  Sensitivity  Specificity =~ F1 score  MCC
(A) Support Vector Machine clinical data 0.57 (0.05) 0.40 0.66 0.48 0.49 0.13
(B) Gradient Boosting Machine  clinical data 0.58 (0.04) 0.42 0.53 0.62 0.46 0.15
(C) Random Forest clinical data 0.58 (0.03) 0.38 0.84 0.33 0.53 0.18
(D) 3D ResNet-10 CT scan 0.73 (0.03) 0.54 0.71 0.68 0.61 0.37
(E) 3D ResNet-10 CT scan & clinical data  0.73 (0.03) 0.56 0.63 0.74 0.60 0.38
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(b) ROC curves of the multimodal network (Model E).
FIGURE 6. Performance comparison (ROC curve).

were not available in the literature for comparison. While the
benchmark study used an trained convolutional autoencoder
to pass the extracted features to a SVM classifier, our mod-
els are trained in an end-to-end fashion. More importantly,
the main motivation for identifying the respiratory mortality
signal and visualising relevant areas on the CT image with
saliency maps is to enhance clinical interpretability and con-
fidence in our deep learning model predictions.

More recently, the cardiovascular mortality prediction
study from Guo et al. [13] where a dual-ResNet was trained
on manually selected 2D CT slices achieved a mean AUC
of 0.76 and standard deviation of 0.10. When outputs from
a SVM trained on handcrafted measures such as the CAC
score, were tuned with the output from the dual-ResNet,
the model achieved a mean AUC of 0.82. The performance
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FIGURE 7. Performance comparison (Precision-recall curve).

improvement brought about by the handcrafted measures in
Guo et al. [13], highlights the benefits of combining imaging
features with known CVD mortality predictors. Therefore,
for future work, we aim to develop an automated approach
to derive these markers from the CT scans and use them in
the multimodal prediction approach (i.e. Model E). In con-
trast to models from Guo et al. [13], the models in this study
adopt an automated approach and thus lessens the burden on
radiologists who would otherwise have to select CT slices of
interest manually.

B. CONFIRMATION USING SALIENCY MAPS

To evaluate the trustworthiness of the trained models, the
saliency maps of the trained models were evaluated on
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FIGURE 8. Sanity check (in axial view) on the saliency maps in CT
volumes with cancerous lesion.

previously held out lung cancer mortality cases using the
gradient approach [8] and GradCAM [9]. Given that in these
patients it was the lung cancer that accounted for patient
mortality, the heatmaps, if performing appropriately would
be expected to highlight the malignant nodules in the lung.
3 cases are illustrated in Fig. 8. The original inputs to the
network, together with their saliency map overlays, are pre-
sented. The heatmaps are colored such that red denotes high
activation suggesting the local imaging features contribute
more to the network’s prediction. From the heatmaps it can
be seen that the network can identify the cancerous nodules
in the lung and are using these features appropriately when
making mortality predictions.

However, the current approach is not without potential lim-
itations. Fig. 9 illustrates the GradCAM approach where the
model has highlighted the malignant lesion in the right lung.
The model has also highlighted the vertebra and the rib cage,
which might intuitively have no direct link to cardiac and
pulmonary-related mortality. Yet bone mineral density can act
as a good indicator of patient health, particularly in patients
with chronic lung diseases such as chronic obstructive pul-
monary disease [26], [27]. Furthermore, various studies [28],
[29] have demonstrated an association between low bone
material density and coronary artery calcification. Accord-
ingly, the signal of low bone material density shown using
the GradCam approach may represent a relevant surrogate
signal indicating both cardiovascular and respiratory-related
mortality.

C. LIMITATION
It is important to know how the models, which are trained on
the relatively dated CT scans from the NLST dataset [3] will
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(a) Patient 4: input to network.

(b) Patient 4: GradCAM.

FIGURE 9. Saliency map with mixed signal.

perform on more recent lower radiation dose and higher res-
olution CT scans. It is expected that there will be challenges
due to the improvement in CT scan qualities. However, to the
best of the authors’ knowledge, there is currently no publicly
available all-cause mortality dataset with more recent scans.
Additionally, the nature of this long-term mortality predic-
tion study dictates the requirement for a sufficiently long
follow-up period which some of the more recent screening
trials have not yet reached. Thus, further evaluation of the
approach will resume when the data from the more recent
studies such as NELSON [30] become publicly available.

