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A B S T R A C T   

Purpose: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual 
evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. 
Methods: Automated calcium quantification was performed using a combination of deep-learning convolution 
neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial 
coordinate features. Calcifications were identified automatically, after which the algorithm automatically 
excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm 
was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 
1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as 
reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment 
for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) 
and manually determined calcium volumes(chest-CTs) and risk classifications. 
Results: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a cor-
relation coefficient of 0.921(p < 0.001) and R2 of 0.91. According to the Agatston categories, a total of 67(70 %) 
were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary 
calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes 
with a correlation coefficient of 0.923(p < 0.001) and R2 of 0.96, no significant difference was found (p = 0.247). 
According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-co-
efficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an 
adjacent category. 
Conclusion: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to 
reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical 
calcium scoring without additional acquisitions.   

Abbreviations: AI, artificial intelligence; CVDs, cardiovascular diseases; CCS, coronary artery calcium scoring. 
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1. Introduction 

Cardiovascular diseases (CVDs) are a large contributor to the global 
mortality rate. A total of 17.9 million people die from CVDs every year, 
which accounts for 31 % of all global deaths [1]. Coronary artery cal-
cium scoring (CCS) serves as a reliable tool and is generally recom-
mended for use by several guidelines [2–4] for CVD risk assessment and 
to guide follow-up testing [5–8]. In general, the absence of coronary 
calcification in electrocardiography-triggered CT is associated with a 
very low cardiovascular risk and, thus, is commonly used to rule out 
coronary artery disease and will limit follow-up examinations. 
Increasing calcium scores, often divided into risk categories, reflect an 
increasing risk for cardiovascular events [9]. 

Conventional measurement of CCS requires the manual input of 
expert to identify coronary calcium lesions in each image section and is 
therefore labor intensive and time-consuming. Automated approaches 
can help reduce workload and reader variability, increasing the clinical 
applicability of CCS [10–12]. 

Standard CCS is performed on dedicated ECG-triggered non-contrast 
cardiac CT acquisitions. However, with the increased use of CCS and the 
increased numbers of CCS acquisitions, we also see an emerging role of 
non-contrast non-triggered chest CTs for the analysis of coronary cal-
cium. The number of chest CT acquisitions for lung cancer screening are 
rapidly increasing with increasing evidence on the effectiveness of lung 
cancer screening programs [13,14]. Many risk factors are associated 
with CVD as well as with lung cancer, creating a large overlap in pop-
ulations of interest. Even though these scans are performed without ECG 
gating, increasing the susceptibility for motion artifacts, they could 
potentially be used to simultaneously evaluate the individual risk of 
adverse cardiovascular events [15,16]. The use of these already clini-
cally accepted acquisitions allows for risk assessment without the need 
for an additional acquisition, thereby reducing accumulated radiation 
dose. 

Several studies have evaluated (semi)automatic methods for CCS in 
CT using standard cardiac calcium scoring CT [17–19] and chest CT [16, 
20] acquisitions. In this study, a transfer learning approach is used to 
train the algorithm on both dedicated cardiac CCS acquisitions and on 
chest CT’s, using an additional probability map to exclude non-coronary 
calcifications. 

The aim of this study was to evaluate a novel deep learning-based 
algorithm for fully automated calcium scoring on non-contrast non- 
ECG-triggered chest CT compared to manual scoring and to permit 
interpretation of the AI-determined calcium volumes in terms of the well 
understood Agatston scoring on dedicated ECG-gated acquisitions. 

2. Materials and methods 

2.1. Patient population 

This study performed validation of the software on 263 patients 
retrospectively included from a single-center cohort. A total of 95 pa-
tients underwent both dedicated CCS acquisitions and chest CT acqui-
sition within 1.5 years were selected for cohort one. The median number 
of days between the cardiac and chest CT was 186 [76–383]. Only pa-
tients who had the calcium score noted in the cardiac CT report and with 
both chest CT and cardiac having diagnostic image quality were 
included. Patients who received cardiac intervention between the two 
scans and patients with metal assist devices such as pacemakers were 
excluded. This cohort was used to assess the quantitative properties of 
the AI algorithm (AI-Rad Companion Chest CT, Siemens Healthineers, 
Forchheim, Germany) by comparing the quantification of calcium vol-
ume on chest CT using the Agatston score from cardiac CT acquisitions 
as reference standard. A second cohort was formed by a total of 
168patients, who underwent chest CT alone. This cohort consists out of 
consecutive patients who underwent chest CT imaging for non-cardiac 
purposes and was created to represent a clinically representable 

cohort for external AI validation of multiple algorithms. This cohort was 
used to assess the ability of the AI algorithm to mimic clinical qualitative 
coronary calcium analysis. This single-center, observational study was 
approved by the ethics committee of our university hospital and the 
need for informed consent was waived. Study was performed according 
to HIPAA regulations. 

