26 research outputs found

    UAS Model Identification and Simulation to Support In-Flight Testing of Discrete Adaptive Fault-Tolerant Control Laws

    Get PDF
    In mission-critical applications of unmanned and autonomous aerial systems(UAS), it is of significant importance to develop robust strategies for fault-tolerant systems that can countermeasure system degradation and consequently support the integration into the National Airspace (NAS). This thesis research illustrates the results of systems identification that is performed using DATCOM followed by the flight test data. This data is acquired from conducting an intensive flight testings program of a fixed-wing UAS to determine the state-space model of the aircraft. A discrete state-space system is reconstructed from these models to derive Auto-Regressive Moving-Average (ARMA) models used to design a Discrete Direct and Indirect Model Reference Adaptive Control. Description of the UAS, sub-systems, and integration is presented in this thesis along with analysis of results from numerical simulation to support the design, development, and validation of adaptive control laws for fault tolerance. A set of performance metrics are defined to perform the analysis in terms of control effort, tracking performance, and reconfiguration of control laws under commonly occurring failures such as partial control surface damage, pilot-induced oscillations, and uncertain ice accretion

    Indirect Model Reference Adaptive Control with Online Parameter Estimation

    Get PDF
    Over the years, parameter estimation has focused on approaches in both the time and frequency domains. The parameter estimation process is particularly important for aerospace vehicles that have considerable uncertainty in the model parameters, as might be the case with unmanned aerial vehicles (UAVs). This thesis investigates the use of an Indirect Model Reference Adaptive Controller (MRAC) to provide online, adaptive estimates of uncertain aerodynamic coefficients, which are in turn used in the MRAC to enable an aircraft to track reference trajectories. The performance of the adaptive parameter estimator is compared to that of the Extended Kalman Filter (EKF), a classical time-domain approach. The algorithms will be implemented on simulation models of a general aviation aircraft, which would be representative of the dynamics of a medium-scale fixed-wing UAV. The relative performance of the parameter estimation algorithms within an adaptive control framework is assessed in terms of parameter estimation error and tracking error under various conditions. It was found that limitations exist with the adaptive update laws in terms of number of parameters estimated within the Indirect MRAC system. The Indirect MRAC-EKF was determined to be a viable option to estimate multiple parameters simultaneously

    An integral sliding-mode parallel control approach for general nonlinear systems via piecewise affine linear models

    Full text link
    The fundamental problem of stabilizing a general nonaffine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this article. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a nonaffine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise sliding-mode parallel controller is designed to globally stabilize the PALM and, consequently, to semiglobally stabilize the original nonlinear system. The proposed scheme enjoys three favorable features: (i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; (ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system; and (iii) the proposed piecewise parallel controller generates smooth control signals even around the boundaries between different subspaces, which makes the developed control strategy more implementable and reliable. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach

    Regression Filtration with Resetting to Provide Exponential Convergence of MRAC for Plants with Jump Change of Unknown Parameters

    Full text link
    This paper proposes a new method to provide the exponential convergence of both the parameter and tracking errors of the composite adaptive control system without the requirement of the regressor persistent excitation (PE). Instead, the composite adaptation law obtained in this paper requires the regressor to be finitely exciting (FE) to guarantee the above-mentioned properties. Unlike known solutions, not only does it relax the PE requirement, but also it functions effectively under the condition of a jump change of the plant uncertainty parameters. To derive such an adaptation law, an integral filter of regressor with damping and resetting is proposed. It provides the required properties of the control system, and its output signal is bounded even when its input is subjected to noise and disturbances. A rigorous analytical proof of all mentioned properties of the developed adaptation law is presented. Such law is compared with the known composite ones relaxing the PE requirement. The wing-rock problem is used for the modeling of the developed composite MRAC system. The obtained results fully support the theoretical analysis and demonstrate the advantages of the proposed method.Comment: 12 pages, 3 figure

    Dynamic modeling and adaptive control for space stations

    Get PDF
    Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained
    corecore