V. CONCLUSION AND FUTURE WORKS
The results shown in our study lead us to the following
conclusions and directions for future studies.

1) The current method shows reasonable performance in
predicting long-term mortality in the NLST dataset
with an AUC value of 0.73. This illustrates the feasi-
bility of performing mortality predictions from 3D CT
scans, without handcrafted features as demonstrated in
the literature. Additionally, the average testing time!
per CT scan is approximately 0.10 second which makes
is feasible to use in a clinical setting.

2) The use of saliency maps shows promise as an aid for
clinicians’ and radiologists’ in identifying neglected
regions of the CT that might associate with mortality.

ITested on a workstation with Intel i7-10700k 3.80 Ghz CPU, Nvidia
RTX3080 GPU (10GB GPU memory), and Ubuntu 18.04.06 LTS OS.
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This approach may facilitate the planning of person-
alised preventative interventions.

3) Given that cardiovascular diseases contribute to a

significant portion of the non-lung-cancer mortality
in the NLST dataset, it is reasonable to hypothe-
sise that model performance can be improved by
providing additional information from the cardiac
region. One way to achieve this is by combining the
mediastinal-kernel reconstructed cardiac CT volume
with the lung-kernel-reconstructed lung volume used
in this study. Accordingly, as a next step, we aim to
develop a dual branch network for the imaging data.
Additionally, we aim to explore an automated approach
to calculate handcrafted measures, such as the CAC,
to complement the automated image analysis in making
mortality predictions.

4) In this study, the chronologically most recent scan (i.e.

T2) in the NLST dataset was used to predict long-
term mortality. The inclusion of the two earlier annual
scans may add value by providing information on the
progression of diseased sites in the lung. Such informa-
tion can help identify patients who have more rapidly
progressive diseases who would benefit more from
early preventative interventions. To do so, we aim to
explore longitudinal lung CT registration using all three
screening time point CTs (i.e. TO, T1, and T2).

5) Inaddition to predicting long-term mortality outcomes,

it would be worth exploring the quantification of
damage in structures shown to be important on the
saliency maps. Analysing quantitative variables in Cox
Regression models to predict survival time may be an
alternative way of identifying interpretable prognos-
tic imaging biomarkers in LCS participants to facili-
tate risk stratification and personalised management in
high-risk populations.

ACKNOWLEDGMENT

The authors would like to thank the National Cancer Institute
for access to NCI’s data collected by the National Lung
Screening Trial (NLST). The statements contained herein are
solely those of the authors and do not represent or imply
concurrence or endorsement by NCI.

REFERENCES

(1]

[2]

[3]

[4]

G. A. Roth, “Global, regional, and national age-sex-specific mortality
for 282 causes of death in 195 countries and territories, 1980-2017:
A systematic analysis for the Global Burden of Disease Study 2017,”
Lancet, vol. 392, no. 10159, pp. 1736-1788, 2018, doi: 10.1016/S0140-
6736(18)32203-7.

T. Vos, S. Lim, C. Abbafati, K. Abbas, and M. Abbasi, “Global burden
of 369 diseases and injuries in 204 countries and territories, 1990-2019:
A systematic analysis for the Global Burden of Disease Study 2019,”
Lancet, vol. 396, no. 10258, pp. 1204-1222, 2020, doi: 10.1016/S0140-
6736(20)30925-9.

D. R. Aberle, “The national lung screening trial: Overview and study
design,” Radiology, vol. 258, no. 1, pp.243-253, Jan. 2011, doi:
10.1148/radiol.10091808.

D. Aberle et al., “Reduced lung-cancer mortality with low-dose com-
puted tomographic screening,” New England J. Med., vol. 365, no. 5,
pp- 395-409, 2011, doi: 10.1056/NEJMoal102873.

VOLUME 10, 2022

[5]

[6

—

[7

—

[8

—

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

D. R. Aberle, S. DeMello, C. D. Berg, W. C. Black, B. Brewer,
T. R. Church, K. L. Clingan, F. Duan, R. M. Fagerstrom, I. F. Gareen,
C. A. Gatsonis, D. S. Gierada, A. Jain, G. C. Jones, I. Mahon, P. M. Marcus,
J. M. Rathmell, and J. Sicks, “Results of the two incidence screenings in
the National lung screening trial,” New England J. Med., vol. 369, no. 10,
pp. 920-931, 2013, doi: 10.1056/NEJMoal208962.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Oct. 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

S. Chen, K. Ma, and Y. Zheng, “Med3D: Transfer learning for 3D medical
image analysis,” 2019, arXiv:1904.00625.

K. Simonyan, A. Vedaldi, and A. Zisserman, “‘Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2013, arXiv:1312.6034.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618-626, doi: 10.1109/iccv.2017.74.