2.2. Scan protocol 

2.2.1. Non-contrast ECG-Triggered cardiac CT 
All data were acquired on a second or third-generation dual-source 

CT scanner (SOMATOM Force/Flash, Siemens Healthineers, Forchheim, 
Germany) or a Definition AS+ (Siemens Healthineers, Forchheim, Ger-
many). CCS was performed via a prospectively ECG-triggered non- 
contrast sequential acquisition using the following parameters: tube 
voltage 120 kV, automated tube current modulation (CARE Dose4D, 
Siemens), reference tube current-time product of 80 mAs, collimation: 
2 × 128/192 × 0.6 mm, heart rate dependent pitch, and gantry rotation 
time 0.25− 0.28 s. Most patients were scanned at 70 % ECG recon-
struction percentage. Examinations were performed during inspiratory 
breath hold and in the craniocaudal direction. The scans were recon-
structed with a routine filtered back projection (WFBP) algorithm, using 
a medium sharp convolution kernel, 3.0 mm section thickness, and an 
increment of 1.5 mm. 

2.2.2. Non-contrast non-ECG-triggered chest CT 
All data were acquired on a second or third-generation dual-source 

CT scanner (SOMATOM Flash/Force, Siemens Healthineers, Forchheim, 
Germany) or a Definition AS+ (Siemens Healthineers, Forchheim, Ger-
many). Patients were scanned according to standard clinical protocol, 
representing a reflection of our clinical population, which would be 
ideal for clinical validation purposes. Here is an example of scanning 
parameters used for the Force CT scanner: tube voltage 100− 120 kVp 
(based on BMI), automated tube current modulation (CARE Dose, 
Siemens), reference tube current-time product of 80 mAs, collimation: 
2 × 128/192 × 0.6 mm, gantry rotation time 0.25− 0.28, slice thickness 
from 1 mm to 3 mm and slice spacing from 0.6 mm to 3.0 mm.” 

2.3. Data analysis 

2.3.1. Manual CACS 
In cohort one, standard CCS, using the Agatston score, on non- 

contrast cardiac ECG-triggered CT acquisitions was performed manu-
ally using commercially available software (CT CaScoring, Siemens). 
Coronary artery calcifications were manually attributed to a coronary 
arteries as part of the clinical work-up and Agatston scores were re-
ported in the clinical report by board-certified radiologist. Selection of 
coronary calcium and quantification of calcium volume was done 
manually on the non-triggered chest CT acquisitions. To evaluate the 
accuracy of risk assessment classification of the calcium quantification 
on chest CTs, patients were divided based on their Agatston score in 
standard risk categories (0, 1− 10, 11− 100, 101− 400, or >400). 

For the second cohort, scans were qualitatively analyzed by a cardiac 
radiologist with 19 years of experience (JRB). Each scan was given one 
of the following categories according to clinical guidelines: none, mild, 
moderate or severe calcifications. Our clinical standard reporting used 
these qualitative categories to assess coronary calcium. The categories 
(none, mild, moderate, or severe) were chosen to visually correlate with 
traditional CCS score groups [21]. The thresholds for assigning patients 
to a qualitative category were determined by the median calcium vol-
ume values of each category... 

2.3.2. AI methodology 
The coronary calcium volume was obtained using a deep-learning 

based algorithm (AI-Rad Companion Chest CT, Siemens Healthineers, 
Forchheim, Germany). The deep learning model has two components – 
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(i) a convolutional neural network, which takes the image patch and the 
local coronary territory map around each candidate voxel as inputs, and 
(ii) a dense neural network which operates on the coordinates of the 
voxel. The outputs of these two components are concatenated in the 
final layer of the network and a final prediction is made for each voxel to 
determine whether it belongs to the coronary arteries. Fig. 1 represents a 
schematic overview of the deep learning architecture. The output of the 
deep learning model is the total volume of the detected coronary cal-
cifications. The gold standard for evaluation coronary calcifications is 
the Agatston scoring, which assigns different weights to each coronary 
calcification depending on the density of each calcification. Due to this 
weighting, there cannot be an exact correspondence between the cal-
cium volume from the deep learning model to the Agatston scoring. 
However, understanding the relation between the calcium volume and 
the traditional Agatston risk scores on a representative clinical popula-
tion could enable better interpretation of the model outputs in clinical 
routine. 

