1,645 research outputs found

    A Review of Layer Based Manufacturing Processes for Metals

    Get PDF
    The metal layered manufacturing processes have provided industries with a fast method to build functional parts directly from CAD models. This paper compares current metal layered manufacturing technologies from including powder based metal deposition, selective laser sinstering (SLS), wire feed deposition etc. The characteristics of each process, including its industrial applications, advantages/disadvantages, costs etc are discussed. In addition, the comparison between each process in terms of build rate, suitable metal etc. is presented in this paper.Mechanical Engineerin

    From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Get PDF
    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observe

    Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Selective Laser Sintering of Pre-alloyed Powders

    Get PDF
    The purpose of this research is to investigate the microstructure and mechanical properties of Ti6Al4V pre-alloyed powders producing by direct metal laser sintering technique. Through this research, the direct fabrication of Ti6Al4V metal parts by selective laser sintering machine has been carried out using EOS GmbH M270 equipment. Employing intricate thermo-mechanical interaction between the laser beam and the metallic powders, the machine consolidates predefined cross sections and binds the particles together to form solid parts which correspond to CAD data.The geometrical feasibility of the parts, including process accuracy were statistically analysed by simple benchmark studies. The intricate correlation between powder materials and process parameters were thoroughly investigated via fractography, metallography and standard physical testing.It was found that, SLS technologies are capable of directly producing near to full density metal parts with good mechanical properties.Ti6Al4V produced by laser sintering has very fine α+ microstructure. This fine and stable microstructure demonstrated a high yield stress and UTS with low elongation at break. The fracture surface has a dimple features typical of a ductile structure. Dimensional analyses were performed on the customised benchmark showing process accuracy below 50 m. Designated heat treatments modified the microstructure which influences the mechanical behaviour of the parts

    Novel indirect additive manufacturing for processing biomaterials

    Get PDF
    PhD ThesisThe aim of this work was to identify methods for the production of patient-specific biomedical devices via indirect additive manufacturing (AM) methods. Additive manufacturing has been shown to provide a good solution for the manufacture of patient specific implants, but in a limited range of materials, and at a relatively high cost. This research project considered what are known as “indirect” AM approaches, which typically consider AM in combination with one or more subsequent processes in order to produce a part, with a maxillofacial plate and mandible resection used as a demonstrator application. Three different approaches were considered: (i) using AM to produce moulds for powder pressing of bioceramic green parts for subsequent sintering; (ii) using AM to produce moulds for biopolymer sintering; and (iii) 3D printing of bioceramic powders into green parts for subsequent sintering. Apatite wollastonite glass ceramic (AW) and poly-Lactide-co-glycolide (PLGA) were selected as the bioceramic and biopolymer materials to process. These were characterised before and after processing in order to ensure that the processing route did not affect the material properties. Geometric dimensions, the morphological structure and mechanical properties were studied to establish the accuracy, shrinkage and strength of the fabricated biomaterial implants. The use of AM processes to produce moulds for PLGA sintering, and the 3D printing of bioceramic powders formed the best overall results in terms of the definition and properties of the manufactured parts. Parts produced were accurate to within 5% of the as designed dimensions for both the PLGA sintering and the bioceramic powders 3D printing. The indirect AM methods are considered to be promising processing routes for medical devices.University Malaysia Perlis and the Malaysian Higher Education Ministr
    • 

    corecore