How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis
for Smoking-Attributable Disease: A Report of the Surgeon General,
Nat. Center Chronic Disease Prevention Health Promotion, Centers Dis-
ease Control Prevention, Atlanta, GA, USA, 2010. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK53017/

C. A. Pope, R. T. Burnett, M. C. Turner, A. Cohen, D. Krewski, M. Jerrett,
S. M. Gapstur, and M. J. Thun, “Lung cancer and cardiovascular dis-
ease mortality associated with ambient air pollution and cigarette smoke:
Shape of the exposure-response relationships,” Environ. Health Perspect.,
vol. 119, no. 11, pp. 1616-1621, Nov. 2011, doi: 10.1289/ehp.1103639.
S. G. van Velzen, M. Zreik, N. Lessmann, M. A. Viergever, P. A. de Jong,
H. M. Verkooijen, and I. ISgum, “Direct prediction of cardiovascular
mortality from low-dose chest CT using deep learning,” Proc. SPIE Med.
Imag. Image Process., vol. 10949, Oct. 2019, Art. no. 109490X, doi:
10.1117/12.2512400.

H. Guo, U. Kruger, G. Wang, M. K. Kalra, and P. Yan, “Knowledge-
based analysis for mortality prediction from CT images,” [EEE
J. Biomed. Health Informat., vol. 24, no. 2, pp. 457-464, Feb. 2020, doi:
10.1109/JBHI.2019.2946066.

P. C. Jacobs, M. J. A. Gondrie, Y. van der Graaf, H. J. de Koning,
I. Isgum, B. van Ginneken, and W. P. T. M. Mali, “Coronary artery calcium
can predict all-cause mortality and cardiovascular events on low-dose
CT screening for lung cancer,” Amer. J. Roentgenol., vol. 198, no. 3,
pp. 505-511, Mar. 2012, doi: 10.2214/AJR.10.5577.

C. Chiles, F. Duan, G. W. Gladish, J. G. Ravenel, S. G. Baginski,
B. S. Snyder, S. DeMello, S. S. Desjardins, R. F. Munden, and N. S. Team,
“Association of coronary artery calcification and mortality in the national
lung screening trial: A comparison of three scoring methods,” Radiology,
vol. 276, no. 1, pp. 82-90, 2015.

S. G. M. van Velzen, N. Lessmann, B. K. Velthuis, I. E. M. Bank,
D. H. J. G. van den Bongard, T. Leiner, P. A. de Jong, W. B. Veldhuis,
A. Correa, J. G. Terry, J. J. Carr, M. A. Viergever, H. M. Verkooijen, and
1. Iagum, “Deep learning for automatic calcium scoring in CT: Validation
using multiple cardiac CT and chest CT protocols,” Radiology, vol. 295,
no. 1, pp. 66-79, Apr. 2020, doi: 10.1148/radiol.2020191621.

M. T. Lu, A. Ivanov, T. Mayrhofer, A. Hosny, H. J. W. L. Aerts, and
U. Hoffmann, “Deep learning to assess long-term mortality from chest
radiographs,” JAMA Netw. Open, vol. 2, no. 7, Jul. 2019, Art. no. e197416,
doi: 10.1001/jamanetworkopen.2019.7416.

S. Gheisari, S. Shariflou, J. Phu, P.J. Kennedy, A. Agar, M. Kalloniatis, and
S. M. Golzan, “A combined convolutional and recurrent neural network
for enhanced glaucoma detection,” Sci. Rep., vol. 11, no. 1, pp. 1-11,
Dec. 2021, doi: 10.1038/s41598-021-81554-4.

R. Gao, Y. Tang, K. Xu, Y. Huo, S. Bao, S. L. Antic, E. S. Epstein,
S. Deppen, A. B. Paulson, K. L. Sandler, P. P. Massion, and
B. A. Landman, “Time-distanced gates in long short-term memory net-
works,” Med. Image Anal., vol. 65, Oct. 2020, Art. no. 101785, doi:
10.1016/j.media.2020.101785.