The model is trained on a retrospective multi-center database of 
1261 gated cardiac CT calcium scoring images to obtain a first model, 
which is then fine-tuned over a separate database of 500 non-gated, non- 
contrasted chest CT images. All the voxels in the cardiac region with 
intensity > 130 HU are labeled by trained annotators and reviewed for 
accuracy by radiologists experienced in reading cardiac and chest CTs. 
The high intensity voxels in the coronary arteries corresponding to 
coronary calcium are labeled as positive samples, while the others 
(aortic/mitral calcification, any devices, high-intensity image noise etc.) 
are labeled as negative samples. 

The entire training data set is first used to establish a coronary ter-
ritory map in a heart coordinate system, to which each CT volume is 
mapped. This territory map serves to assign prior probabilities that a 
voxel belongs to the coronary arteries and is used as an additional input 
to the model. 

For each candidate voxel, a small image patch is extracted centered 
around this voxel to represent the local spatial characteristics along with 
the location (x, y, z) of the voxel in the heart centric coordinate system. 
Voxels are only classified as calcifications if they are clustered resulting 
in a volume exceeding 5 mm [3], otherwise they are discarded as noise. 

For qualitative risk classification the AI algorithm uses thresholds of 
5, 250 and 1000 mm [3] of calcium volume to assign cases to mild, 
moderate and severe calcium volume categories. 

2.4. Statistical analysis 

In this study, the fully automated measurements on the non- 
triggered acquisitions were compared with 1) the manual measure-
ments on the same acquisitions (cohort 1), and 2) the Agatston score of 

the corresponding ECG-triggered cardiac acquisitions (cohort 1) and 3) 
with manual qualitative calcium scoring using chest CT(cohort 2). Data 
was compared for the zero and non-zero groups and for different Agat-
ston risk categories in patients who underwent both cardiac and chest 
CT. Independent and paired t-testing was used for data showing normal 
distribution, whereas the Wilcoxon signed-rank test was applied for data 
showing non-normal distribution. Pearson correlation coefficients were 
used to evaluate the correlation between the manually annotated CCS on 
both ECG-trigged and non-triggered CT acquisitions and the fully 
automated CCS method. 

Statistical analyses were conducted using SPSS version 23 (IBM, 
Armonk, New York). A p-value < 0.05 was considered statistically sig-
nificant. Continuous variables are represented as mean (standard devi-
ation [SD]) or median (interquartile range [IQR]), depending on their 
distribution (tested with Shapiro Wilkes test). Categorical data is dis-
played as absolute frequencies and proportions. 

3. Results 

3.1. Patient demographics 

A total of 95 patients with both dedicated CCS and chest acquisitions 
were included for quantitative validation purposes. 

A total of 168 patients undergoing chest CT only were included for 
the purpose of comparing qualitative calcium analysis. There were 66 
(39 %), 53 (32 %), 25 (15 %) and 24 (14 %) patients with a no, mild, 
moderate and severe calcium classification according to expert opinion. 

3.2. Agatston scores and AI determined chest CT calcium volumes 

The median Agatson score of all 95 patients (cohort 1) undergoing 
cardiac and chest CT was 16.00 [IQR: 0.00− 304.00]. Of these, 41 % 
(39/95) had an Agatston score of zero. The remaining percentage of 
patients fell in the following risk categories (1− 10, 11− 100, 101− 400, 
or >400) 10 % (9/95), 13 % (12/95), 18 % (17/95), and 19 % (18/95), 
respectively. 

According to the AI algorithm, the median calcium volume of all 
patients was 18.27 [IQR: 0.00− 197.10]. An overview of all CACS for 
each risk category is given in Table 1. The Agatston score and AI 
determined calcium volume shows high correlation with a correlation 
coefficient of 0.921 (p < 0.001) and an R2 of 0.91, see Fig. 2. According 
to the Agatston risk categories, a total of 67 (70 %) were correctly 
classified. Table 2 shows the confusion matrix for all calcium classifi-
cations based on Agatston score and AI determined calcium volume. It 
shows that only 3 cases (3 %) were falsely classified as 0 and in only 5 % 
the prediction was more than one category off. 