F. Liao, M. Liang, Z. Li, X. Hu, and S. Song, “Evaluate the malignancy
of pulmonary nodules using the 3-D deep leaky noisy-OR network,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3484-3495,
Nov. 2019, doi: 10.1109/TNNLS.2019.28924009.

J. Tobias Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving  for simplicity: The all convolutional net,” 2014,
arXiv:1412.6806.

34377


http://dx.doi.org/10.1016/S0140-6736(18)32203-7
http://dx.doi.org/10.1016/S0140-6736(18)32203-7
http://dx.doi.org/10.1016/S0140-6736(20)30925-9
http://dx.doi.org/10.1016/S0140-6736(20)30925-9
http://dx.doi.org/10.1148/radiol.10091808
http://dx.doi.org/10.1056/NEJMoa1102873
http://dx.doi.org/10.1056/NEJMoa1208962
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/iccv.2017.74
http://dx.doi.org/10.1289/ehp.1103639
http://dx.doi.org/10.1117/12.2512400
http://dx.doi.org/10.1109/JBHI.2019.2946066
http://dx.doi.org/10.2214/AJR.10.5577
http://dx.doi.org/10.1148/radiol.2020191621
http://dx.doi.org/10.1001/jamanetworkopen.2019.7416
http://dx.doi.org/10.1038/s41598-021-81554-4
http://dx.doi.org/10.1016/j.media.2020.101785
http://dx.doi.org/10.1109/TNNLS.2019.2892409

IEEE Access

Y. Lu et al.: Deep Learning-Based Long Term Mortality Prediction in National Lung Screening Trial

[22] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim,
“Sanity checks for saliency maps,” in Proc. 32nd Int. Conf. Neural Inf.
Process. Syst., Red Hook, NY, USA, 2018, pp. 9525-9536.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[24] D. Chicco and G. Jurman, “The advantages of the Matthews correla-
tion coefficient (MCC) over F1 score and accuracy in binary classifi-
cation evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1-13, 2020, doi:
10.1186/512864-019-6413-7.

[25] V. K. Raghu, J. Weiss, U. Hoffmann, H. J. W. L. Aerts, and M. T. Lu,
“Deep learning to estimate biological age from chest radiographs,” JACC,
Cardiovascular Imag., vol. 14, no. 11, pp. 2226-2236, Nov. 2021, doi:
10.1016/j.jemg.2021.01.008.

[26] J. Jaramillo, C. Wilson, and D. Stinson, ‘“Reduced bone density and
vertebral fractures in smokers. Men and COPD patients at increased risk,”
Ann. Amer. Thoracic Soc., vol. 12, no. 5, pp. 648-656, May 2015, doi:
10.1513/AnnalsATS.201412-5910C.

[27] N. Campos-Obando, M. C. Castano-Betancourt, L. Oei, O. H. Franco,
B. H. C. Stricker, G. G. Brusselle, L. Lahousse, A. Hofman, H. Tiemeier,
F. Rivadeneira, A. G. Uitterlinden, and M. C. Zillikens, ‘“Bone mineral
density and chronic lung disease mortality: The Rotterdam study,” J. Clin.
Endocrinol. Metabolism, vol. 99, no. 5, pp. 18341842, May 2014, doi:
10.1210/jc.2013-3819.

[28] N. Ahmadi, S. Mao, F. Hajsadeghi, B. Arnold, S. Kiramijyan, Y. Gao,
F. Flores, S. Azen, and M. Budoff, ‘“The relation of low levels of bone
mineral density with coronary artery calcium and mortality,” Osteoporosis
Int., vol. 29, no.7, pp. 1609-1616, 2018, doi: 10.1007/s00198-018-4524-7.

[29] P. A. Marcovitz, H. H. Tran, B. A. Franklin, W. W. O’Neill,
M. Yerkey, J. Boura, M. Kleerekoper, and C. Z. Dickinson, “Useful-
ness of bone mineral density to predict significant coronary artery dis-
ease,” Amer. J. Cardiol., vol. 96, no. 8, pp. 1059-1063, Oct. 2005, doi:
10.1016/j.amjcard.2005.06.034.

[30] C. A. van Iersel, H. J. de Koning, G. Draisma, W. P. T. M. Mali,
E. T. Scholten, K. Nackaerts, M. Prokop, J. D. F. Habbema, M. Oudkerk,
and R. J. van Klaveren, “Risk-based selection from the general popu-
lation in a screening trial: Selection criteria, recruitment and power for
the Dutch-Belgian randomised lung cancer multi-slice CT screening trial
(NELSON),” Int. J. Cancer, vol. 120, no. 4, pp. 868-874, Feb. 2007, doi:
10.1002/ijc.22134.

YAOZHI LU received the B.Eng. degree in
mechanical engineering from the University Col-
lege London, in 2014, and the M.Sc. and Ph.D.
degrees in mechanical engineering from Imperial
College London, in 2015 and 2020, respectively.
He did his Ph.D. research on the alternative pas-
sage divergence phenomenon in commercial jet
engines with the Rolls-Royce Vibration Univer-
sity Technology Centre, Imperial College London.

’ He became a Chartered Engineer (CEng), in 2021.
He is currently a Research Fellow at the Centre for Medical Image Com-
puting, University College London. His research interests include medical
image computing, deep learning, computer vision, and aeroelasticity.

SHAHAB ASLANI received the M.Sc. degree
in electrical and electronic engineering (medical
imaging curriculum) from Dokuz Eylul University
(DEU), in 2015, and the Ph.D. degree in electrical
and electronic engineering (pattern analysis and
computer vision curriculum) from the Italian Insti-
tute of Technology (IIT-PAVIS), in 2019. He is
currently a Research Fellow at the Centre for Med-
ical Image Computing (CMIC), University Col-
lege London (UCL), working on early lung cancer
prediction. His main research interests include medical image analysis,
medical imaging computing, machine learning, and deep learning.

34378

MARK EMBERTON was appointed as the Dean
of the UCL Faculty of Medical Sciences, in 2015.
He is currently a Professor of interventional oncol-
ogy at UCL. He is also an Honorary Consultant
Urologist at the University College Hospitals NHS
Foundation Trust and the Founding Pioneer of The
Charity Prostate Cancer U.K. He specializes in
the implementation of new imaging techniques,
nanotechnologies, bio-engineering materials, and
= non-invasive treatment approaches, such as high
intensity focused ultrasound and photo-dynamic therapy. He is also involved
in teaching within UCL and the London and South East Urological Training
Scheme. His research interests include improving the diagnostic and risk
stratification tools and treatment strategies for prostate cancer (PCa). He is
a founding partner of London Urology Associates. In addition to being
a member of various urological and medical organizations, such as the
American Association of GenitoUrinary Surgeons, the British Association
of Urological Surgeons, and the European Association of Urology.

DANIEL C. ALEXANDER received the B.Sc.
degree in mathematics from the University of
Oxford, in 1993, and the M.Sc. and Ph.D. degrees
in computer science from the University College
London (UCL), in 1994 and 1998, respectively.
He worked as a Postdoctoral Researcher with the
University of Pennsylvania, until 2000, when he
returned to London to take up an academic posi-
tion. He became a Full Professor, in 2010, and
the Director of CMIC, in 2015. He is currently
the Director of the UCL Centre for Medical Image Computing (CMIC),
UCL, and a Professor of imaging science with the Department of Computer
Science, UCL. His expertise is in computational modeling, machine learning,
imaging, and image analysis. He is currently an Associate Editor of Magnetic
Resonance in Medicine and a Senior Fellow of the International Society for
Magnetic Resonance in Medicine.

JOSEPH JACOB received the M.D. degree
(research) from Imperial College under
Prof. David Hansell with Royal Brompton Hos-
pital, in 2016. He qualified in medicine from
Imperial College, worked at Médecins Sans Fron-
tieres for two years, and completed radiology train-
ing with Kings College Hospital, London, U.K.
His research with the Centre for Medical Image

) Computing, University College London, centers
i on computational image analysis of the lungs and
heart on CT imaging. He has coauthored over 80 articles, won national and
international awards for his work. He was awarded the 2017 Best Thesis
Prize by the National Heart and Lung Institute. He was awarded a five-year
Wellcome Trust Clinical Research Career Development Fellowship for his
M.D. degree, in 2018.

VOLUME 10, 2022


http://dx.doi.org/10.1186/s12864-019-6413-7
http://dx.doi.org/10.1016/j.jcmg.2021.01.008
http://dx.doi.org/10.1513/AnnalsATS.201412-591OC
http://dx.doi.org/10.1210/jc.2013-3819
http://dx.doi.org/10.1007/s00198-018-4524-7
http://dx.doi.org/10.1016/j.amjcard.2005.06.034
http://dx.doi.org/10.1002/ijc.22134