Fig. 1. Schematic overview of the AI architecture.  
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3.3. Volume vs. Volume 

An overview of all calcium volumes (manually and AI determined) in 
cohort 1 patients for each separate risk category (based on the Agatston 
score) is given in Table 1. The manual determined, median calcium 
volume on chest CT was 13.20 [IQR: 0.00− 189.00] and showed excel-
lent correlation with the AI determined calcium volumes with a corre-
lation coefficient f 0.923 (p < 0.001) and an R2 of 0.96, see Fig. 3. 
Manual and AI determined calcium volumes were not significantly 
different (p = 0.247). 

Bland Altman plot shows data well within the limits of agreement 
(Fig. 4) with an increasing error at higher calcium volumes. 

3.4. Qualitative clinical assessment 

In cohort 2, according to the expert reading 66 (40 %), 53 (32 %), 25 
(15 %) and 24 (14 %) had no, mild, moderate or severe calcium volumes, 
respectively. According to the fully automated AI algorithm 67 (40 %), 
56 (33 %), 20 (12 %) and 25(15 %) had no, mild, moderate or severe 

calcium volumes. In total 138 (82 %) cases were correctly classified with 
a kappa coefficient of 0.74 representing good agreement. All wrongly 
classified scans (30 (18 %)) were attributed to an adjacent category, see 
Table 3 for the full classification matrix. Comparing no calcium present 
vs calcium present, 6 (10 %) were considered mild where the expert 
scored them as no calcium present and 7 (11 %) cases were classified as 
no calcium present according to the AI algorithm where the expert 
stated that there was calcium present. 

Fig. 5 shows an example of the AI segmentations used for calcium 
volume measurements, visualizing how the AI based aortic segmenta-
tion results in successful exclusion of aortic calcification for the deter-
mination of coronary calcium. 

4. Discussion 

A method for fully automated coronary calcium scoring from ECG- 
gated and non-gated chest CT data based on deep-learning models is 
presented and validated in this study. Two neural networks were com-
bined; a convolution neural network with a ResNet-architecture for 

Table 1 
Overview of Agatston scores and Calcium Volumes.   

Manual Cardiac CT (Agatston Score) Manual Chest CT (Calcium volume) AI Chest CT (Calcium volume) p-values Manual vs. AI (Calcium volume) 

n = 95     
Median (IQR) 16.00 [0.00− 304.00] 13.20 [0.00− 189.00] 18.27 [0.00− 197.10] 0.247  

Risk Categories:     
0 (n = 39) 0.00 [0.00− 0.00] 0.00 [0.00− 0.00] 0.00 [0.00− 0.00] 0.144 
1− 10 (n = 7) 7.00 [3.50− 10.00] 4.60[2.70− 24.50] 0.00 [0.00− 23.37] 0.866 
11− 100 (n = 12) 20.00 [16.25− 23.87] 31.50 [6.40− 59.05] 23.20 [6.76− 38.32] 0.241 
101− 400 (n = 17) 185.00 [139.47− 227.50] 132.40 [85.45− 187.00] 119.85 [74.86− 186.70] 0.177 
400+ (n = 20) 907.50 [509.75− 1372.50] 904.75[487.30− 1285.60] 760.47 [352.73− 1267.21] 0.526  

Fig. 2. Relationship between Agatston scores and AI determined calcium volume, showing excellent correlation 0.921 with an R2 of 0.91.  

Table 2 
Risk Category Agreement between Agatston (ref) and AI Calcium Volume.  
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image features and a fully connected neural network for spatial coor-
dinate features. A coronary probability map and deep-learning based 
aortic segmentation were used to exclude all non-coronary calcifica-
tions. Validation of this algorithm on ECG-gated cardiac CTs showed 
excellent correlation (0.921− 0.923) between manual and AI determined 
calcium volumes and traditional Agatston scores. There were no sig-
nificant differences between manual and AI determined calcium vol-
umes. Using an AI algorithm on non-gated chest CTs, 70 % of patients 
were correctly assigned to the right Agatston risk category and 82 % 
were correctly classified according to qualitative calcium categorization 
used in clinical practice. When compared to Agatston scoring as ground 

truth for the presence/absence of coronary artery calcifications, the 
deep learning model achieved a sensitivity of 91 % (49/54 patients) and 
a specificity of 92 % (36/39 patients). 

The application of CAC quantification on CT images has the potential 
to aid in the prediction of all-cause mortality and cardiovascular events 
and could help guide early phase therapy [22,23] Recent studies have 
shown that lung cancer screening, using chest CT, reduced lung cancer 
mortality and is likely to be implemented in a wide range of countries 
[13,14,24,25]. Aging and smoking are important risk factors for lung 
cancer and CVD, resulting in a large overlap of patients benefitting from 
CACS and lung cancer screening [26]. In the National Lung Screening 

Fig. 3. Relationship between manual and AI determined calcium volume, showing excellent correlation 0.923 with an R2 of 0.96.  

Fig. 4. Bland Altman plot, showing good agreement between manual and AI determined calcium volume from chest CTs. The absolute difference increases at higher 
absolute values. The x-axis show the log transformed average calcium volumes. 

Table 3 
Category agreement between manual qualitative assessment and AI determined calcium volume.  
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Trial (NLST), CVD was the leading cause of mortality [27]. Automated 
quantification of CAC on chest CT acquisitions enables simultaneous 
evaluation of both lung cancer and cardiovascular risk, without addi-
tional costs and radiation exposure for patients and without increasing 
the workload at the Radiological department. 

The proposed algorithm has been trained on both non-contrast ECG- 
triggered cardiac and non-ECG triggered chest CTs, making use of 
transfer learning to reduce the number of datasets needed while main-
taining high accuracy. Chest CT’s, most of which are non-ECG triggered, 
have higher noise levels and are more susceptible to motion artifact 
compared their ECG-triggered counterparts. For this reason, instead of 
determining Agatston scores, this algorithm focuses on the quantifica-
tion of coronary calcium volume. Even though Agatston scoring might 
not be reliable in low-dose non-ECG-triggered scans, the quantification 
of coronary calcium volume enables estimation of cardiovascular risk 
[28]. It is expected that with increased motion on chest CTs the absolute 
volume is increased while the mass is expected to decrease. Using an 
Agatston score, including both parameters will be effected by both. In 
order to avoid overestimation, the thresholds of pixels involved for 
which a calcification is classified as positive has been adjusted in order 
to compensate for the increased motion and noise levels. Future research 
should investigate whether it is possible to convert these volumes to a 
traditional Agatston score. 

Although our study shows an excellent, according to the quantitative 
analysis, comparing our AI quantification to the Agatston score risk 
categories, 30 % of cases was misclassified. The misclassification to the 
no calcium category will have the largest impact on patient treatment, 
since these patients will be considered to have no/little cardiac risk. 
Misclassifications of higher risk categories, although misrepresenting 
the risk, have little effect on the clinical follow-up and treatment of these 
patients However, the confusion matrix showed that only 3 cases (3 %) 
were falsely classified as 0 and in only 5 % the prediction was more than 
one category off. A recent meta-analysis showed that chest CT could not 
replace cardiac CT for screening purposes due to an average of 8.8 % 
false negatives on chest CT [29]. They also showed that a small per-
centage of subjects (up to 1.3 %) with zero CS in non-triggered CT had 
cardiovascular death or events. Their reported false negative percentage 
is higher than the percentage found in this study. According to a study by 
Xia et al. [30] on a large prospective cohort comparing Agatston scores 
on cardiac and chest CT’s shows that 6.5 % of cases were misclassified, 
however, they used a very controlled population with no variety in CT 
scanners (only high-end) and imaging protocols in an asymptomatic 
screening cohort. In addition they show that misclassifications can in-
crease to 13 % in cases of BMI > 30. Our clinical cardiac populations, as 

used in this study with symptomatic patients undergoing cardiac CT 
imaging, are known for having an increased BMI. However, the popu-
lation chosen for this study is a representation of clinical practice. Future 
studies should provide guidance whether chest CT based calcium 
quantification, whether or not used with AI should be used in high BMI 
patients. The AI algorithm could improve performance by performing an 
additional training on high BMI patients. In addition as mention before, 
adaptation of thresholds of pixels involved and minimum HU value of 
these pixel could further optimize calcium quantification. 

In addition to our comparison with the Agatston score, our qualita-
tive assessment also showed an 11 % misclassification to the zero cal-
cium category. In the current study, the categorization of the AI based 
calcium quantification was performed using the medians of each cate-
gory as assessed by the expert. However, optimization of these thresh-
olds, in favor of correctly classifying the zero calcium category could be 
proven useful for screening purposes. A recent meta-analysis [29] has 
shown 8.8 % of false negative calcium score scans and concludes that 
chest should not be used for calcium screening according to the same 
guidelines as cardiac CT. The quantitative analysis of coronary calcium 
on chest CT however, still gives an indication of cardiovascular health in 
patients who receive chest imaging for non-cardiac purposes. It should 
be mentioned that in non-cardiac patients, a positive calcium score can 
be used as a tool to further assess cardiac health rather than clearing 
them of cardiovascular risk based on negative calcium score. 

There are several studies performed on (semi) automated techniques 
for CAC quantification; however, there are only a few fully automated 
applications [11]. Wolterink et al. evaluated automated CCS methods 
for non-contrast CT and cardiac CTA [17,31], De Vos et al. proposed an 
algorithm on both cardiac and chest CT studies [32], while two other 
studies by Ebersberger et al. [33] and Ahmed et al. [34] investigated 
fully automated CAC analysis on contrast-enhanced CTA studies and 
standard non-contrast CT scans. Previous research on deep-learning 
based algorithms for automated detection of calcium on chest CTs 
show similar correlation to Agatston score or manual analysis with co-
efficients ranging from 0.93− 0.98 [16,32,35–37] compared to 
0.91− 0.93 in the current study. Similar correlations are shown in studies 
on dedicated cardiac scans using ECG triggering with correlations 
ranging between 0.94− 0.97. [17,31,38]. 

Our AI Algorithm uses a prior likelihood model for coronary terri-
tories to help with the calcium detection, similar as to the algorithm 
reported by Isgum et al. [20], however, the architecture of the under-
lying models is slightly different (Isgum et al. use a support vector 
classifier whereas our architecture uses convolutional neural networks). 
Another key difference of the current algorithm compared to previously 

Fig. 5. Example of a chest CT image (left) and the same CT image with automated AI based aortic (blue) and coronary calcium (red) segmentation. Using an AI based 
aortic segmentation step ensures the exclusion of aortic calcium, as is demonstrated in this example. 
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reported approaches is that, to the best of our knowledge, our model is 
the only one which is commercially available (AI Rad Companion Chest 
CT, Siemens Healthineers), making this the only study that performs a 
true external validation of an AI algorithm for calcium quantification on 
chest CT on a clinical representative population. True external valida-
tion is necessary to prove the workings of an AI algorithm in a clinical 
setting, using a representable population. 

In addition to other AI approaches reported, the current approach 
also uses an additional model to reduce false positives calcium detec-
tion. One of the main reported sources of false positive calcium classi-
fications is the classification of aortic, annular and valvular calcium 
[35]. Using a probability map and deep-learning based aortic segmen-
tation to exclude non-coronary calcifications, the current algorithm re-
duces false positive classification of calcium. This is demonstrated by the 
relative underestimation of calcium volume by the AI algorithm. This 
underestimation of a fully automated approach determining calcium 
volumes compared to Agatston scores is also reported in a previous study 
by Takx et al. However, when compared to the inter-scan variability in 
non-ECG trigged chest CT acquisitions the errors of the automatic 
scoring are similar to those by manual expert scoring [28]. 

There are several limitations that deserve to be discussed. Although 
the current algorithm was trained and tested on multicenter data, the 
validation was performed on data originating from one institute. Future 
validation on a multi-center dataset should prove the generalizability of 
this algorithm. This study compared Agatson scores from dedicated 
cardiac scans with volumes from chest CTs. Although calcium volumes 
can be used for cardiovascular risk prediction, this parameter is not as 
standardized and thoroughly investigated as the Agatston score. Future 
research should be aimed in establishing a chest CT specific score, 
whether this is the Agatston score or not, for cardiovascular risk 
prediction. 

In conclusion, deep-learning based automated calcium quantifica-
tion on chest CT show excellent correlation with manual calcium volume 
quantification on chest CTs and with Agatston scored from cardiac CTs. 
Automated analysis could increase the workflow efficacy and help deal 
with the increasing number of acquisition requests in order to assist in 
the increased workforce of radiologists. This would be especially inter-
esting in screening situations. 
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